MAT 280: Harmonic Analysis on Graphs \& Networks Lecture 10: Distances on Graphs

Naoki Saito
Department of Mathematics
University of California, Davis

October 29, 2019

Outline

(1) Need of a Variety of Graph Distances
(2) The (Shortest) Path Distance
(3) Resistance Distance

4 Commute-Time Distance

Outline

(1) Need of a Variety of Graph Distances

(2) The (Shortest) Path Distance

(3) Resistance Distance

(4) Commute-Time Distance

Need of a Variety of Graph Distances

- Suppose a simple, weighted, and connected graph $G(V, E)$ is already built from the dataset $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}$.

\qquad

Need of a Variety of Graph Distances

- Suppose a simple, weighted, and connected graph $G(V, E)$ is already built from the dataset $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}$.
- Assume the data vector \boldsymbol{x}_{i} is associated with the vertex v_{i}.
analysis; pattern recognition; image processing,

Need of a Variety of Graph Distances

- Suppose a simple, weighted, and connected graph $G(V, E)$ is already built from the dataset $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}$.
- Assume the data vector \boldsymbol{x}_{i} is associated with the vertex v_{i}.
- Let $w(e)=w_{e} \geq 0$ be an edge weight of the edge $e \in E(G)$, which we also write $a_{i j}$, i.e., (i, j) th entry of the weighted adjacent matrix A if $e=\left(v_{i}, v_{j}\right)$.
\qquad

Need of a Variety of Graph Distances

- Suppose a simple, weighted, and connected graph $G(V, E)$ is already built from the dataset $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}$.
- Assume the data vector \boldsymbol{x}_{i} is associated with the vertex v_{i}.
- Let $w(e)=w_{e} \geq 0$ be an edge weight of the edge $e \in E(G)$, which we also write $a_{i j}$, i.e., (i, j) th entry of the weighted adjacent matrix A if $e=\left(v_{i}, v_{j}\right)$.
- In many applications, we want to know the similarity or dissimilarity between vertices v_{i} and v_{j}. Note that v_{i} and ν_{j} may not be adjacent (i.e., they may not be endpoints of a single edge).

Need of a Variety of Graph Distances

- Suppose a simple, weighted, and connected graph $G(V, E)$ is already built from the dataset $X=\left\{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right\} \subset \mathbb{R}^{d}$.
- Assume the data vector \boldsymbol{x}_{i} is associated with the vertex v_{i}.
- Let $w(e)=w_{e} \geq 0$ be an edge weight of the edge $e \in E(G)$, which we also write $a_{i j}$, i.e., (i, j) th entry of the weighted adjacent matrix A if $e=\left(v_{i}, v_{j}\right)$.
- In many applications, we want to know the similarity or dissimilarity between vertices v_{i} and v_{j}. Note that v_{i} and ν_{j} may not be adjacent (i.e., they may not be endpoints of a single edge).
- Such applications include: search engines; data mining; social network analysis; pattern recognition; image processing, ...

Outline

(1) Need of a Variety of Graph Distances

22 The (Shortest) Path Distance

4 Commute-Time Distance

The (Shortest) Path Distance

- Most common metric on a graph

The (Shortest) Path Distance

- Most common metric on a graph
- Let $u, v \in V(G)$ be any two vertices of G. Then, the (shortest) path distance (a.k.a. the geodesic distance) between u and v is the sum of the weights along the path connecting u and v such that it becomes minimum, i.e.,

$$
d_{\mathrm{path}}(u, v):=\min _{P \in \mathscr{P}(u, v)} \sum_{e \in P} w(e)
$$

The (Shortest) Path Distance

- Most common metric on a graph
- Let $u, v \in V(G)$ be any two vertices of G. Then, the (shortest) path distance (a.k.a. the geodesic distance) between u and v is the sum of the weights along the path connecting u and v such that it becomes minimum, i.e.,

$$
d_{\mathrm{path}}(u, v):=\min _{P \in \mathscr{P}(u, v)} \sum_{e \in P} w(e)
$$

- If G is directed, then $d_{\text {path }}(u, v) \neq d_{\text {path }}(\nu, u)$ in general.

The (Shortest) Path Distance

- Most common metric on a graph
- Let $u, v \in V(G)$ be any two vertices of G. Then, the (shortest) path distance (a.k.a. the geodesic distance) between u and v is the sum of the weights along the path connecting u and v such that it becomes minimum, i.e.,

$$
d_{\text {path }}(u, v):=\min _{P \in \mathscr{P}(u, v)} \sum_{e \in P} w(e)
$$

- If G is directed, then $d_{\text {path }}(u, v) \neq d_{\text {path }}(v, u)$ in general.
- Efficient algorithms to compute $d_{\text {path }}(\cdot, \cdot)$ exist, e.g., the A^{*} algorithm of Hart-Nilsson-Raphael (1968), etc. Yet, in general, its complexity is at least polynomial time w.r.t. $n . \Rightarrow$ See the excellent Wikipedia page!

Outline

(1) Need of a Variety of Graph Distances

(2) The (Shortest) Path Distance

(3) Resistance Distance

4 Commute-Time Distance

Resistance Distance

- The shortest path distance may not be always relevant. Consider the following two subgraphs where each $w_{e} \equiv 1$:

Resistance Distance

- The shortest path distance may not be always relevant. Consider the following two subgraphs where each $w_{e} \equiv 1$:

- In both cases in the above, $d_{\text {path }}\left(v_{i}, v_{j}\right)=2$. But it is clear that there are more paths connecting v_{i} and v_{j} in the subgraph in the left than in the right.

Resistance Distance

- The shortest path distance may not be always relevant. Consider the following two subgraphs where each $w_{e} \equiv 1$:

- In both cases in the above, $d_{\text {path }}\left(v_{i}, v_{j}\right)=2$. But it is clear that there are more paths connecting v_{i} and ν_{j} in the subgraph in the left than in the right.
- Hence, it is reasonable that the "distance" between v_{i} and v_{j} should be smaller in the left than in the right.

Resistance Distance ...

- Now, let's interpret the edge weights as resistances in an electrical network.
\square

Resistance Distance ...

- Now, let's interpret the edge weights as resistances in an electrical network.
- For any $v_{i}, v_{j}, i \neq j$, suppose that a battery is connected across them so that one unit of a current flows in at v_{i} and out in v_{j}.
- Hence, given resistance distances $\left\{r_{i j}\right\}$, one can construct the corresponding weighted adiacency matrix A hy
otherwise

Resistance Distance ...

- Now, let's interpret the edge weights as resistances in an electrical network.
- For any $v_{i}, v_{j}, i \neq j$, suppose that a battery is connected across them so that one unit of a current flows in at v_{i} and out in v_{j}.
- Then, the voltage (potential) difference is the effective resistance between ν_{i} and v_{j} by Ohm's law $(V=I \cdot R)$, which is called the resistance distance between ν_{i} and ν_{j} and written as $r\left(\nu_{i}, v_{j}\right)=r_{i j}$.

Resistance Distance ...

- Now, let's interpret the edge weights as resistances in an electrical network.
- For any $v_{i}, v_{j}, i \neq j$, suppose that a battery is connected across them so that one unit of a current flows in at v_{i} and out in v_{j}.
- Then, the voltage (potential) difference is the effective resistance between ν_{i} and v_{j} by Ohm's law $(V=I \cdot R)$, which is called the resistance distance between v_{i} and ν_{j} and written as $r\left(\nu_{i}, v_{j}\right)=r_{i j}$.
- Hence, $1 / r_{i j}$ is the conductance between ν_{i} and v_{j}, which is a measure of connectivity (or similarity) between them, which should be the edge weight $a_{i j}$.

Resistance Distance ...

- Now, let's interpret the edge weights as resistances in an electrical network.
- For any $v_{i}, v_{j}, i \neq j$, suppose that a battery is connected across them so that one unit of a current flows in at v_{i} and out in v_{j}.
- Then, the voltage (potential) difference is the effective resistance between ν_{i} and v_{j} by Ohm's law $(V=I \cdot R)$, which is called the resistance distance between ν_{i} and ν_{j} and written as $r\left(\nu_{i}, \nu_{j}\right)=r_{i j}$.
- Hence, $1 / r_{i j}$ is the conductance between ν_{i} and v_{j}, which is a measure of connectivity (or similarity) between them, which should be the edge weight $a_{i j}$.
- Hence, given resistance distances $\left\{r_{i j}\right\}$, one can construct the corresponding weighted adjacency matrix A by

$$
a_{i j}= \begin{cases}1 / r_{i j} & \text { if } v_{i} \sim v_{j} \text { and } r_{i j} \nsupseteq 0 ; \\ 0 & \text { otherwise. }\end{cases}
$$

Resistance Distance ...

- Now, let's interpret the edge weights as resistances in an electrical network.
- For any $v_{i}, v_{j}, i \neq j$, suppose that a battery is connected across them so that one unit of a current flows in at v_{i} and out in v_{j}.
- Then, the voltage (potential) difference is the effective resistance between ν_{i} and v_{j} by Ohm's law $(V=I \cdot R)$, which is called the resistance distance between ν_{i} and ν_{j} and written as $r\left(\nu_{i}, \nu_{j}\right)=r_{i j}$.
- Hence, $1 / r_{i j}$ is the conductance between ν_{i} and v_{j}, which is a measure of connectivity (or similarity) between them, which should be the edge weight $a_{i j}$.
- Hence, given resistance distances $\left\{r_{i j}\right\}$, one can construct the corresponding weighted adjacency matrix A by

$$
a_{i j}= \begin{cases}1 / r_{i j} & \text { if } v_{i} \sim v_{j} \text { and } r_{i j} \nsupseteq 0 ; \\ 0 & \text { otherwise. }\end{cases}
$$

- But, how can we compute $\left\{r_{i j}\right\}$ if A is given? Note that $r_{i j}$ should be defined even if $\nu_{i} \nsim \nu_{j}$.

Resistance Distance ...

- The amazing fact is the following relationship between the resistance distance and the (Moore-Penrose) pseudoinverse $L^{\dagger}(G)$ of the unnormalized graph Laplacian $L(G)$!

$$
\begin{aligned}
r_{i j} & =\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-\left(L^{\dagger}\right)_{i j}-\left(L^{\dagger}\right)_{j i} \\
& =\left\langle\boldsymbol{e}_{i}-\boldsymbol{e}_{j}, L^{\dagger}\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)\right\rangle \\
& =\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-2\left(L^{\dagger}\right)_{i j} \text { if } G \text { is undirected; }
\end{aligned}
$$

Resistance Distance

- The amazing fact is the following relationship between the resistance distance and the (Moore-Penrose) pseudoinverse $L^{\dagger}(G)$ of the unnormalized graph Laplacian $L(G)$!

$$
\begin{aligned}
r_{i j} & =\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-\left(L^{\dagger}\right)_{i j}-\left(L^{\dagger}\right)_{j i} \\
& =\left\langle\boldsymbol{e}_{i}-\boldsymbol{e}_{j}, L^{\dagger}\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)\right\rangle \\
& =\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-2\left(L^{\dagger}\right)_{i j} \text { if } G \text { is undirected; }
\end{aligned}
$$

- Hence, the resistance matrix $R(G)=\left(r_{i j}\right)$ can be computed via $L^{\dagger}(G)$.
compute i th column vector $\boldsymbol{\ell}_{i}^{\dagger}$ of L^{\dagger} as follows:

Resistance Distance . . .

- The amazing fact is the following relationship between the resistance distance and the (Moore-Penrose) pseudoinverse $L^{\dagger}(G)$ of the unnormalized graph Laplacian $L(G)$!

$$
\begin{aligned}
r_{i j} & =\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-\left(L^{\dagger}\right)_{i j}-\left(L^{\dagger}\right)_{j i} \\
& =\left\langle\boldsymbol{e}_{i}-\boldsymbol{e}_{j}, L^{\dagger}\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)\right\rangle \\
& =\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-2\left(L^{\dagger}\right)_{i j} \text { if } G \text { is undirected; }
\end{aligned}
$$

- Hence, the resistance matrix $R(G)=\left(r_{i j}\right)$ can be computed via $L^{\dagger}(G)$.
- If G is sparse, then one can utilize a sparse Cholesky factorization of $L(G)$ to compute i th column vector $\boldsymbol{\ell}_{i}^{\dagger}$ of L^{\dagger} as follows:

Resistance Distance

- The amazing fact is the following relationship between the resistance distance and the (Moore-Penrose) pseudoinverse $L^{\dagger}(G)$ of the unnormalized graph Laplacian $L(G)$!

$$
\begin{aligned}
r_{i j} & =\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-\left(L^{\dagger}\right)_{i j}-\left(L^{\dagger}\right)_{j i} \\
& =\left\langle\boldsymbol{e}_{i}-\boldsymbol{e}_{j}, L^{\dagger}\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)\right\rangle \\
& =\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-2\left(L^{\dagger}\right)_{i j} \text { if } G \text { is undirected; }
\end{aligned}
$$

- Hence, the resistance matrix $R(G)=\left(r_{i j}\right)$ can be computed via $L^{\dagger}(G)$.
- If G is sparse, then one can utilize a sparse Cholesky factorization of $L(G)$ to compute i th column vector $\boldsymbol{\ell}_{i}^{\dagger}$ of L^{\dagger} as follows:
(1) Compute the projection of \boldsymbol{e}_{i} onto range $(L(G))$, say \boldsymbol{y}_{i} via

$$
\boldsymbol{y}_{i}=\left(I-\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n\right) \boldsymbol{e}_{i}\left[\text { Note } \operatorname{null}(L(G))=\operatorname{span}\left\{\mathbf{1}_{n}\right\} \text { if } G\right. \text { is connected.] }
$$

Resistance Distance

- The amazing fact is the following relationship between the resistance distance and the (Moore-Penrose) pseudoinverse $L^{\dagger}(G)$ of the unnormalized graph Laplacian $L(G)$!

$$
\begin{aligned}
r_{i j} & =\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-\left(L^{\dagger}\right)_{i j}-\left(L^{\dagger}\right)_{j i} \\
& =\left\langle\boldsymbol{e}_{i}-\boldsymbol{e}_{j}, L^{\dagger}\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)\right\rangle \\
& =\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-2\left(L^{\dagger}\right)_{i j} \text { if } G \text { is undirected; }
\end{aligned}
$$

- Hence, the resistance matrix $R(G)=\left(r_{i j}\right)$ can be computed via $L^{\dagger}(G)$.
- If G is sparse, then one can utilize a sparse Cholesky factorization of $L(G)$ to compute i th column vector $\boldsymbol{\ell}_{i}^{\dagger}$ of L^{\dagger} as follows:
(1) Compute the projection of \boldsymbol{e}_{i} onto range $(L(G))$, say \boldsymbol{y}_{i} via $\boldsymbol{y}_{i}=\left(I-\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n\right) \boldsymbol{e}_{i}$ [Note null $(L(G))=\operatorname{span}\left\{\mathbf{1}_{n}\right\}$ if G is connected.]
(2) Find a solution $\widehat{\ell_{i}}$ of $L \boldsymbol{\ell}=\boldsymbol{y}_{i}$ where the Cholesky factorization of L should be utilized.

Resistance Distance

- The amazing fact is the following relationship between the resistance distance and the (Moore-Penrose) pseudoinverse $L^{\dagger}(G)$ of the unnormalized graph Laplacian $L(G)$!

$$
\begin{aligned}
r_{i j} & =\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-\left(L^{\dagger}\right)_{i j}-\left(L^{\dagger}\right)_{j i} \\
& =\left\langle\boldsymbol{e}_{i}-\boldsymbol{e}_{j}, L^{\dagger}\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)\right\rangle \\
& =\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-2\left(L^{\dagger}\right)_{i j} \quad \text { if } G \text { is undirected; }
\end{aligned}
$$

- Hence, the resistance matrix $R(G)=\left(r_{i j}\right)$ can be computed via $L^{\dagger}(G)$.
- If G is sparse, then one can utilize a sparse Cholesky factorization of $L(G)$ to compute i th column vector $\boldsymbol{\ell}_{i}^{\dagger}$ of L^{\dagger} as follows:
(1) Compute the projection of \boldsymbol{e}_{i} onto range $(L(G))$, say \boldsymbol{y}_{i} via $\boldsymbol{y}_{i}=\left(I-\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n\right) \boldsymbol{e}_{i}$ [Note $\operatorname{null}(L(G))=\operatorname{span}\left\{\mathbf{1}_{n}\right\}$ if G is connected.]
(2) Find a solution $\widehat{\ell_{i}}$ of $L \boldsymbol{\ell}=\boldsymbol{y}_{i}$ where the Cholesky factorization of L should be utilized.
(3) Project the result on the row space of L (which is the same as the column space thanks to $L^{\top}=L$) to compute the i th column vector $\boldsymbol{\ell}_{i}^{\dagger}=\left(I-\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n\right) \widehat{\boldsymbol{\ell}_{i}}$.

Intermezzo: The (Moore-Penrose) Pseudoinverse

Definition

The pseudoinverse $A^{\dagger} \in \mathbb{C}^{n \times m}$ of a general matrix $A \in \mathbb{C}^{m \times n}$ is defined to be the unique matrix $X \in \mathbb{C}^{n \times m}$ that satisfies the following Moore-Penrose conditions: i) $A X A=A$; ii) $X A X=X$; iii) $(A X)^{*}=A X$; iv) $(X A)^{*}=X A$, where A^{*} is the Hermitian transposition of A.

Intermezzo: The (Moore-Penrose) Pseudoinverse

Definition

The pseudoinverse $A^{\dagger} \in \mathbb{C}^{n \times m}$ of a general matrix $A \in \mathbb{C}^{m \times n}$ is defined to be the unique matrix $X \in \mathbb{C}^{n \times m}$ that satisfies the following Moore-Penrose conditions: i) $A X A=A$; ii) $X A X=X$; iii) $(A X)^{*}=A X$; iv) $(X A)^{*}=X A$, where A^{*} is the Hermitian transposition of A.

Using the SVD of $A=U \Sigma V^{*}$ where $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ are unitary and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{r}, 0, \cdots, 0\right) \in \mathbb{R}^{m \times n}, r=\operatorname{rank}(A) \leq \min (m, n), A^{\dagger}$ can be expressed as

$$
A^{\dagger}=V \Sigma^{\dagger} U^{*}, \quad \Sigma^{\dagger}:=\operatorname{diag}\left(1 / \sigma_{1}, \cdots, 1 / \sigma_{r}, 0, \cdots, 0\right) \in \mathbb{R}^{n \times m}
$$

Intermezzo: The (Moore-Penrose) Pseudoinverse

Definition

The pseudoinverse $A^{\dagger} \in \mathbb{C}^{n \times m}$ of a general matrix $A \in \mathbb{C}^{m \times n}$ is defined to be the unique matrix $X \in \mathbb{C}^{n \times m}$ that satisfies the following Moore-Penrose conditions: i) $A X A=A$; ii) $X A X=X$; iii) $(A X)^{*}=A X$; iv) $(X A)^{*}=X A$, where A^{*} is the Hermitian transposition of A.

Using the SVD of $A=U \Sigma V^{*}$ where $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$ are unitary and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \cdots, \sigma_{r}, 0, \cdots, 0\right) \in \mathbb{R}^{m \times n}, r=\operatorname{rank}(A) \leq \min (m, n), A^{\dagger}$ can be expressed as

$$
A^{\dagger}=V \Sigma^{\dagger} U^{*}, \quad \Sigma^{\dagger}:=\operatorname{diag}\left(1 / \sigma_{1}, \cdots, 1 / \sigma_{r}, 0, \cdots, 0\right) \in \mathbb{R}^{n \times m}
$$

Note that $A A^{\dagger}$ and $A^{\dagger} A$ are the orthogonal projectors onto range (A) and range $\left(A^{*}\right)$, respectively.

Intermezzo: The EP Matrices

Definition

If $A \in \mathbb{C}^{m \times m}$ commutes with its pseudoinverse, i.e., $A^{\dagger} A=A A^{\dagger}$, then it is called an EP matrix (EP for Equal Projection).

The properties of an EP matrix:

- If $\left(\lambda_{i} \neq 0, \boldsymbol{\phi}_{i}\right)$ is an eigenpair of A, then $\left(1 / \lambda_{i}, \boldsymbol{\phi}_{i}\right)$ is an eigenpair of A^{\dagger}.

Intermezzo: The EP Matrices

Definition

If $A \in \mathbb{C}^{m \times m}$ commutes with its pseudoinverse, i.e., $A^{\dagger} A=A A^{\dagger}$, then it is called an EP matrix (EP for Equal Projection).

The properties of an EP matrix:

- If $\left(\lambda_{i} \neq 0, \boldsymbol{\phi}_{i}\right)$ is an eigenpair of A, then $\left(1 / \lambda_{i}, \boldsymbol{\phi}_{i}\right)$ is an eigenpair of A^{\dagger}.
- If $\left(\lambda_{i}=0, \boldsymbol{\phi}_{i}\right)$ is an eigenpair of A, then $\left(\lambda_{i}=0, \boldsymbol{\phi}_{i}\right)$ is also an eigenpair of A^{\dagger}.

Properties of the Pseudoinverse $L^{\dagger}(G)$

- $\left(L^{\dagger}\right)^{\top}=L^{\dagger}$
- $\operatorname{rank}\left(L^{\dagger}\right)=n-1$
- $\operatorname{null}(L)=\operatorname{null}\left(L^{\dagger}\right)=\operatorname{span}\left\{\mathbf{1}_{n}\right\}$
- L^{\dagger} is doubly centered just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.
- $L^{\dagger}=\left(L-\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n\right)^{-1}+\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n$.
- Since L represents the local properties of G (e.g., connectivities, etc.), L^{\dagger} represents the global properties of $G \Longrightarrow$ What is the relationship between L^{\dagger} and the integral operator commuting with L in Lecture 2?

Properties of the Pseudoinverse $L^{\dagger}(G)$

- $\left(L^{\dagger}\right)^{\top}=L^{\dagger}$
- $\operatorname{rank}\left(L^{\dagger}\right)=n-1$.
- $\operatorname{null}(L)=\operatorname{null}\left(L^{\dagger}\right)=\operatorname{span}\left\{1_{n}\right\}$
- L^{\dagger} is doubly centered just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.
- $L^{\dagger}=\left(L-\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n\right)^{-1}+\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n$.
- Since L represents the local properties of G (e.g., connectivities, etc.), L^{\dagger} represents the global properties of $G \Longrightarrow$ What is the relationship between L^{\dagger} and the integral operator commuting with L in Lecture 2?

Properties of the Pseudoinverse $L^{\dagger}(G)$

- $\left(L^{\dagger}\right)^{\top}=L^{\dagger}$
- $\operatorname{rank}\left(L^{\dagger}\right)=n-1$.
- $\operatorname{null}(L)=\operatorname{null}\left(L^{\dagger}\right)=\operatorname{span}\left\{\mathbf{1}_{n}\right\}$.
- L^{\dagger} is doubly centered just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.
- $L^{\dagger}=\left(L-\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n\right)^{-1}+\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n$.
- Since L represents the local properties of G (e.g., connectivities, etc.),
L^{\dagger} represents the global properties of $G \Longrightarrow$ What is the relationship
between L^{\dagger} and the integral operator commuting with L in Lecture 2?

Properties of the Pseudoinverse $L^{\dagger}(G)$

- $\left(L^{\dagger}\right)^{\top}=L^{\dagger}$
- $\operatorname{rank}\left(L^{\dagger}\right)=n-1$.
- $\operatorname{null}(L)=\operatorname{null}\left(L^{\dagger}\right)=\operatorname{span}\left\{\mathbf{1}_{n}\right\}$.
- L^{\dagger} is doubly centered just like L, i.e., its column sum and row sum are zeros.

Properties of the Pseudoinverse $L^{\dagger}(G)$

- $\left(L^{\dagger}\right)^{\top}=L^{\dagger}$
- $\operatorname{rank}\left(L^{\dagger}\right)=n-1$.
- $\operatorname{null}(L)=\operatorname{null}\left(L^{\dagger}\right)=\operatorname{span}\left\{\mathbf{1}_{n}\right\}$.
- L^{\dagger} is doubly centered just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.

Properties of the Pseudoinverse $L^{\dagger}(G)$

- $\left(L^{\dagger}\right)^{\top}=L^{\dagger}$
- $\operatorname{rank}\left(L^{\dagger}\right)=n-1$.
- $\operatorname{null}(L)=\operatorname{null}\left(L^{\dagger}\right)=\operatorname{span}\left\{\mathbf{1}_{n}\right\}$.
- L^{\dagger} is doubly centered just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.
- $L^{\dagger}=\left(L-\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n\right)^{-1}+\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n$.

Properties of the Pseudoinverse $L^{\dagger}(G)$

- $\left(L^{\dagger}\right)^{\top}=L^{\dagger}$
- $\operatorname{rank}\left(L^{\dagger}\right)=n-1$.
- $\operatorname{null}(L)=\operatorname{null}\left(L^{\dagger}\right)=\operatorname{span}\left\{\mathbf{1}_{n}\right\}$.
- L^{\dagger} is doubly centered just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.
- $L^{\dagger}=\left(L-\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n\right)^{-1}+\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n$.
- Since L represents the local properties of G (e.g., connectivities, etc.), L^{\dagger} represents the global properties of $G \Longrightarrow$ What is the relationship between L^{\dagger} and the integral operator commuting with L in Lecture 2?

Outline

(1) Need of a Variety of Graph Distances

22 The (Shortest) Path Distance

(3) Resistance Distance

4 Commute-Time Distance

Commute-Time Distance

- Is quite similar to the resistance distance.
- Is intimately related to random walks on G.
- The commute time between v_{i} and v_{j} is the expected time it takes - The commute time $c\left(v_{i}, v_{j}\right)$ is intimately related to the resistance distance $r\left(v_{i}, v_{j}\right)$

Commute-Time Distance

- Is quite similar to the resistance distance.
- Is intimately related to random walks on G.
- The commute time $c\left(v_{i}, v_{j}\right)$ is intimately related to the resistance

Commute-Time Distance

- Is quite similar to the resistance distance.
- Is intimately related to random walks on G.
- The commute time between v_{i} and v_{j} is the expected time it takes the random walk to travel from v_{i} to v_{j} and back.

Commute-Time Distance

- Is quite similar to the resistance distance.
- Is intimately related to random walks on G.
- The commute time between v_{i} and v_{j} is the expected time it takes the random walk to travel from v_{i} to v_{j} and back.
- The commute time $c\left(v_{i}, v_{j}\right)$ is intimately related to the resistance distance $r\left(\nu_{i}, v_{j}\right)$:

$$
c\left(v_{i}, v_{j}\right)=c_{i j}=\operatorname{vol}(V(G)) \cdot r\left(v_{i}, v_{j}\right)=\operatorname{vol}(V(G)) \cdot r_{i j}
$$

Intermezzo 2: Random Walks on Graphs

- The Markov chain describing the sequence of vertices in G (weighted, undirected, simple, and connected) visited by a random walker is called a random walk.

Intermezzo 2: Random Walks on Graphs

- The Markov chain describing the sequence of vertices in G (weighted, undirected, simple, and connected) visited by a random walker is called a random walk.
- A random variable $s(t)$ represents the state (i.e., vertex) of the Markov chain/random walker at time t.

Intermezzo 2: Random Walks on Graphs

- The Markov chain describing the sequence of vertices in G (weighted, undirected, simple, and connected) visited by a random walker is called a random walk.
- A random variable $s(t)$ represents the state (i.e., vertex) of the Markov chain/random walker at time t.
- The random walk is defined with the following single-step transition probability of jumping from the state $v_{i}=s(t)$ at time t to an adjacent vertex $v_{j}=s(t+1)$ at time $t+1$:

$$
\operatorname{Pr}\left(s(t+1)=v_{j} \mid s(t)=v_{i}\right)=a_{i j} / d_{i}=: p_{i j} .
$$

Intermezzo 2: Random Walks on Graphs

- The Markov chain describing the sequence of vertices in G (weighted, undirected, simple, and connected) visited by a random walker is called a random walk.
- A random variable $s(t)$ represents the state (i.e., vertex) of the Markov chain/random walker at time t.
- The random walk is defined with the following single-step transition probability of jumping from the state $v_{i}=s(t)$ at time t to an adjacent vertex $v_{j}=s(t+1)$ at time $t+1$:

$$
\operatorname{Pr}\left(s(t+1)=v_{j} \mid s(t)=v_{i}\right)=a_{i j} / d_{i}=: p_{i j}
$$

- The transition probabilities depend only on the current state and not on the past states, i.e., the first-order Markov chain.

Intermezzo 2: Random Walks on Graphs

- The Markov chain describing the sequence of vertices in G (weighted, undirected, simple, and connected) visited by a random walker is called a random walk.
- A random variable $s(t)$ represents the state (i.e., vertex) of the Markov chain/random walker at time t.
- The random walk is defined with the following single-step transition probability of jumping from the state $v_{i}=s(t)$ at time t to an adjacent vertex $v_{j}=s(t+1)$ at time $t+1$:

$$
\operatorname{Pr}\left(s(t+1)=v_{j} \mid s(t)=v_{i}\right)=a_{i j} / d_{i}=: p_{i j} .
$$

- The transition probabilities depend only on the current state and not on the past states, i.e., the first-order Markov chain.
- Since G is connected, the Markov chain is irreducible, i.e., every state can be reached from any other state.

Intermezzo 2: Random Walks on Graphs

- The Markov chain describing the sequence of vertices in G (weighted, undirected, simple, and connected) visited by a random walker is called a random walk.
- A random variable $s(t)$ represents the state (i.e., vertex) of the Markov chain/random walker at time t.
- The random walk is defined with the following single-step transition probability of jumping from the state $v_{i}=s(t)$ at time t to an adjacent vertex $v_{j}=s(t+1)$ at time $t+1$:

$$
\operatorname{Pr}\left(s(t+1)=v_{j} \mid s(t)=v_{i}\right)=a_{i j} / d_{i}=: p_{i j} .
$$

- The transition probabilities depend only on the current state and not on the past states, i.e., the first-order Markov chain.
- Since G is connected, the Markov chain is irreducible, i.e., every state can be reached from any other state.
- Let $\pi(t)=\left[\pi_{1}(t), \ldots, \pi_{n}(t)\right]^{\top}$ where $\pi_{i}(t):=\operatorname{Pr}\left(s(t)=v_{i}\right)$, and let $P=\left(p_{i j}\right)=D^{-1} A$ be the transition matrix.

Intermezzo 2: Random Walks on Graphs ...

- Then, the evolution of the Markov chain is characterized by

$$
\boldsymbol{\pi}(t+1)=P^{\top} \boldsymbol{\pi}(t) \Leftrightarrow \boldsymbol{\pi}^{\top}(t+1)=\boldsymbol{\pi}^{\top}(t) P .
$$

Intermezzo 2: Random Walks on Graphs ...

- Then, the evolution of the Markov chain is characterized by

$$
\boldsymbol{\pi}(t+1)=P^{\top} \boldsymbol{\pi}(t) \Leftrightarrow \boldsymbol{\pi}^{\top}(t+1)=\boldsymbol{\pi}^{\top}(t) P .
$$

- Let $\boldsymbol{\pi}^{0}=\boldsymbol{\pi}(0)$ be the initial distribution.

Intermezzo 2: Random Walks on Graphs ...

- Then, the evolution of the Markov chain is characterized by

$$
\boldsymbol{\pi}(t+1)=P^{\top} \boldsymbol{\pi}(t) \Leftrightarrow \boldsymbol{\pi}^{\top}(t+1)=\boldsymbol{\pi}^{\top}(t) P .
$$

- Let $\boldsymbol{\pi}^{0}=\boldsymbol{\pi}(0)$ be the initial distribution.
- The stationary distribution $\boldsymbol{\pi}^{\infty}$ satisfies $\boldsymbol{\pi}^{\infty}=P^{\top} \boldsymbol{\pi}^{\infty}$, i.e., the eigenvector of P^{\top} (a.k.a. the left eigenvector of P) corresponding to the eigenvalue 1 .

Intermezzo 2: Random Walks on Graphs ...

- Then, the evolution of the Markov chain is characterized by

$$
\boldsymbol{\pi}(t+1)=P^{\top} \boldsymbol{\pi}(t) \Leftrightarrow \boldsymbol{\pi}^{\top}(t+1)=\boldsymbol{\pi}^{\top}(t) P .
$$

- Let $\boldsymbol{\pi}^{0}=\boldsymbol{\pi}(0)$ be the initial distribution.
- The stationary distribution $\boldsymbol{\pi}^{\infty}$ satisfies $\boldsymbol{\pi}^{\infty}=P^{\top} \boldsymbol{\pi}^{\infty}$, i.e., the eigenvector of P^{\top} (a.k.a. the left eigenvector of P) corresponding to the eigenvalue 1 .
- Can show $\pi^{\infty}=\left[d_{1}, \ldots, d_{n}\right]^{\top} / \operatorname{vol}(V)$.

Intermezzo 2: Random Walks on Graphs...

- Then, the evolution of the Markov chain is characterized by

$$
\boldsymbol{\pi}(t+1)=P^{\top} \boldsymbol{\pi}(t) \Leftrightarrow \boldsymbol{\pi}^{\top}(t+1)=\boldsymbol{\pi}^{\top}(t) P
$$

- Let $\boldsymbol{\pi}^{0}=\boldsymbol{\pi}(0)$ be the initial distribution.
- The stationary distribution $\boldsymbol{\pi}^{\infty}$ satisfies $\boldsymbol{\pi}^{\infty}=P^{\top} \boldsymbol{\pi}^{\infty}$, i.e., the eigenvector of P^{\top} (a.k.a. the left eigenvector of P) corresponding to the eigenvalue 1 .
- Can show $\pi^{\infty}=\left[d_{1}, \ldots, d_{n}\right]^{\top} / \operatorname{vol}(V)$.

Proof: Since $L=D-A=D(I-P), P^{\top}=I-L D^{-1}$. Now, we have
$P^{\top} D \mathbf{1}_{n}=D \mathbf{1}_{n}-L \mathbf{1}_{n}=D \mathbf{1}_{n}$. Hence, $D \mathbf{1}_{n}=\left[d_{1}, \ldots, d_{n}\right]^{\top}$ is the eigenvector of P^{\top} corresponding to the eigenvalue 1 modulo normalization constants. To make it as a probability distribution over V, we need to normalize it by $\operatorname{vol}(V)=\sum_{j} d_{j}$, i.e., $\boldsymbol{\pi}^{\infty}=D \mathbf{1}_{n} / \operatorname{vol}(V)$.

Intermezzo 2: Random Walks on Graphs ...

There is a formal equivalence between Ncut and transition probabilities of the random walk:

Proposition (Meila and Shi (2001))

Let G be connected and non bipartite. Assume that we run the random walk $s(t)$ starting with $s(0)$ in the stationary distribution $\boldsymbol{\pi}^{\infty}$. For disjoint subsets $X, Y \subset V$, denote $\operatorname{Pr}(Y \mid X):=\operatorname{Pr}(s(1) \in Y \mid s(0) \in X)$. Then

$$
\operatorname{Ncut}\left(X, X^{c}\right)=\operatorname{Pr}\left(X^{c} \mid X\right)+\operatorname{Pr}\left(X \mid X^{c}\right) .
$$

Intermezzo 2: Random Walks on Graphs ...

Proof: First of all, observe that

$$
\begin{aligned}
\operatorname{Pr}(s(0) \in X, s(1) \in Y) & =\sum_{x \in X, y \in Y} \operatorname{Pr}(s(0)=x, s(1)=y)=\sum_{x \in X, y \in Y} \pi_{x}^{\infty} p_{x y} \\
& =\sum_{x \in X, y \in Y} \frac{d_{x}}{\operatorname{vol}(V)} \cdot \frac{a_{x y}}{d_{x}}=\frac{1}{\operatorname{vol}(V)} \sum_{x \in X, y \in Y} a_{x y} .
\end{aligned}
$$

Using this, we obtain

$$
\begin{aligned}
\operatorname{Pr}(s(1) \in Y \mid s(0) \in X) & =\frac{\operatorname{Pr}(s(0) \in X, s(1) \in Y)}{\operatorname{Pr}(s(0) \in X)} \\
& =\frac{1}{\operatorname{vol}(V)}\left(\sum_{x \in X, y \in Y} a_{x y}\right) \cdot\left(\frac{\operatorname{vol}(X)}{\operatorname{vol}(V)}\right)^{-1} \\
& =\frac{\sum_{x \in X, y \in Y} a_{x y}}{\operatorname{vol}(X)} .
\end{aligned}
$$

Now, it is clear that the proposition holds.

Average First-Passage Time/Cost

- The average first-passage time $m\left(v_{k} \mid v_{i}\right)=m(k \mid i)$ is defined as the average number of steps that a random walker, starting in state $v_{i} \neq v_{k}$, will take to enter state v_{k} for the first time. More precisely, we define the minimum time until hitting state ν_{k}, when staring from state v_{i}, as $T_{i k}:=\min \left(t \geq 0 \mid s(t)=v_{k} ; s(0)=v_{i}\right)$ for one realization of the stochastic process.

Average First-Passage Time/Cost

- The average first-passage time $m\left(v_{k} \mid v_{i}\right)=m(k \mid i)$ is defined as the average number of steps that a random walker, starting in state $v_{i} \neq v_{k}$, will take to enter state v_{k} for the first time. More precisely, we define the minimum time until hitting state ν_{k}, when staring from state v_{i}, as $T_{i k}:=\min \left(t \geq 0 \mid s(t)=v_{k} ; s(0)=v_{i}\right)$ for one realization of the stochastic process.
- The random walker may pass through ν_{k} repeatedly; the minimum time corresponds to the first passage.

Average First-Passage Time/Cost

- The average first-passage time $m\left(v_{k} \mid v_{i}\right)=m(k \mid i)$ is defined as the average number of steps that a random walker, starting in state $v_{i} \neq v_{k}$, will take to enter state v_{k} for the first time. More precisely, we define the minimum time until hitting state ν_{k}, when staring from state v_{i}, as $T_{i k}:=\min \left(t \geq 0 \mid s(t)=v_{k} ; s(0)=v_{i}\right)$ for one realization of the stochastic process.
- The random walker may pass through ν_{k} repeatedly; the minimum time corresponds to the first passage.
- The average first-passage time is the expected first-passage time: $m(k \mid i):=E\left[T_{i k} \mid s(0)=v_{i}\right]$.

Average First-Passage Time/Cost

- The average first-passage time $m\left(v_{k} \mid v_{i}\right)=m(k \mid i)$ is defined as the average number of steps that a random walker, starting in state $v_{i} \neq v_{k}$, will take to enter state v_{k} for the first time. More precisely, we define the minimum time until hitting state ν_{k}, when staring from state v_{i}, as $T_{i k}:=\min \left(t \geq 0 \mid s(t)=v_{k} ; s(0)=v_{i}\right)$ for one realization of the stochastic process.
- The random walker may pass through ν_{k} repeatedly; the minimum time corresponds to the first passage.
- The average first-passage time is the expected first-passage time: $m(k \mid i):=E\left[T_{i k} \mid s(0)=v_{i}\right]$.
- Similarly, the average first-passage cost $o\left(v_{k} \mid v_{i}\right)=o(k \mid i)$ is the average cost incurred by the random walker starting from state v_{i} to reach state v_{k} for the first time. Let $\gamma(j \mid i)$ be the cost of transition from state v_{i} to v_{j}. For example, $\gamma(j \mid i)=1 / a_{i j}$ (if $i \sim j$) is a possibility.

Average First-Passage Time \& Average Commute Time

- The recurrence relations computing $m(k \mid i)$ and $o(k \mid i)$ can easily be obtained by first-step analysis:

$$
\begin{gathered}
m(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
1+\sum_{j=1}^{n} p_{i j} m(k \mid j) & \text { otherwise. }\end{cases} \\
o(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
\sum_{j=1}^{n} p_{i j}(\gamma(j \mid i)+o(k \mid j)) & \text { otherwise. }\end{cases}
\end{gathered}
$$

Average First-Passage Time \& Average Commute Time

- The recurrence relations computing $m(k \mid i)$ and $o(k \mid i)$ can easily be obtained by first-step analysis:

$$
\begin{gathered}
m(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
1+\sum_{j=1}^{n} p_{i j} m(k \mid j) & \text { otherwise. }\end{cases} \\
o(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
\sum_{j=1}^{n} p_{i j}(\gamma(j \mid i)+o(k \mid j)) & \text { otherwise. }\end{cases}
\end{gathered}
$$

- A closely related quantity, the average commute time $c\left(v_{i}, v_{j}\right)=c(i, j)=c_{i j}$ is defined as the average number of steps that a random walker, starting in state v_{i}, will take to enter state $v_{j}, i \neq j$ for the first time and go back to v_{i}.

Average First-Passage Time \& Average Commute Time

- The recurrence relations computing $m(k \mid i)$ and $o(k \mid i)$ can easily be obtained by first-step analysis:

$$
\begin{gathered}
m(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
1+\sum_{j=1}^{n} p_{i j} m(k \mid j) & \text { otherwise. }\end{cases} \\
o(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
\sum_{j=1}^{n} p_{i j}(\gamma(j \mid i)+o(k \mid j)) & \text { otherwise. }\end{cases}
\end{gathered}
$$

- A closely related quantity, the average commute time $c\left(v_{i}, v_{j}\right)=c(i, j)=c_{i j}$ is defined as the average number of steps that a random walker, starting in state v_{i}, will take to enter state $v_{j}, i \neq j$ for the first time and go back to v_{i}.
- That is, $c(i, j)=m(j \mid i)+m(i \mid j)$.

Average First-Passage Time \& Average Commute Time

- The recurrence relations computing $m(k \mid i)$ and $o(k \mid i)$ can easily be obtained by first-step analysis:

$$
\begin{gathered}
m(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
1+\sum_{j=1}^{n} p_{i j} m(k \mid j) & \text { otherwise. }\end{cases} \\
o(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
\sum_{j=1}^{n} p_{i j}(\gamma(j \mid i)+o(k \mid j)) & \text { otherwise. }\end{cases}
\end{gathered}
$$

- A closely related quantity, the average commute time $c\left(v_{i}, v_{j}\right)=c(i, j)=c_{i j}$ is defined as the average number of steps that a random walker, starting in state v_{i}, will take to enter state $v_{j}, i \neq j$ for the first time and go back to v_{i}.
- That is, $c(i, j)=m(j \mid i)+m(i \mid j)$.
- Note that $c(i, j)=c(j, i)$ but $m(j \mid i) \neq m(i \mid j)$ in general.

Average First-Passage Time \& Average Commute Time

- The recurrence relations computing $m(k \mid i)$ and $o(k \mid i)$ can easily be obtained by first-step analysis:

$$
\begin{gathered}
m(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
1+\sum_{j=1}^{n} p_{i j} m(k \mid j) & \text { otherwise. }\end{cases} \\
o(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
\sum_{j=1}^{n} p_{i j}(\gamma(j \mid i)+o(k \mid j)) & \text { otherwise. }\end{cases}
\end{gathered}
$$

- A closely related quantity, the average commute time $c\left(v_{i}, v_{j}\right)=c(i, j)=c_{i j}$ is defined as the average number of steps that a random walker, starting in state v_{i}, will take to enter state $v_{j}, i \neq j$ for the first time and go back to v_{i}.
- That is, $c(i, j)=m(j \mid i)+m(i \mid j)$.
- Note that $c(i, j)=c(j, i)$ but $m(j \mid i) \neq m(i \mid j)$ in general.
- $c(i, j)$ is a metric on G :

Average First-Passage Time \& Average Commute Time

- The recurrence relations computing $m(k \mid i)$ and $o(k \mid i)$ can easily be obtained by first-step analysis:

$$
\begin{gathered}
m(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
1+\sum_{j=1}^{n} p_{i j} m(k \mid j) & \text { otherwise. }\end{cases} \\
o(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
\sum_{j=1}^{n} p_{i j}(\gamma(j \mid i)+o(k \mid j)) & \text { otherwise. }\end{cases}
\end{gathered}
$$

- A closely related quantity, the average commute time $c\left(v_{i}, v_{j}\right)=c(i, j)=c_{i j}$ is defined as the average number of steps that a random walker, starting in state v_{i}, will take to enter state $v_{j}, i \neq j$ for the first time and go back to v_{i}.
- That is, $c(i, j)=m(j \mid i)+m(i \mid j)$.
- Note that $c(i, j)=c(j, i)$ but $m(j \mid i) \neq m(i \mid j)$ in general.
- $c(i, j)$ is a metric on G :
(1) $c(i, j) \geq 0$, and the equality holds iff $v_{i}=v_{j}$;

Average First-Passage Time \& Average Commute Time

- The recurrence relations computing $m(k \mid i)$ and $o(k \mid i)$ can easily be obtained by first-step analysis:

$$
\begin{gathered}
m(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
1+\sum_{j=1}^{n} p_{i j} m(k \mid j) & \text { otherwise. }\end{cases} \\
o(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
\sum_{j=1}^{n} p_{i j}(\gamma(j \mid i)+o(k \mid j)) & \text { otherwise. }\end{cases}
\end{gathered}
$$

- A closely related quantity, the average commute time $c\left(v_{i}, v_{j}\right)=c(i, j)=c_{i j}$ is defined as the average number of steps that a random walker, starting in state v_{i}, will take to enter state $v_{j}, i \neq j$ for the first time and go back to v_{i}.
- That is, $c(i, j)=m(j \mid i)+m(i \mid j)$.
- Note that $c(i, j)=c(j, i)$ but $m(j \mid i) \neq m(i \mid j)$ in general.
- $c(i, j)$ is a metric on G :
(1) $c(i, j) \geq 0$, and the equality holds iff $v_{i}=v_{j}$;
(2) $c(i, j)=c(j, i)$;

Average First-Passage Time \& Average Commute Time

- The recurrence relations computing $m(k \mid i)$ and $o(k \mid i)$ can easily be obtained by first-step analysis:

$$
\begin{gathered}
m(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
1+\sum_{j=1}^{n} p_{i j} m(k \mid j) & \text { otherwise. }\end{cases} \\
o(k \mid i)= \begin{cases}0 & \text { if } i=k ; \\
\sum_{j=1}^{n} p_{i j}(\gamma(j \mid i)+o(k \mid j)) & \text { otherwise. }\end{cases}
\end{gathered}
$$

- A closely related quantity, the average commute time $c\left(v_{i}, v_{j}\right)=c(i, j)=c_{i j}$ is defined as the average number of steps that a random walker, starting in state v_{i}, will take to enter state $v_{j}, i \neq j$ for the first time and go back to v_{i}.
- That is, $c(i, j)=m(j \mid i)+m(i \mid j)$.
- Note that $c(i, j)=c(j, i)$ but $m(j \mid i) \neq m(i \mid j)$ in general.
- $c(i, j)$ is a metric on G :
(1) $c(i, j) \geq 0$, and the equality holds iff $v_{i}=v_{j}$;
(2) $c(i, j)=c(j, i)$;
(3) $c(i, j) \leq c(i, k)+c(k, j)$.

Commute-Time Distance \& Resistance Distance

- Hence, $c(i, j)$ is called the commute-time distance between v_{i} and v_{j}. That amazing property of the resistance distance carries over to the commute-time distance: with a weighting matrix L^{\dagger} and $\operatorname{vol}(V) L^{\dagger}$, respectively.

Commute-Time Distance \& Resistance Distance

- Hence, $c(i, j)$ is called the commute-time distance between v_{i} and v_{j}.
- That amazing property of the resistance distance carries over to the commute-time distance:

$$
\begin{aligned}
c_{i j} & =\operatorname{vol}(V) \cdot r_{i j} \\
& =\operatorname{vol}(V)\left\langle\boldsymbol{e}_{i}-\boldsymbol{e}_{j}, L^{\dagger}\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)\right\rangle \\
& =\operatorname{vol}(V)\left(\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-2\left(L^{\dagger}\right)_{i j}\right) .
\end{aligned}
$$

Commute-Time Distance \& Resistance Distance

- Hence, $c(i, j)$ is called the commute-time distance between v_{i} and v_{j}.
- That amazing property of the resistance distance carries over to the commute-time distance:

$$
\begin{aligned}
c_{i j} & =\operatorname{vol}(V) \cdot r_{i j} \\
& =\operatorname{vol}(V)\left\langle\boldsymbol{e}_{i}-\boldsymbol{e}_{j}, L^{\dagger}\left(\boldsymbol{e}_{i}-\boldsymbol{e}_{j}\right)\right\rangle \\
& =\operatorname{vol}(V)\left(\left(L^{\dagger}\right)_{i i}+\left(L^{\dagger}\right)_{j j}-2\left(L^{\dagger}\right)_{i j}\right) .
\end{aligned}
$$

- Hence, both $\sqrt{r_{i j}}$ and $\sqrt{c_{i j}}$ are nothing but a Mahalanobis distance with a weighting matrix L^{\dagger} and $\operatorname{vol}(V) L^{\dagger}$, respectively.

Commute-Time Distance \& Resistance Distance . . .

- The above formula also allows us to interpret $\sqrt{r_{i j}}$ and $\sqrt{c_{i j}}$ as Euclidean distances on $V(G)$, i.e., to embed $\nu_{i} \in V(G)$ on a point $z_{i} \in \mathbb{R}^{n}$.

Commute-Time Distance \& Resistance Distance ...

- The above formula also allows us to interpret $\sqrt{r_{i j}}$ and $\sqrt{c_{i j}}$ as Euclidean distances on $V(G)$, i.e., to embed $\nu_{i} \in V(G)$ on a point $z_{i} \in \mathbb{R}^{n}$.
- Let $L=\Phi \Lambda \Phi^{\top}$ be the eigendecomposition of L. Then, $L^{\dagger}=\Phi \Lambda^{\dagger} \Phi^{\top}$ where $\Lambda^{\dagger}=\operatorname{diag}\left(\lambda_{0}^{\dagger}, \ldots, \lambda_{n-1}^{\dagger}\right)$ is defined as

$$
\lambda_{i}^{\dagger}:= \begin{cases}1 / \lambda_{i} & \text { if } \lambda_{i} \neq 0 ; \\ 0 & \text { otherwise. }\end{cases}
$$

Commute-Time Distance \& Resistance Distance ...

- The above formula also allows us to interpret $\sqrt{r_{i j}}$ and $\sqrt{c_{i j}}$ as Euclidean distances on $V(G)$, i.e., to embed $\nu_{i} \in V(G)$ on a point $z_{i} \in \mathbb{R}^{n}$.
- Let $L=\Phi \Lambda \Phi^{\top}$ be the eigendecomposition of L. Then, $L^{\dagger}=\Phi \Lambda^{\dagger} \Phi^{\top}$ where $\Lambda^{\dagger}=\operatorname{diag}\left(\lambda_{0}^{\dagger}, \ldots, \lambda_{n-1}^{\dagger}\right)$ is defined as

$$
\lambda_{i}^{\dagger}:= \begin{cases}1 / \lambda_{i} & \text { if } \lambda_{i} \neq 0 \\ 0 & \text { otherwise }\end{cases}
$$

- Hence, $z_{i}^{\top}=\left(\Phi \sqrt{\Lambda^{\dagger}}\right)_{i, 1: n}$ for the resistance distance and $z_{i}^{\top}=\left(\Phi \sqrt{\operatorname{vol}(V) \Lambda^{\dagger}}\right)_{i, 1: n}$ for the commute-time distance.

Commute-Time Distance \& Resistance Distance ...

- Compare these embeddings with the one used in the spectral clustering (with L) in Lecture 7, i.e., $\boldsymbol{y}_{i}^{\top}=\Phi_{i, 1: k}, k \leq n$.

Commute-Time Distance \& Resistance Distance ...

- Compare these embeddings with the one used in the spectral clustering (with L) in Lecture 7, i.e., $\boldsymbol{y}_{i}^{\top}=\Phi_{i, 1: k}, k \leq n$.
- $\left\{\boldsymbol{z}_{i}\right\}$ and $\left\{\boldsymbol{y}_{i}\right\}$ could be considerably different. For example, in the optimal case where G consists of k disconnected components, the first k eigenvalues of L are zeros and the corresponding columns of Φ are the indicator vectors of these k components. However, the first k columns of the matrix $\Phi \sqrt{\Lambda^{\dagger}}$ are zero vectors.

Commute-Time Distance \& Resistance Distance ...

- Compare these embeddings with the one used in the spectral clustering (with L) in Lecture 7, i.e., $\boldsymbol{y}_{i}^{\top}=\Phi_{i, 1: k}, k \leq n$.
- $\left\{\boldsymbol{z}_{i}\right\}$ and $\left\{\boldsymbol{y}_{i}\right\}$ could be considerably different. For example, in the optimal case where G consists of k disconnected components, the first k eigenvalues of L are zeros and the corresponding columns of Φ are the indicator vectors of these k components. However, the first k columns of the matrix $\Phi \sqrt{\Lambda^{\dagger}}$ are zero vectors.
- On the other hand, if G is connected, z_{i} 's got more influenced by the eigenvectors corresponding to the small eigenvalues because $\lambda_{i}^{\dagger}=1 / \lambda_{i}$ if $\lambda_{i} \neq 0$.

