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@ Need of a Variety of Graph Distances
© The (Shortest) Path Distance
© Resistance Distance

@ Commute-Time Distance
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Need of a Variety of Graph Distances

@ Suppose a simple, weighted, and connected graph G(V, E) is already
built from the dataset X = {x1,...,x,} cR%.
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Need of a Variety of Graph Distances

@ Suppose a simple, weighted, and connected graph G(V, E) is already
built from the dataset X = {x1,...,x,} cR%.

@ Assume the data vector x; is associated with the vertex v;.
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Need of a Variety of Graph Distances

@ Suppose a simple, weighted, and connected graph G(V, E) is already
built from the dataset X = {x1,...,x,} cR%.

@ Assume the data vector x; is associated with the vertex v;.

o Let w(e) = w, =0 be an edge weight of the edge e € E(G), which we
also write a;j, i.e., (i, j)th entry of the weighted adjacent matrix A if
e=(v;, vj).
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Need of a Variety of Graph Distances

@ Suppose a simple, weighted, and connected graph G(V, E) is already
built from the dataset X = {x1,...,x,} cR%.

@ Assume the data vector x; is associated with the vertex v;.

o Let w(e) = w, =0 be an edge weight of the edge e € E(G), which we
also write a;j, i.e., (i, j)th entry of the weighted adjacent matrix A if
e=(v;, vj).

@ In many applications, we want to know the similarity or dissimilarity
between vertices v; and v;. Note that v; and v; may not be adjacent
(i.e., they may not be endpoints of a single edge).
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Need of a Variety of Graph Distances

@ Suppose a simple, weighted, and connected graph G(V, E) is already
built from the dataset X = {x1,...,x,} cR%.

Assume the data vector x; is associated with the vertex v;.

o Let w(e) = w, =0 be an edge weight of the edge e € E(G), which we
also write a;j, i.e., (i, j)th entry of the weighted adjacent matrix A if
e=(v;, vj).

@ In many applications, we want to know the similarity or dissimilarity
between vertices v; and v;. Note that v; and v; may not be adjacent
(i.e., they may not be endpoints of a single edge).

@ Such applications include: search engines; data mining; social network
analysis; pattern recognition; image processing, ...
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© The (Shortest) Path Distance
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The (Shortest) Path Distance

@ Most common metric on a graph
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The (Shortest) Path Distance

The (Shortest) Path Distance

@ Most common metric on a graph

o Let u,ve V(G) be any two vertices of G. Then, the (shortest) path
distance (a.k.a. the geodesic distance) between u and v is the sum of
the weights along the path connecting u and v such that it becomes
minimum, i.e.,

dpath (U, V) ;= min w(e)
path PeP(u,v) ;’D
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The (Shortest) Path Distance

The (Shortest) Path Distance

@ Most common metric on a graph

o Let u,ve V(G) be any two vertices of G. Then, the (shortest) path
distance (a.k.a. the geodesic distance) between u and v is the sum of
the weights along the path connecting u and v such that it becomes
minimum, i.e.,

dpath (U, V) ;= min w(e)
path PeP(u,v) ;’D

o If G is directed, then dpa (1, V) # dpam (v, 1) in general.
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The (Shortest) Path Distance

@ Most common metric on a graph
o Let u,ve V(G) be any two vertices of G. Then, the (shortest) path
distance (a.k.a. the geodesic distance) between u and v is the sum of
the weights along the path connecting u and v such that it becomes
minimum, i.e.,
d, u,v) ;= min w(e
path( ) Pe u,v)g’p (©)
o If G is directed, then dpa (1, V) # dpam (v, 1) in general.
o Efficient algorithms to compute dpam(-,-) exist, e.g., the A algorithm
of Hart-Nilsson-Raphael (1968), etc. Yet, in general, its complexity is
at least polynomial time w.r.t. n. = See the excellent Wikipedia

page!
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© Resistance Distance
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Resistance Distance

Resistance Distance

@ The shortest path distance may not be always relevant. Consider the
following two subgraphs where each w, =1:
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Resistance Distance

Resistance Distance

@ The shortest path distance may not be always relevant. Consider the
following two subgraphs where each w, =1:

@ In both cases in the above, dpam(vi,vj) =2. But it is clear that there
are more paths connecting v; and v; in the subgraph in the left than
in the right.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs 10/29/19 8/24



Resistance Distance

Resistance Distance

@ The shortest path distance may not be always relevant. Consider the
following two subgraphs where each w, =1:

@ In both cases in the above, dpam(vi,vj) =2. But it is clear that there
are more paths connecting v; and v; in the subgraph in the left than
in the right.
@ Hence, it is reasonable that the “distance” between v; and v; should
be smaller in the left than in the right.
10/29/19  8/24



Resistance Distance

Resistance Distance . ..

@ Now, let's interpret the edge weights as resistances in an electrical network.
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Resistance Distance . ..
@ Now, let's interpret the edge weights as resistances in an electrical network.

@ For any v;, vj, i # j, suppose that a battery is connected across them so
that one unit of a current flows in at v; and out in v;.
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Resistance Distance

Resistance Distance . ..

@ Now, let's interpret the edge weights as resistances in an electrical network.

@ For any v;, vj, i # j, suppose that a battery is connected across them so
that one unit of a current flows in at v; and out in v;.

@ Then, the voltage (potential) difference is the effective resistance between v;
and vj by Ohm's law (V =1-R), which is called the resistance distance
between v; and v; and written as r(v;, v;) = rij.
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Resistance Distance

Resistance Distance . ..

@ Now, let's interpret the edge weights as resistances in an electrical network.

@ For any v;, vj, i # j, suppose that a battery is connected across them so
that one unit of a current flows in at v; and out in v;.

@ Then, the voltage (potential) difference is the effective resistance between v;
and vj by Ohm's law (V =1-R), which is called the resistance distance
between v; and v; and written as r(v;, v;) = rij.

@ Hence, 1/r;j is the conductance between v; and v;, which is a measure of
connectivity (or similarity) between them, which should be the edge weight
llij.
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Resistance Distance

Resistance Distance . ..

@ Now, let's interpret the edge weights as resistances in an electrical network.

@ For any v;, vj, i # j, suppose that a battery is connected across them so
that one unit of a current flows in at v; and out in v;.

@ Then, the voltage (potential) difference is the effective resistance between v;
and vj by Ohm's law (V =1-R), which is called the resistance distance
between v; and v; and written as r(v;, v;) = rij.

@ Hence, 1/r;j is the conductance between v; and v;, which is a measure of
connectivity (or similarity) between them, which should be the edge weight
ajj.

@ Hence, given resistance distances {r;;}, one can construct the corresponding
weighted adjacency matrix A by

1/rij if Vi ~Vj and r,-jgo;
a;i =
Y 0 otherwise.
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Resistance Distance . ..

@ Now, let's interpret the edge weights as resistances in an electrical network.

@ For any v;, vj, i # j, suppose that a battery is connected across them so
that one unit of a current flows in at v; and out in v;.

@ Then, the voltage (potential) difference is the effective resistance between v;
and vj by Ohm's law (V =1-R), which is called the resistance distance
between v; and v; and written as r(v;, v;) = rij.

@ Hence, 1/r;j is the conductance between v; and v;, which is a measure of
connectivity (or similarity) between them, which should be the edge weight
ajj.

@ Hence, given resistance distances {r;;}, one can construct the corresponding
weighted adjacency matrix A by

1/rij if Vi ~Vj and r,-,-§0;
a;i =
Y 0 otherwise.

@ But, how can we compute {r;;} if A is given? Note that r;; should be
defined even if v; » v;.
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Resistance Distance . ..

@ The amazing fact is the following relationship between the resistance
distance and the (Moore-Penrose) pseudoinverse LY(G) of the unnormalized
graph Laplacian L(G)!

@i+ @hj;—whi—@hy
= <ei - ej,LT(el- - ej)>
(L +@h;;-2(Lh; if G is undirected;

r,-j
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Resistance Distance

Resistance Distance . ..

@ The amazing fact is the following relationship between the resistance
distance and the (Moore-Penrose) pseudoinverse LY(G) of the unnormalized
graph Laplacian L(G)!

@i+ @hj;—whi—@hy
= <ei - ej,LT(el- - ej)>
(L +@h;;-2(Lh; if G is undirected;

r,-j

@ Hence, the resistance matrix R(G) = (r;j) can be computed via LNG).
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Resistance Distance

Resistance Distance . ..

@ The amazing fact is the following relationship between the resistance
distance and the (Moore-Penrose) pseudoinverse LY(G) of the unnormalized
graph Laplacian L(G)!

@i+ @hj;—whi—@hy
= <ei - ej,LT(el- - ej)>
(L +@h;;-2(Lh; if G is undirected;

r,-j

@ Hence, the resistance matrix R(G) = (r;j) can be computed via LNG).

@ If G is sparse, then one can utilize a sparse Cholesky factorization of L(G) to
compute ith column vector E’; of LT as follows:
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Resistance Distance

Resistance Distance . ..

@ The amazing fact is the following relationship between the resistance
distance and the (Moore-Penrose) pseudoinverse LY(G) of the unnormalized
graph Laplacian L(G)!

rij = @i+ @Y -@hi - @i
= <ei —ej,LT(el- —ej)>

(L +@h;;-2(Lh; if G is undirected;

@ Hence, the resistance matrix R(G) = (r;j) can be computed via LNG).

@ If G is sparse, then one can utilize a sparse Cholesky factorization of L(G) to
compute ith column vector E’; of LT as follows:

© Compute the projection of e; onto range(L(G)), say y; via
y; =U-1,1]/n)e; [Note null(L(G)) = span{l,} if G is connected.]
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Resistance Distance

Resistance Distance . ..

@ The amazing fact is the following relationship between the resistance
distance and the (Moore-Penrose) pseudoinverse LY(G) of the unnormalized
graph Laplacian L(G)!

rij o= Why+@h-wh;-ahy;
= <ei—ej,LT(ei—ej)>
(L +@h;;-2(Lh; if G is undirected;

@ Hence, the resistance matrix R(G) = (r;j) can be computed via LNG).
@ If G is sparse, then one can utilize a sparse Cholesky factorization of L(G) to
compute ith column vector ElT of LT as follows:
© Compute the projection of e; onto range(L(G)), say y; via
y; =U—-1,1]/n)e; [Note null(L(G)) = span{l,} if G is connected.]
@ Find a solution ¢; of L€ = y; where the Cholesky factorization of L
should be utilized.
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Resistance Distance

Resistance Distance . ..

@ The amazing fact is the following relationship between the resistance
distance and the (Moore-Penrose) pseudoinverse LY(G) of the unnormalized
graph Laplacian L(G)!

rij o= Why+@h-wh;-ahy;
= <ei—ej,LT(ei—ej)>
(L +@h;;-2(Lh; if G is undirected;

@ Hence, the resistance matrix R(G) = (r;j) can be computed via LNG).

@ If G is sparse, then one can utilize a sparse Cholesky factorization of L(G) to
compute ith column vector ElT of LT as follows:

© Compute the projection of e; onto range(L(G)), say y; via
y; =U—-1,1]/n)e; [Note null(L(G)) = span{l,} if G is connected.]

@ Find a solution ¢; of L€ = ¥; where the Cholesky factorization of L
should be utilized.

© Project the result on the row space of L (which is the same as the
column space thanks to LT = L) to compute the ith column vector
0 =(1-1,11/n)?;.
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Resistance Distance

Intermezzo: The (Moore-Penrose) Pseudoinverse

Definition

The pseudoinverse AT € C"™™ of a general matrix A€ C™*" is defined to be
the unique matrix X € C"* that satisfies the following Moore-Penrose
conditions: i) AXA=A; i) XAX =X iii) (AX)* = AX; iv) (XA)* = XA,
where A* is the Hermitian transposition of A.
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Resistance Distance

Intermezzo: The (Moore-Penrose) Pseudoinverse

Definition

The pseudoinverse AT € C"™™ of a general matrix A€ C™*" is defined to be
the unique matrix X € C"* that satisfies the following Moore-Penrose
conditions: i) AXA=A; i) XAX =X iii) (AX)* = AX; iv) (XA)* = XA,
where A* is the Hermitian transposition of A.

Using the SVD of A=UZV* where UeC™"™, Ve C"™" are unitary and
T =diag(oy,--+,0/,0,---,0) € R™" r =rank(A) <min(m,n), A" can be
expressed as

At=vstu*, =':.=diag/oy,---,1/0,,0,---,0) e R™*"™,
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Resistance Distance

Intermezzo: The (Moore-Penrose) Pseudoinverse

Definition

The pseudoinverse AT € C"™™ of a general matrix A€ C™*" is defined to be
the unique matrix X € C"* that satisfies the following Moore-Penrose
conditions: i) AXA=A; i) XAX =X iii) (AX)* = AX; iv) (XA)* = XA,
where A* is the Hermitian transposition of A.

Using the SVD of A=UZV* where UeC™"™, Ve C"™" are unitary and
T =diag(oy,--+,0/,0,---,0) € R™" r =rank(A) <min(m,n), A" can be
expressed as

At=vstu*, =':.=diag/oy,---,1/0,,0,---,0) e R™*"™,

Note that AAT and AT A are the orthogonal projectors onto range(A) and
range(A*), respectively.
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Resistance Distance

Intermezzo: The EP Matrices

Definition
If AeC™ ™ commutes with its pseudoinverse, i.e., ATA= AA", then it is
called an EP matrix (EP for Equal Projection).

The properties of an EP matrix:
o If (A; #0,¢;) is an eigenpair of A, then (1/1;,¢;) is an eigenpair of A'.
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Resistance Distance

Intermezzo: The EP Matrices

Definition
If AeC™ ™ commutes with its pseudoinverse, i.e., ATA= AA", then it is
called an EP matrix (EP for Equal Projection).

The properties of an EP matrix:
o If (A; #0,¢;) is an eigenpair of A, then (1/1;,¢;) is an eigenpair of A'.
o If (1;=0,¢,) is an eigenpair of A, then (1; =0,¢;) is also an eigenpair
of AT.
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Properties of the Pseudoinverse L(G)

° (LT)T =Lt
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Properties of the Pseudoinverse L(G)

o (LN =1'
o rank(L")=n-1.
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Properties of the Pseudoinverse L(G)

o (LN =1'
o rank(L")=n-1.
e null(L) = null(Lh = span{l,}.
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Properties of the Pseudoinverse L(G)

o (LN =1'
o rank(L")=n-1.
e null(L) = null(Lh = span{l,}.

o L' is doubly centered just like L, i.e., its column sum and row sum are
zeros.
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Properties of the Pseudoinverse L(G)

(L) =1L
rank (LT) =n-1.
null(L) = null(L") = span{l,}.

L' is doubly centered just like L, i.e., its column sum and row sum are
zeros.

L' is positive semidefinite just like L is.
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Properties of the Pseudoinverse L(G)

o (LN =1'

o rank(L")=n-1.

e null(L) = null(Lh = span{l,}.

o L' is doubly centered just like L, i.e., its column sum and row sum are

ZEros.

L' is positive semidefinite just like L is.
o Lt=(L-1,15/n)" +1,1}/n.
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Properties of the Pseudoinverse L(G)

o (LN =1'

o rank(L")=n-1.

e null(L) = null(Lh) = span{l,}.

o L' is doubly centered just like L, i.e., its column sum and row sum are

zeros.

L' is positive semidefinite just like L is.

o Lt=(L-1,15/n)" +1,1}/n.

@ Since L represents the /ocal properties of G (e.g., connectivities, etc.),

L' represents the global properties of G = What is the relationship
between L' and the integral operator commuting with L in Lecture 27
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Commute-Time Distance

Commute-Time Distance

@ Is quite similar to the resistance distance.
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Commute-Time Distance

Commute-Time Distance

@ Is quite similar to the resistance distance.

@ Is intimately related to random walks on G.
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Commute-Time Distance

@ Is quite similar to the resistance distance.
@ Is intimately related to random walks on G.

@ The commute time between v; and v; is the expected time it takes
the random walk to travel from v; to v; and back.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs 10/29/19 15 /24



Commute-Time Distance

Commute-Time Distance

@ Is quite similar to the resistance distance.
@ Is intimately related to random walks on G.

@ The commute time between v; and v; is the expected time it takes
the random walk to travel from v; to v; and back.

@ The commute time c(v;, v;) is intimately related to the resistance
distance r(v;, v;):

c(vy, vj) = cij =vol(V(G) - r(vi, vj) =vol(V(G) - rij.
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Commute-Time Distance

Intermezzo 2: Random Walks on Graphs

@ The Markov chain describing the sequence of vertices in G (weighted,
undirected, simple, and connected) visited by a random walker is
called a random walk.
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Commute-Time Distance

Intermezzo 2: Random Walks on Graphs

@ The Markov chain describing the sequence of vertices in G (weighted,
undirected, simple, and connected) visited by a random walker is
called a random walk.

@ A random variable s(#) represents the state (i.e., vertex) of the Markov
chain/random walker at time t.
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Commute-Time Distance

Intermezzo 2: Random Walks on Graphs

@ The Markov chain describing the sequence of vertices in G (weighted,
undirected, simple, and connected) visited by a random walker is
called a random walk.

o A random variable s(#) represents the state (i.e., vertex) of the Markov
chain/random walker at time ¢.

@ The random walk is defined with the following single-step transition
probability of jumping from the state v; = s(¢) at time ¢ to an adjacent
vertex vj = s(f+1) at time £+ 1:

Pr(s(t+1)=v;|s(t) = v;) = a;jld; =: p;ij.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs 10/29/19 16 /24



Commute-Time Distance

Intermezzo 2: Random Walks on Graphs

The Markov chain describing the sequence of vertices in G (weighted,
undirected, simple, and connected) visited by a random walker is
called a random walk.

A random variable s(#) represents the state (i.e., vertex) of the Markov
chain/random walker at time ¢.

The random walk is defined with the following single-step transition
probability of jumping from the state v; = s(¢) at time ¢ to an adjacent
vertex vj = s(f+1) at time £+ 1:

Pr(s(t+1)=v;|s(t) = v;) = a;jld; =: p;ij.

The transition probabilities depend only on the current state and not
on the past states, i.e., the first-order Markov chain.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs 10/29/19 16 /24



Commute-Time Distance

Intermezzo 2: Random Walks on Graphs

The Markov chain describing the sequence of vertices in G (weighted,
undirected, simple, and connected) visited by a random walker is
called a random walk.

A random variable s(#) represents the state (i.e., vertex) of the Markov
chain/random walker at time ¢.

The random walk is defined with the following single-step transition
probability of jumping from the state v; = s(¢) at time ¢ to an adjacent
vertex vj = s(f+1) at time £+ 1:

Pr(s(t+1)=v;|s(t) = v;) = a;jld; =: p;ij.

The transition probabilities depend only on the current state and not
on the past states, i.e., the first-order Markov chain.

Since G is connected, the Markov chain is irreducible, i.e., every state
can be reached from any other state.
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Commute-Time Distance

Intermezzo 2: Random Walks on Graphs

The Markov chain describing the sequence of vertices in G (weighted,
undirected, simple, and connected) visited by a random walker is
called a random walk.

A random variable s(#) represents the state (i.e., vertex) of the Markov
chain/random walker at time ¢.

The random walk is defined with the following single-step transition
probability of jumping from the state v; = s(¢) at time ¢ to an adjacent
vertex vj = s(f+1) at time £+ 1:

Pr(s(t+1)=v;|s(t) = v;) = a;jld; =: p;ij.

The transition probabilities depend only on the current state and not
on the past states, i.e., the first-order Markov chain.

Since G is connected, the Markov chain is irreducible, i.e., every state
can be reached from any other state.

Let 7 (t) = [m1(0),...,m,(8)]" where 7;(2) := Pr(s(¢) = v;), and let
P=(p;j)=D"'A be the transition matrix.
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Commute-Time Distance

Intermezzo 2: Random Walks on Graphs . ..

@ Then, the evolution of the Markov chain is characterized by

xt+)=Paiexa (t+1)=a"(H)P.
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Commute-Time Distance

Intermezzo 2: Random Walks on Graphs . ..

@ Then, the evolution of the Markov chain is characterized by
a(t+)=P'a(ex t+)=a"(9)P.

o Let 7%= m(0) be the initial distribution.
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Commute-Time Distance

Intermezzo 2: Random Walks on Graphs . ..

@ Then, the evolution of the Markov chain is characterized by
a(t+)=P'a(ex t+)=a"(9)P.

o Let 7%= m(0) be the initial distribution.

@ The stationary distribution ™ satisfies 7 = Pz, i.e., the
eigenvector of P" (a.k.a. the /eft eigenvector of P) corresponding to
the eigenvalue 1.
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a(t+)=P'a(ex t+)=a"(9)P.

o Let 7%= m(0) be the initial distribution.

@ The stationary distribution ™ satisfies 7 = Pz, i.e., the
eigenvector of P" (a.k.a. the /eft eigenvector of P) corresponding to
the eigenvalue 1.
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Intermezzo 2: Random Walks on Graphs . ..

@ Then, the evolution of the Markov chain is characterized by
at+)=P'a(exn (t+1)=a" (H)P.

o Let %= m(0) be the initial distribution.
@ The stationary distribution ™ satisfies 7 = Pz, i.e., the
eigenvector of PT (a.k.a. the left eigenvector of P) corresponding to
the eigenvalue 1.
@ Can show #® =[dy,...,d,]"/vol(V).
Proof: Since L=D—-A=D(I-P), P"=1-LD"". Now, we have
P™D1,=D1,—-L1,=D1,. Hence, D1, =dy,...,d,]" is the eigenvector of
PT corresponding to the eigenvalue 1 modulo normalization constants. To
make it as a probability distribution over V, we need to normalize it by
Vol(V):Zjdj, i.e., 1° = D1,/ vol(V). O
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Intermezzo 2: Random Walks on Graphs . ..

There is a formal equivalence between Ncut and transition probabilities of
the random walk:

Proposition (Meila and Shi (2001))

Let G be connected and non bipartite. Assume that we run the random
walk s(t) starting with s(0) in the stationary distribution . For disjoint
subsets X,Y c V, denote Pr(Y | X) := Pr(s(1) € Y|s(0) € X). Then

Ncut(X, X€) =Pr(X°| X) + Pr(X| X°).
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Intermezzo 2: Random Walks on Graphs . ..

Proof: First of all, observe that

>

Pr(s(0)e X,s(1)eY)

xeX,yeY

Using this, we obtain

Pr(s(1) e Y[s(0) € X)

Pr(s(0) =x,s()=y)= 3
xeX,yeY

dx

y iy 1 Y a
refyey VOIV) dy — vol(V) w

xeX,yeY

Pr(s(0)e X,s(1) e Y)
Pr(s(0) € X)

Now, it is clear that the proposition holds.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs

1 3 (vol(X))-l
a .
vol(V) \yeiey ) \vol(V)
zxeX,er Qxy
vol(X)
10/29/19

(o0)
Ty Pxy

19/24



Average First-Passage Time/Cost

@ The average first-passage time m(vy|v;) = m(k|i) is defined as the
average number of steps that a random walker, starting in state
v; # Vg, will take to enter state vy for the first time. More precisely,
we define the minimum time until hitting state v, when staring from
state v;, as Tir := min(¢ = 0] s(t) = vg; s(0) = v;) for one realization of
the stochastic process.
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@ The average first-passage time m(vy|v;) = m(k|i) is defined as the
average number of steps that a random walker, starting in state
v; # Vg, will take to enter state vy for the first time. More precisely,
we define the minimum time until hitting state vy, when staring from
state v;, as Tk := min(t = 0] s(?) = vg; s(0) = v;) for one realization of
the stochastic process.

@ The random walker may pass through vy repeatedly; the minimum
time corresponds to the first passage.
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Average First-Passage Time/Cost

@ The average first-passage time m(vy|v;) = m(k|i) is defined as the
average number of steps that a random walker, starting in state
v; # Vg, will take to enter state vy for the first time. More precisely,
we define the minimum time until hitting state vy, when staring from
state v;, as Tk := min(t = 0] s(?) = vg; s(0) = v;) for one realization of
the stochastic process.

@ The random walker may pass through vy repeatedly; the minimum
time corresponds to the first passage.

@ The average first-passage time is the expected first-passage time:
m(k|i) := E[Tj|s(0) = v;l].
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Average First-Passage Time/Cost

@ The average first-passage time m(vy|v;) = m(k|i) is defined as the
average number of steps that a random walker, starting in state
v; # Vg, will take to enter state vy for the first time. More precisely,
we define the minimum time until hitting state vy, when staring from
state v;, as Tk := min(t = 0] s(?) = vg; s(0) = v;) for one realization of
the stochastic process.

@ The random walker may pass through vy repeatedly; the minimum
time corresponds to the first passage.

@ The average first-passage time is the expected first-passage time:
m(k|i) := E[Tj|s(0) = v;l].

o Similarly, the average first-passage cost o(vy|v;) = o(k|i) is the
average cost incurred by the random walker starting from state v; to
reach state vy for the first time. Let y(j|i) be the cost of transition
from state v; to v;. For example, y(jli)=1/a;; (if i~j)isa
possibility.
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Commute-Time Distance

Average First-Passage Time & Average Commute Time

@ The recurrence relations computing m(k|i) and o(k|i) can easily be
obtained by first-step analysis:

(k|i) = 0 if i=k;
= 1+ X7 pijm(k| j) otherwise.

if i=k;
kli)= .
oy {ijl pij (y(jli) +o(klj)) otherwise.
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@ The recurrence relations computing m(k|i) and o(k|i) can easily be
obtained by first-step analysis:

(k|i) = 0 if i=k;
= 1+ X7 pijm(k| j) otherwise.

(k1) 0 if i=k;
o(kl|i) = _
X pij (vl +olklj)) otherwise.

@ A closely related quantity, the average commute time c(v;, vj) = c(i, j) = ¢;;
is defined as the average number of steps that a random walker, starting in
state v;, will take to enter state v;, i # j for the first time and go back to v;.
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Average First-Passage Time & Average Commute Time

@ The recurrence relations computing m(k|i) and o(k|i) can easily be
obtained by first-step analysis:

(k|i) = 0 if i=k;
= 1+ X7 pijm(k| j) otherwise.

(k1) 0 if i=k;
o(kl|i) = _
X pij (vl +olklj)) otherwise.

@ A closely related quantity, the average commute time c(v;, vj) = c(i, j) = ¢;;
is defined as the average number of steps that a random walker, starting in
state v;, will take to enter state v;, i # j for the first time and go back to v;.

@ Thatis, c(i,j) =m(jli)+m(ilj).
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Average First-Passage Time & Average Commute Time

@ The recurrence relations computing m(k|i) and o(k|i) can easily be
obtained by first-step analysis:

m(kli):{o ifi:k.;
1+¥%  pijm(klj) otherwise.
0(k|i)={0 Fi=k
X pij (vl +olklj)) otherwise.

@ A closely related quantity, the average commute time c(v;, vj) = c(i, j) = ¢;;
is defined as the average number of steps that a random walker, starting in
state v;, will take to enter state v;, i # j for the first time and go back to v;.

@ Thatis, c(i,j) =m(jli)+m(ilj).
@ Note that c(i, j) = c(j, i) but m(j|i)# m(ilj) in general.
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Average First-Passage Time & Average Commute Time

@ The recurrence relations computing m(k|i) and o(k|i) can easily be
obtained by first-step analysis:

m(kli):{o ifi:k.;
1+¥%  pijm(klj) otherwise.
0(k|i)={0 Fi=k
X pij (vl +olklj)) otherwise.

@ A closely related quantity, the average commute time c(v;, vj) = c(i, j) = ¢;;
is defined as the average number of steps that a random walker, starting in
state v;, will take to enter state v;, i # j for the first time and go back to v;.

@ Thatis, c(i,j) =m(jli)+m(ilj).
@ Note that c(i, j) = c(j, i) but m(j|i)# m(ilj) in general.

@ c(i,j) is a metric on G:
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Average First-Passage Time & Average Commute Time

@ The recurrence relations computing m(k|i) and o(k|i) can easily be
obtained by first-step analysis:

m(k|i):{0 fi=k
1+¥%  pijm(klj) otherwise.
0(k|i)={0 Fi=k
X pij (vl +olklj)) otherwise.

@ A closely related quantity, the average commute time c(v;, vj) = c(i, j) = ¢;;
is defined as the average number of steps that a random walker, starting in
state v;, will take to enter state v;, i # j for the first time and go back to v;.

@ Thatis, c(i,j)=m(jli)+m(i]J).
@ Note that c(i, j) = c(j, i) but m(j|i)# m(ilj) in general.
@ c(i,j) is a metric on G:

@ c(i, j) =0, and the equality holds iff v; = v; ;
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Average First-Passage Time & Average Commute Time

@ The recurrence relations computing m(k|i) and o(k|i) can easily be
obtained by first-step analysis:

m(km:{o ifi:k.;
1 +Z;?=1 pijm(k|j) otherwise.
O(km:{o ifi:k.;
X pij (Y1) +o(k|j)) otherwise.
@ A closely related quantity, the average commute time c(v;, vj) = c(i, j) = ¢;;

is defined as the average number of steps that a random walker, starting in
state v;, will take to enter state v;, i # j for the first time and go back to v;.

@ Thatis, c(i,j) =m(jli)+m(ilj).
@ Note that c(i, j) = c(j, i) but m(j|i)# m(ilj) in general.
@ c(i,j) is a metric on G:

@ c(i, j) =0, and the equality holds iff v; = v; ;
Q cli,j)=c(j,i);
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Average First-Passage Time & Average Commute Time

@ The recurrence relations computing m(k|i) and o(k|i) can easily be
obtained by first-step analysis:

m(km:{o ifi:k.;
1 +Z;?=1 pijm(k|j) otherwise.
O(km:{o ifi:k.;
X pij (Y1) +o(k|j)) otherwise.
@ A closely related quantity, the average commute time c(v;, vj) = c(i, j) = ¢;;

is defined as the average number of steps that a random walker, starting in
state v;, will take to enter state v;, i # j for the first time and go back to v;.

@ Thatis, c(i,j)=m(jli)+m(i]J).
@ Note that c(i, j) = c(j, i) but m(j|i)# m(ilj) in general.
@ c(i,j) is a metric on G:
@ c(i, j) =0, and the equality holds iff v; = v; ;
Q cli,j)=c(j,i);
Q cli,j)<clik)+clk,j) .
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Commute-Time Distance

Commute-Time Distance & Resistance Distance

e Hence, c(i, ) is called the commute-time distance between v; and v;.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs


https://en.wikipedia.org/wiki/Mahalanobis_distance

Commute-Time Distance

Commute-Time Distance & Resistance Distance

e Hence, c(i, ) is called the commute-time distance between v; and v;.

@ That amazing property of the resistance distance carries over to the
commute-time distance:

vol(V)-rjj
vol(V) <e,~ —ej,L'(e; - ej)>

Cij

vol(V) ((Lhii + (L1 jj = 2(L1)5).
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Commute-Time Distance

Commute-Time Distance & Resistance Distance

e Hence, c(i, ) is called the commute-time distance between v; and v;.

@ That amazing property of the resistance distance carries over to the
commute-time distance:

vol(V)-rjj
vol(V) <e,~ —ej,L'(e; - ej)>

Cij

vol(V) ((Lhii + (L1 jj = 2(L1)5).

e Hence, both ,/7;; and ,/c;; are nothing but a Mahalanobis distance
with a weighting matrix LT and vol(V)L', respectively.
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Commute-Time Distance

Commute-Time Distance & Resistance Distance . ..

@ The above formula also allows us to interpret /7;; and \/Ci; as
Euclidean distances on V(G), i.e., to embed v; € V(G) on a point
Zi€ R™.
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Commute-Time Distance

Commute-Time Distance & Resistance Distance . ..

@ The above formula also allows us to interpret /7;; and \/Ci; as

Euclidean distances on V(G), i.e., to embed v; € V(G) on a point
Zi€ R™.

o Let L=®AD" be the eigendecomposition of L. Then, L' = dAT®T
where AT = diag (/13,...,/1;_1) is defined as

A= 1/A; if A; #0;
o otherwise.
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Commute-Time Distance

Commute-Time Distance & Resistance Distance . ..

@ The above formula also allows us to interpret /7;; and \/Ci; as
Euclidean distances on V(G), i.e., to embed v; € V(G) on a point
Zi€ R™.

o Let L=®AD" be the eigendecomposition of L. Then, L' = dAT®T
where AT = diag (/13,...,/1;_1) is defined as

A 1/A; if A; #0;
! 0 otherwise.

@ Hence, z] = ((I)\/AT) . for the resistance distance and
i,l:n

z] = ((D vol(V)AT) . for the commute-time distance.

i,1:n
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Commute-Time Distance & Resistance Distance . ..

e Compare these embeddings with the one used in the spectral
clustering (with L) in Lecture 7, i.e., y] =®; 1.1, k< n.
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Commute-Time Distance

Commute-Time Distance & Resistance Distance . ..

@ Compare these embeddings with the one used in the spectral
clustering (with L) in Lecture 7, i.e., y] =®; 1.1, k< n.

@ {z;} and {y;} could be considerably different. For example, in the
optimal case where G consists of k disconnected components, the first
k eigenvalues of L are zeros and the corresponding columns of ® are
the indicator vectors of these k components. However, the first k
columns of the matrix ®V/AT are zero vectors.
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Commute-Time Distance & Resistance Distance . ..

@ Compare these embeddings with the one used in the spectral
clustering (with L) in Lecture 7, i.e., y] =®; 1.1, k< n.

@ {z;} and {y;} could be considerably different. For example, in the
optimal case where G consists of k disconnected components, the first
k eigenvalues of L are zeros and the corresponding columns of ® are
the indicator vectors of these k components. However, the first k
columns of the matrix ®V/AT are zero vectors.

@ On the other hand, if G is connected, z;'s got more influenced by the
eigenvectors corresponding to the small eigenvalues because /IZT =1/1;
if A; #0.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs 10/29/19 24 /24



	Need of a Variety of Graph Distances
	The (Shortest) Path Distance
	Resistance Distance
	Commute-Time Distance

