MAT 280: Harmonic Analysis on Graphs & Networks Lecture 10: Distances on Graphs

Naoki Saito

Department of Mathematics University of California, Davis

October 29, 2019

Outline

- 2 The (Shortest) Path Distance
- 3 Resistance Distance
- 4 Commute-Time Distance

Outline

- Suppose a simple, weighted, and connected graph G(V, E) is already built from the dataset X = {x₁,..., x_n} ⊂ ℝ^d.
- Assume the data vector x_i is associated with the vertex v_i .
- Let w(e) = w_e ≥ 0 be an edge weight of the edge e ∈ E(G), which we also write a_{ij}, i.e., (i, j)th entry of the weighted adjacent matrix A if e = (v_i, v_j).
- In many applications, we want to know the *similarity* or *dissimilarity* between vertices v_i and v_j. Note that v_i and v_j may not be adjacent (i.e., they may not be endpoints of a single edge).
- Such applications include: search engines; data mining; social network analysis; pattern recognition; image processing, ...

- Suppose a simple, weighted, and connected graph G(V, E) is already built from the dataset X = {x₁,..., x_n} ⊂ ℝ^d.
- Assume the data vector x_i is associated with the vertex v_i .
- Let w(e) = w_e ≥ 0 be an edge weight of the edge e ∈ E(G), which we also write a_{ij}, i.e., (i, j)th entry of the weighted adjacent matrix A if e = (v_i, v_j).
- In many applications, we want to know the *similarity* or *dissimilarity* between vertices v_i and v_j. Note that v_i and v_j may not be adjacent (i.e., they may not be endpoints of a single edge).
- Such applications include: search engines; data mining; social network analysis; pattern recognition; image processing, ...

- Suppose a simple, weighted, and connected graph G(V, E) is already built from the dataset X = {x₁,..., x_n} ⊂ ℝ^d.
- Assume the data vector x_i is associated with the vertex v_i .
- Let w(e) = w_e ≥ 0 be an edge weight of the edge e ∈ E(G), which we also write a_{ij}, i.e., (i, j)th entry of the weighted adjacent matrix A if e = (v_i, v_j).
- In many applications, we want to know the *similarity* or *dissimilarity* between vertices v_i and v_j . Note that v_i and v_j may not be adjacent (i.e., they may not be endpoints of a single edge).
- Such applications include: search engines; data mining; social network analysis; pattern recognition; image processing, ...

- Suppose a simple, weighted, and connected graph G(V, E) is already built from the dataset X = {x₁,..., x_n} ⊂ ℝ^d.
- Assume the data vector x_i is associated with the vertex v_i .
- Let w(e) = w_e ≥ 0 be an edge weight of the edge e ∈ E(G), which we also write a_{ij}, i.e., (i, j)th entry of the weighted adjacent matrix A if e = (v_i, v_j).
- In many applications, we want to know the *similarity* or *dissimilarity* between vertices v_i and v_j . Note that v_i and v_j may not be adjacent (i.e., they may not be endpoints of a single edge).
- Such applications include: search engines; data mining; social network analysis; pattern recognition; image processing, ...

- Suppose a simple, weighted, and connected graph G(V, E) is already built from the dataset X = {x₁,..., x_n} ⊂ ℝ^d.
- Assume the data vector x_i is associated with the vertex v_i .
- Let w(e) = w_e ≥ 0 be an edge weight of the edge e ∈ E(G), which we also write a_{ij}, i.e., (i, j)th entry of the weighted adjacent matrix A if e = (v_i, v_j).
- In many applications, we want to know the *similarity* or *dissimilarity* between vertices v_i and v_j . Note that v_i and v_j may not be adjacent (i.e., they may not be endpoints of a single edge).
- Such applications include: search engines; data mining; social network analysis; pattern recognition; image processing, ...

Outline

2 The (Shortest) Path Distance

3 Resistance Distance

Most common metric on a graph

Let u, v ∈ V(G) be any two vertices of G. Then, the (shortest) path distance (a.k.a. the geodesic distance) between u and v is the sum of the weights along the path connecting u and v such that it becomes minimum, i.e.,

$$d_{\text{path}}(u, v) := \min_{P \in \mathscr{P}(u, v)} \sum_{e \in P} w(e)$$

- If G is directed, then $d_{\text{path}}(u, v) \neq d_{\text{path}}(v, u)$ in general.
- Efficient algorithms to compute d_{path}(·, ·) exist, e.g., the A^{*} algorithm of Hart-Nilsson-Raphael (1968), etc. Yet, in general, its complexity is at least polynomial time w.r.t. n. ⇒ See the excellent Wikipedia page!

- Most common metric on a graph
- Let u, v ∈ V(G) be any two vertices of G. Then, the (shortest) path distance (a.k.a. the geodesic distance) between u and v is the sum of the weights along the path connecting u and v such that it becomes minimum, i.e.,

$$d_{\text{path}}(u, v) := \min_{P \in \mathscr{P}(u, v)} \sum_{e \in P} w(e)$$

- If G is directed, then $d_{\text{path}}(u, v) \neq d_{\text{path}}(v, u)$ in general.
- Efficient algorithms to compute d_{path}(·, ·) exist, e.g., the A^{*} algorithm of Hart-Nilsson-Raphael (1968), etc. Yet, in general, its complexity is at least polynomial time w.r.t. n. ⇒ See the excellent Wikipedia page!

- Most common metric on a graph
- Let u, v ∈ V(G) be any two vertices of G. Then, the (shortest) path distance (a.k.a. the geodesic distance) between u and v is the sum of the weights along the path connecting u and v such that it becomes minimum, i.e.,

$$d_{\text{path}}(u, v) := \min_{P \in \mathscr{P}(u, v)} \sum_{e \in P} w(e)$$

- If G is directed, then $d_{\text{path}}(u, v) \neq d_{\text{path}}(v, u)$ in general.
- Efficient algorithms to compute d_{path}(·, ·) exist, e.g., the A^{*} algorithm of Hart-Nilsson-Raphael (1968), etc. Yet, in general, its complexity is at least polynomial time w.r.t. n. ⇒ See the excellent Wikipedia page!

- Most common metric on a graph
- Let u, v ∈ V(G) be any two vertices of G. Then, the (shortest) path distance (a.k.a. the geodesic distance) between u and v is the sum of the weights along the path connecting u and v such that it becomes minimum, i.e.,

$$d_{\text{path}}(u, v) := \min_{P \in \mathscr{P}(u, v)} \sum_{e \in P} w(e)$$

- If G is directed, then $d_{\text{path}}(u, v) \neq d_{\text{path}}(v, u)$ in general.
- Efficient algorithms to compute $d_{\text{path}}(\cdot, \cdot)$ exist, e.g., the A^* algorithm of Hart-Nilsson-Raphael (1968), etc. Yet, in general, its complexity is at least polynomial time w.r.t. $n. \implies$ See the excellent Wikipedia page!

Outline

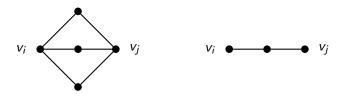
• The shortest path distance may not be always relevant. Consider the following two subgraphs where each $w_e \equiv 1$:

- In both cases in the above, $d_{\text{path}}(v_i, v_j) = 2$. But it is clear that there are more paths connecting v_i and v_j in the subgraph in the left than in the right.
- Hence, it is reasonable that the "distance" between v_i and v_j should be smaller in the left than in the right.

saito@math.ucdavis.edu (UC Davis)

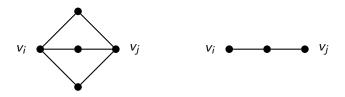
Distances on Graphs

• The shortest path distance may not be always relevant. Consider the following two subgraphs where each $w_e \equiv 1$:



- In both cases in the above, $d_{\text{path}}(v_i, v_j) = 2$. But it is clear that there are more paths connecting v_i and v_j in the subgraph in the left than in the right.
- Hence, it is reasonable that the "distance" between v_i and v_j should be smaller in the left than in the right.

• The shortest path distance may not be always relevant. Consider the following two subgraphs where each $w_e \equiv 1$:



- In both cases in the above, $d_{\text{path}}(v_i, v_j) = 2$. But it is clear that there are more paths connecting v_i and v_j in the subgraph in the left than in the right.
- Hence, it is reasonable that the "distance" between v_i and v_j should be smaller in the left than in the right.

saito@math.ucdavis.edu (UC Davis)

Distances on Graphs

• Now, let's interpret the edge weights as *resistances* in an *electrical network*.

- For any v_i , v_j , $i \neq j$, suppose that a battery is connected across them so that one unit of a current flows in at v_i and out in v_j .
- Then, the voltage (potential) difference is the effective resistance between v_i and v_j by Ohm's law ($V = I \cdot R$), which is called the *resistance distance* between v_i and v_j and written as $r(v_i, v_j) = r_{ij}$.
- Hence, $1/r_{ij}$ is the *conductance* between v_i and v_j , which is a measure of *connectivity* (or *similarity*) between them, which should be the edge weight a_{ij} .
- Hence, given resistance distances {r_{ij}}, one can construct the corresponding weighted adjacency matrix A by

$$a_{ij} = \begin{cases} 1/r_{ij} & \text{if } v_i \sim v_j \text{ and } r_{ij} \geqq 0; \\ 0 & \text{otherwise.} \end{cases}$$

But, how can we compute {r_{ij}} if A is given? Note that r_{ij} should be defined even if v_i ∞ v_j.

- Now, let's interpret the edge weights as *resistances* in an *electrical network*.
- For any v_i , v_j , $i \neq j$, suppose that a battery is connected across them so that one unit of a current flows in at v_i and out in v_j .
- Then, the voltage (potential) difference is the effective resistance between v_i and v_j by Ohm's law ($V = I \cdot R$), which is called the *resistance distance* between v_i and v_j and written as $r(v_i, v_j) = r_{ij}$.
- Hence, $1/r_{ij}$ is the *conductance* between v_i and v_j , which is a measure of *connectivity* (or *similarity*) between them, which should be the edge weight a_{ij} .
- Hence, given resistance distances {*r*_{*ij*}}, one can construct the corresponding weighted adjacency matrix *A* by

$$a_{ij} = \begin{cases} 1/r_{ij} & \text{if } v_i \sim v_j \text{ and } r_{ij} \geqq 0; \\ 0 & \text{otherwise.} \end{cases}$$

But, how can we compute {r_{ij}} if A is given? Note that r_{ij} should be defined even if v_i ≁ v_j.

- Now, let's interpret the edge weights as *resistances* in an *electrical network*.
- For any v_i , v_j , $i \neq j$, suppose that a battery is connected across them so that one unit of a current flows in at v_i and out in v_j .
- Then, the voltage (potential) difference is the effective resistance between v_i and v_j by Ohm's law ($V = I \cdot R$), which is called the *resistance distance* between v_i and v_j and written as $r(v_i, v_j) = r_{ij}$.
- Hence, $1/r_{ij}$ is the *conductance* between v_i and v_j , which is a measure of *connectivity* (or *similarity*) between them, which should be the edge weight a_{ij} .
- Hence, given resistance distances {r_{ij}}, one can construct the corresponding weighted adjacency matrix A by

$$a_{ij} = \begin{cases} 1/r_{ij} & \text{if } v_i \sim v_j \text{ and } r_{ij} \geqq 0; \\ 0 & \text{otherwise.} \end{cases}$$

But, how can we compute {r_{ij}} if A is given? Note that r_{ij} should be defined even if v_i ≁ v_j.

- Now, let's interpret the edge weights as *resistances* in an *electrical network*.
- For any v_i , v_j , $i \neq j$, suppose that a battery is connected across them so that one unit of a current flows in at v_i and out in v_j .
- Then, the voltage (potential) difference is the effective resistance between v_i and v_j by Ohm's law ($V = I \cdot R$), which is called the *resistance distance* between v_i and v_j and written as $r(v_i, v_j) = r_{ij}$.
- Hence, 1/r_{ij} is the conductance between v_i and v_j, which is a measure of connectivity (or similarity) between them, which should be the edge weight a_{ij}.
- Hence, given resistance distances {r_{ij}}, one can construct the corresponding weighted adjacency matrix A by

$$a_{ij} = \begin{cases} 1/r_{ij} & \text{if } v_i \sim v_j \text{ and } r_{ij} \geqq 0; \\ 0 & \text{otherwise.} \end{cases}$$

But, how can we compute {r_{ij}} if A is given? Note that r_{ij} should be defined even if v_i ~ v_j.

- Now, let's interpret the edge weights as *resistances* in an *electrical network*.
- For any v_i , v_j , $i \neq j$, suppose that a battery is connected across them so that one unit of a current flows in at v_i and out in v_j .
- Then, the voltage (potential) difference is the effective resistance between v_i and v_j by Ohm's law ($V = I \cdot R$), which is called the *resistance distance* between v_i and v_j and written as $r(v_i, v_j) = r_{ij}$.
- Hence, 1/r_{ij} is the conductance between v_i and v_j, which is a measure of connectivity (or similarity) between them, which should be the edge weight a_{ij}.
- Hence, given resistance distances {r_{ij}}, one can construct the corresponding weighted adjacency matrix A by

$$a_{ij} = \begin{cases} 1/r_{ij} & \text{if } v_i \sim v_j \text{ and } r_{ij} \geqq 0; \\ 0 & \text{otherwise.} \end{cases}$$

But, how can we compute {r_{ij}} if A is given? Note that r_{ij} should be defined even if v_i ∞ v_j.

- Now, let's interpret the edge weights as *resistances* in an *electrical network*.
- For any v_i , v_j , $i \neq j$, suppose that a battery is connected across them so that one unit of a current flows in at v_i and out in v_j .
- Then, the voltage (potential) difference is the effective resistance between v_i and v_j by Ohm's law ($V = I \cdot R$), which is called the *resistance distance* between v_i and v_j and written as $r(v_i, v_j) = r_{ij}$.
- Hence, 1/r_{ij} is the conductance between v_i and v_j, which is a measure of connectivity (or similarity) between them, which should be the edge weight a_{ij}.
- Hence, given resistance distances {r_{ij}}, one can construct the corresponding weighted adjacency matrix A by

$$a_{ij} = \begin{cases} 1/r_{ij} & \text{if } v_i \sim v_j \text{ and } r_{ij} \geqq 0; \\ 0 & \text{otherwise.} \end{cases}$$

But, how can we compute {r_{ij}} if A is given? Note that r_{ij} should be defined even if v_i ~ v_j.

• The amazing fact is the following relationship between the resistance distance and the *(Moore-Penrose)* pseudoinverse $L^{\dagger}(G)$ of the unnormalized graph Laplacian L(G)!

$$\begin{aligned} r_{ij} &= (L^{\dagger})_{ii} + (L^{\dagger})_{jj} - (L^{\dagger})_{ij} - (L^{\dagger})_{ji} \\ &= \left\langle \boldsymbol{e}_i - \boldsymbol{e}_j, L^{\dagger}(\boldsymbol{e}_i - \boldsymbol{e}_j) \right\rangle \\ &= (L^{\dagger})_{ii} + (L^{\dagger})_{jj} - 2(L^{\dagger})_{ij} \quad \text{if } G \text{ is undirected}; \end{aligned}$$

- Hence, the resistance matrix $R(G) = (r_{ij})$ can be computed via $L^{\dagger}(G)$.
- If G is sparse, then one can utilize a sparse Cholesky factorization of L(G) to compute ith column vector ℓ[†]_i of L[†] as follows:
 - Compute the projection of e_i onto range(L(G)), say y_i via $y_i = (I - \mathbf{1}_n \mathbf{1}_n^T/n) e_i$ [Note null(L(G)) = span($\mathbf{1}_n$) if G is connected.]
 - Find a solution \(\mathcal{L}_i\) of \(L\mathcal{L} = y_i\) where the Cholesky factorization of \(L\) should be utilized.
 - Project the result on the row space of L (which is the same as the column space thanks to L^T = L) to compute the *i*th column vector

• The amazing fact is the following relationship between the resistance distance and the *(Moore-Penrose)* pseudoinverse $L^{\dagger}(G)$ of the unnormalized graph Laplacian L(G)!

$$r_{ij} = (L^{\dagger})_{ii} + (L^{\dagger})_{jj} - (L^{\dagger})_{ij} - (L^{\dagger})_{ji}$$
$$= \left\langle \boldsymbol{e}_i - \boldsymbol{e}_j, L^{\dagger}(\boldsymbol{e}_i - \boldsymbol{e}_j) \right\rangle$$
$$= (L^{\dagger})_{ii} + (L^{\dagger})_{jj} - 2(L^{\dagger})_{ij} \text{ if } G \text{ is undirected}$$

- Hence, the resistance matrix $R(G) = (r_{ij})$ can be computed via $L^{\dagger}(G)$.
- If G is sparse, then one can utilize a sparse Cholesky factorization of L(G) to compute ith column vector ℓ[†]_i of L[†] as follows:
 - Compute the projection of e_i onto range(L(G)), say y_i via y_i = (1−1_n1^T_n/n)e_i [Note null(L(G)) = span{1_n} if G is connected.]
 Find a solution ℓ_i of Lℓ = y_i where the Cholesky factorization of L should be utilized.
 - Project the result on the row space of L (which is the same as the column space thanks to L^T = L) to compute the *i*th column vector

• The amazing fact is the following relationship between the resistance distance and the *(Moore-Penrose)* pseudoinverse $L^{\dagger}(G)$ of the unnormalized graph Laplacian L(G)!

$$r_{ij} = (L^{\dagger})_{ii} + (L^{\dagger})_{jj} - (L^{\dagger})_{ij} - (L^{\dagger})_{ji}$$
$$= \left\langle \boldsymbol{e}_i - \boldsymbol{e}_j, L^{\dagger}(\boldsymbol{e}_i - \boldsymbol{e}_j) \right\rangle$$
$$= (L^{\dagger})_{ii} + (L^{\dagger})_{jj} - 2(L^{\dagger})_{ij} \quad \text{if } G \text{ is undirected}$$

- Hence, the resistance matrix $R(G) = (r_{ij})$ can be computed via $L^{\dagger}(G)$.
- If G is sparse, then one can utilize a sparse Cholesky factorization of L(G) to compute ith column vector l[†]_i of L[†] as follows:
 - Compute the projection of e_i onto range(L(G)), say y_i via $y_i = (I - \mathbf{1}_n \mathbf{1}_n^T / n) e_i$ [Note null(L(G)) = span{ $\mathbf{1}_n$ } if G is connected.]
 - Find a solution ℓ_i of $L\ell = y_i$ where the Cholesky factorization of L should be utilized.
 - **③** Project the result on the row space of L (which is the same as the column space thanks to $L^{\mathsf{T}} = L$) to compute the *i*th column vector $\boldsymbol{\ell}_{i}^{\dagger} = (I \mathbf{1}_{n} \mathbf{1}_{n}^{\mathsf{T}}/n) \widehat{\boldsymbol{\ell}_{i}}$.

• The amazing fact is the following relationship between the resistance distance and the *(Moore-Penrose)* pseudoinverse $L^{\dagger}(G)$ of the unnormalized graph Laplacian L(G)!

$$r_{ij} = (L^{\dagger})_{ii} + (L^{\dagger})_{jj} - (L^{\dagger})_{ij} - (L^{\dagger})_{ji}$$
$$= \left\langle \boldsymbol{e}_i - \boldsymbol{e}_j, L^{\dagger}(\boldsymbol{e}_i - \boldsymbol{e}_j) \right\rangle$$
$$= (L^{\dagger})_{ii} + (L^{\dagger})_{jj} - 2(L^{\dagger})_{ij} \quad \text{if } G \text{ is undirected}$$

- Hence, the resistance matrix $R(G) = (r_{ij})$ can be computed via $L^{\dagger}(G)$.
- If G is sparse, then one can utilize a sparse Cholesky factorization of L(G) to compute *i*th column vector ℓ[†]_i of L[†] as follows:

Compute the projection of e_i onto range(L(G)), say y_i via $y_i = (I - \mathbf{1}_n \mathbf{1}_n^T / n) e_i$ [Note null(L(G)) = span{ $\mathbf{1}_n$ } if G is connected.]

- 2) Find a solution ℓ_i of $L\ell = y_i$ where the Cholesky factorization of L should be utilized.
- Project the result on the row space of L (which is the same as the column space thanks to L^T = L) to compute the *i*th column vector ℓ[†]_i = (I − 1_n1^T_n/n)ℓ_i.

• The amazing fact is the following relationship between the resistance distance and the *(Moore-Penrose)* pseudoinverse $L^{\dagger}(G)$ of the unnormalized graph Laplacian L(G)!

$$r_{ij} = (L^{\dagger})_{ii} + (L^{\dagger})_{jj} - (L^{\dagger})_{ij} - (L^{\dagger})_{ji}$$
$$= \left\langle \boldsymbol{e}_i - \boldsymbol{e}_j, L^{\dagger}(\boldsymbol{e}_i - \boldsymbol{e}_j) \right\rangle$$
$$= (L^{\dagger})_{ii} + (L^{\dagger})_{jj} - 2(L^{\dagger})_{ij} \quad \text{if } G \text{ is undirected}$$

- Hence, the resistance matrix $R(G) = (r_{ij})$ can be computed via $L^{\dagger}(G)$.
- If G is sparse, then one can utilize a sparse Cholesky factorization of L(G) to compute ith column vector l[†]_i of L[†] as follows:

Compute the projection of e_i onto range(L(G)), say y_i via $y_i = (I - \mathbf{1}_n \mathbf{1}_n^T / n) e_i$ [Note null(L(G)) = span{ $\mathbf{1}_n$ } if G is connected.]

② Find a solution $\widehat{\ell_i}$ of $L\ell = y_i$ where the Cholesky factorization of L should be utilized.

Project the result on the row space of L (which is the same as the column space thanks to L^T = L) to compute the *i*th column vector \$\mathcal{L}_i^t = (I - \mathbf{1}_n \mathbf{1}_n^T/n) \mathcal{\ell}_i.\$

1

• The amazing fact is the following relationship between the resistance distance and the *(Moore-Penrose)* pseudoinverse $L^{\dagger}(G)$ of the unnormalized graph Laplacian L(G)!

$$\begin{aligned} \hat{r}_{ij} &= (L^{\dagger})_{ii} + (L^{\dagger})_{jj} - (L^{\dagger})_{ij} - (L^{\dagger})_{ji} \\ &= \left\langle \boldsymbol{e}_i - \boldsymbol{e}_j, L^{\dagger}(\boldsymbol{e}_i - \boldsymbol{e}_j) \right\rangle \\ &= (L^{\dagger})_{ii} + (L^{\dagger})_{jj} - 2(L^{\dagger})_{ij} \quad \text{if } G \text{ is undirected}; \end{aligned}$$

- Hence, the resistance matrix $R(G) = (r_{ij})$ can be computed via $L^{\dagger}(G)$.
- If G is sparse, then one can utilize a sparse Cholesky factorization of L(G) to compute ith column vector l[†]_i of L[†] as follows:
 - Compute the projection of e_i onto range(L(G)), say y_i via $y_i = (I - \mathbf{1}_n \mathbf{1}_n^T / n) e_i$ [Note null(L(G)) = span{ $\mathbf{1}_n$ } if G is connected.]
 - Solution $\hat{\ell}_i$ of $L\ell = y_i$ where the Cholesky factorization of L should be utilized.

Intermezzo: The (Moore-Penrose) Pseudoinverse

Definition

The *pseudoinverse* $A^{\dagger} \in \mathbb{C}^{n \times m}$ of a general matrix $A \in \mathbb{C}^{m \times n}$ is defined to be the unique matrix $X \in \mathbb{C}^{n \times m}$ that satisfies the following *Moore-Penrose conditions*: i) AXA = A; ii) XAX = X; iii) $(AX)^* = AX$; iv) $(XA)^* = XA$, where A^* is the Hermitian transposition of A.

Using the SVD of $A = U\Sigma V^*$ where $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ are unitary and $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) \in \mathbb{R}^{m \times n}$, $r = \text{rank}(A) \le \min(m, n)$, A^{\dagger} can be expressed as

 $A^{\dagger} = V\Sigma^{\dagger}U^{*}, \quad \Sigma^{\dagger} := \operatorname{diag}(1/\sigma_{1}, \cdots, 1/\sigma_{r}, 0, \cdots, 0) \in \mathbb{R}^{n \times m}.$

Note that AA^{\dagger} and $A^{\dagger}A$ are the orthogonal projectors onto range(A) and range(A^*), respectively.

Intermezzo: The (Moore-Penrose) Pseudoinverse

Definition

The *pseudoinverse* $A^{\dagger} \in \mathbb{C}^{n \times m}$ of a general matrix $A \in \mathbb{C}^{m \times n}$ is defined to be the unique matrix $X \in \mathbb{C}^{n \times m}$ that satisfies the following *Moore-Penrose conditions*: i) AXA = A; ii) XAX = X; iii) $(AX)^* = AX$; iv) $(XA)^* = XA$, where A^* is the Hermitian transposition of A.

Using the SVD of $A = U\Sigma V^*$ where $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ are unitary and $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) \in \mathbb{R}^{m \times n}$, $r = \text{rank}(A) \le \min(m, n)$, A^{\dagger} can be expressed as

$$A^{\dagger} = V \Sigma^{\dagger} U^*, \quad \Sigma^{\dagger} := \operatorname{diag}(1/\sigma_1, \cdots, 1/\sigma_r, 0, \cdots, 0) \in \mathbb{R}^{n \times m}.$$

Note that AA^{\dagger} and $A^{\dagger}A$ are the orthogonal projectors onto range(A) and range(A^*), respectively.

Intermezzo: The (Moore-Penrose) Pseudoinverse

Definition

The *pseudoinverse* $A^{\dagger} \in \mathbb{C}^{n \times m}$ of a general matrix $A \in \mathbb{C}^{m \times n}$ is defined to be the unique matrix $X \in \mathbb{C}^{n \times m}$ that satisfies the following *Moore-Penrose conditions*: i) AXA = A; ii) XAX = X; iii) $(AX)^* = AX$; iv) $(XA)^* = XA$, where A^* is the Hermitian transposition of A.

Using the SVD of $A = U\Sigma V^*$ where $U \in \mathbb{C}^{m \times m}$, $V \in \mathbb{C}^{n \times n}$ are unitary and $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0) \in \mathbb{R}^{m \times n}$, $r = \text{rank}(A) \le \min(m, n)$, A^{\dagger} can be expressed as

$$A^{\dagger} = V \Sigma^{\dagger} U^*, \quad \Sigma^{\dagger} := \operatorname{diag}(1/\sigma_1, \cdots, 1/\sigma_r, 0, \cdots, 0) \in \mathbb{R}^{n \times m}.$$

Note that AA^{\dagger} and $A^{\dagger}A$ are the orthogonal projectors onto range(A) and range(A^{*}), respectively.

Intermezzo: The EP Matrices

Definition

If $A \in \mathbb{C}^{m \times m}$ commutes with its pseudoinverse, i.e., $A^{\dagger}A = AA^{\dagger}$, then it is called an *EP matrix* (EP for Equal Projection).

The properties of an EP matrix:

- If $(\lambda_i \neq 0, \phi_i)$ is an eigenpair of A, then $(1/\lambda_i, \phi_i)$ is an eigenpair of A^{\dagger} .
- If (λ_i = 0, φ_i) is an eigenpair of A, then (λ_i = 0, φ_i) is also an eigenpair of A[†].

Intermezzo: The EP Matrices

Definition

If $A \in \mathbb{C}^{m \times m}$ commutes with its pseudoinverse, i.e., $A^{\dagger}A = AA^{\dagger}$, then it is called an *EP matrix* (EP for Equal Projection).

The properties of an EP matrix:

- If $(\lambda_i \neq 0, \phi_i)$ is an eigenpair of A, then $(1/\lambda_i, \phi_i)$ is an eigenpair of A^{\dagger} .
- If (λ_i = 0, φ_i) is an eigenpair of A, then (λ_i = 0, φ_i) is also an eigenpair of A[†].

Properties of the Pseudoinverse $L^{\dagger}(G)$

• $\left(L^{\dagger}\right)^{\mathsf{T}} = L^{\dagger}$

- rank $(L^{\dagger}) = n 1$.
- $\operatorname{null}(L) = \operatorname{null}(L^{\dagger}) = \operatorname{span}\{\mathbf{1}_n\}.$
- L[†] is doubly centered just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.
- $L^{\dagger} = (L \mathbf{1}_n \mathbf{1}_n^{\top} / n)^{-1} + \mathbf{1}_n \mathbf{1}_n^{\top} / n.$
- Since L represents the *local* properties of G (e.g., connectivities, etc.), L[†] represents the *global* properties of G ⇒ What is the relationship between L[†] and the integral operator commuting with L in Lecture 2?

Properties of the Pseudoinverse $L^{\dagger}(G)$

•
$$\left(L^{\dagger}\right)^{\mathsf{T}} = L^{\dagger}$$

- rank $(L^{\dagger}) = n 1$.
- $\operatorname{null}(L) = \operatorname{null}(L^{\dagger}) = \operatorname{span}\{\mathbf{1}_n\}.$
- L[†] is doubly centered just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.
- $L^{\dagger} = (L \mathbf{1}_n \mathbf{1}_n^{\top} / n)^{-1} + \mathbf{1}_n \mathbf{1}_n^{\top} / n.$
- Since L represents the *local* properties of G (e.g., connectivities, etc.), L[†] represents the *global* properties of G ⇒ What is the relationship between L[†] and the integral operator commuting with L in Lecture 2?

- $\left(L^{\dagger}\right)^{\mathsf{T}} = L^{\dagger}$
- rank $(L^{\dagger}) = n 1$.
- $\operatorname{null}(L) = \operatorname{null}(L^{\dagger}) = \operatorname{span}\{\mathbf{1}_n\}.$
- L[†] is *doubly centered* just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.
- $L^{\dagger} = (L \mathbf{1}_n \mathbf{1}_n^{\top} / n)^{-1} + \mathbf{1}_n \mathbf{1}_n^{\top} / n.$
- Since L represents the *local* properties of G (e.g., connectivities, etc.), L[†] represents the *global* properties of G ⇒ What is the relationship between L[†] and the integral operator commuting with L in Lecture 2?

- $\left(L^{\dagger}\right)^{\mathsf{T}} = L^{\dagger}$
- rank $(L^{\dagger}) = n 1$.
- $\operatorname{null}(L) = \operatorname{null}(L^{\dagger}) = \operatorname{span}\{\mathbf{1}_n\}.$
- L[†] is *doubly centered* just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.
- $L^{\dagger} = (L \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} / n)^{-1} + \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} / n.$
- Since L represents the *local* properties of G (e.g., connectivities, etc.), L[†] represents the *global* properties of G ⇒ What is the relationship between L[†] and the integral operator commuting with L in Lecture 2?

- $\left(L^{\dagger}\right)^{\mathsf{T}} = L^{\dagger}$
- rank $(L^{\dagger}) = n 1$.
- $\operatorname{null}(L) = \operatorname{null}(L^{\dagger}) = \operatorname{span}\{\mathbf{1}_n\}.$
- L[†] is *doubly centered* just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.
- $L^{\dagger} = \left(L \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}/n\right)^{-1} + \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}}/n.$
- Since L represents the *local* properties of G (e.g., connectivities, etc.), L[†] represents the *global* properties of G ⇒ What is the relationship between L[†] and the integral operator commuting with L in Lecture 2?

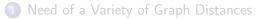
- $\left(L^{\dagger}\right)^{\mathsf{T}} = L^{\dagger}$
- rank $(L^{\dagger}) = n 1$.
- $\operatorname{null}(L) = \operatorname{null}(L^{\dagger}) = \operatorname{span}\{\mathbf{1}_n\}.$
- L[†] is *doubly centered* just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.

•
$$L^{\dagger} = (L - \mathbf{1}_n \mathbf{1}_n^{\top} / n)^{-1} + \mathbf{1}_n \mathbf{1}_n^{\top} / n.$$

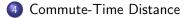
 Since L represents the *local* properties of G (e.g., connectivities, etc.), L[†] represents the *global* properties of G ⇒ What is the relationship between L[†] and the integral operator commuting with L in Lecture 2?

- $\left(L^{\dagger}\right)^{\mathsf{T}} = L^{\dagger}$
- rank $(L^{\dagger}) = n 1$.
- $\operatorname{null}(L) = \operatorname{null}(L^{\dagger}) = \operatorname{span}\{\mathbf{1}_n\}.$
- L[†] is *doubly centered* just like L, i.e., its column sum and row sum are zeros.
- L^{\dagger} is positive semidefinite just like L is.
- $L^{\dagger} = (L \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} / n)^{-1} + \mathbf{1}_n \mathbf{1}_n^{\mathsf{T}} / n.$
- Since L represents the *local* properties of G (e.g., connectivities, etc.), L[†] represents the *global* properties of G ⇒ What is the relationship between L[†] and the integral operator commuting with L in Lecture 2?

Outline



2 The (Shortest) Path Distance



• Is quite similar to the resistance distance.

- Is intimately related to random walks on G.
- The commute time between v_i and v_j is the expected time it takes the random walk to travel from v_i to v_j and back.
- The commute time $c(v_i, v_j)$ is intimately related to the resistance distance $r(v_i, v_j)$:

 $c(v_i, v_j) = c_{ij} = \operatorname{vol}(V(G)) \cdot r(v_i, v_j) = \operatorname{vol}(V(G)) \cdot r_{ij}.$

- Is quite similar to the resistance distance.
- Is intimately related to *random walks* on *G*.
- The commute time between v_i and v_j is the expected time it takes the random walk to travel from v_i to v_j and back.
- The commute time $c(v_i, v_j)$ is intimately related to the resistance distance $r(v_i, v_j)$:

 $c(v_i, v_j) = c_{ij} = \operatorname{vol}(V(G)) \cdot r(v_i, v_j) = \operatorname{vol}(V(G)) \cdot r_{ij}.$

- Is quite similar to the resistance distance.
- Is intimately related to *random walks* on *G*.
- The commute time between v_i and v_j is the expected time it takes the random walk to travel from v_i to v_j and back.
- The commute time $c(v_i, v_j)$ is intimately related to the resistance distance $r(v_i, v_j)$:

 $c(v_i, v_j) = c_{ij} = \operatorname{vol}(V(G)) \cdot r(v_i, v_j) = \operatorname{vol}(V(G)) \cdot r_{ij}.$

- Is quite similar to the resistance distance.
- Is intimately related to *random walks* on *G*.
- The commute time between v_i and v_j is the expected time it takes the random walk to travel from v_i to v_j and back.
- The commute time $c(v_i, v_j)$ is intimately related to the resistance distance $r(v_i, v_j)$:

$$c(v_i, v_j) = c_{ij} = \operatorname{vol}(V(G)) \cdot r(v_i, v_j) = \operatorname{vol}(V(G)) \cdot r_{ij}.$$

- The *Markov chain* describing the sequence of vertices in *G* (weighted, undirected, simple, and connected) visited by a random walker is called a *random walk*.
- A random variable *s*(*t*) represents the state (i.e., vertex) of the Markov chain/random walker at time *t*.
- The random walk is defined with the following single-step *transition* probability of jumping from the state $v_i = s(t)$ at time t to an adjacent vertex $v_j = s(t+1)$ at time t+1:

$$\Pr(s(t+1) = v_j | s(t) = v_i) = a_{ij} / d_i =: p_{ij}.$$

- The transition probabilities depend only on the current state and not on the past states, i.e., the first-order Markov chain.
- Since G is connected, the Markov chain is *irreducible*, i.e., every state can be reached from any other state.
- Let $\boldsymbol{\pi}(t) = [\pi_1(t), \dots, \pi_n(t)]^\top$ where $\pi_i(t) := \Pr(s(t) = v_i)$, and let $P = (p_{ij}) = D^{-1}A$ be the *transition matrix*.

saito@math.ucdavis.edu (UC Davis)

Distances on Graphs

- The *Markov chain* describing the sequence of vertices in *G* (weighted, undirected, simple, and connected) visited by a random walker is called a *random walk*.
- A random variable *s*(*t*) represents the state (i.e., vertex) of the Markov chain/random walker at time *t*.
- The random walk is defined with the following single-step *transition* probability of jumping from the state v_i = s(t) at time t to an adjacent vertex v_j = s(t + 1) at time t + 1:

$$\Pr(s(t+1) = v_j | s(t) = v_i) = a_{ij} / d_i =: p_{ij}.$$

- The transition probabilities depend only on the current state and not on the past states, i.e., the first-order Markov chain.
- Since G is connected, the Markov chain is *irreducible*, i.e., every state can be reached from any other state.
- Let $\boldsymbol{\pi}(t) = [\pi_1(t), \dots, \pi_n(t)]^\top$ where $\pi_i(t) := \Pr(s(t) = v_i)$, and let $P = (p_{ij}) = D^{-1}A$ be the *transition matrix*.

saito@math.ucdavis.edu (UC Davis)

Distances on Graphs

- The *Markov chain* describing the sequence of vertices in *G* (weighted, undirected, simple, and connected) visited by a random walker is called a *random walk*.
- A random variable *s*(*t*) represents the state (i.e., vertex) of the Markov chain/random walker at time *t*.
- The random walk is defined with the following single-step *transition* probability of jumping from the state $v_i = s(t)$ at time t to an adjacent vertex $v_j = s(t+1)$ at time t+1:

$$\Pr(s(t+1) = v_j | s(t) = v_i) = a_{ij}/d_i =: p_{ij}.$$

- The transition probabilities depend only on the current state and not on the past states, i.e., the first-order Markov chain.
- Since G is connected, the Markov chain is *irreducible*, i.e., every state can be reached from any other state.
- Let $\boldsymbol{\pi}(t) = [\pi_1(t), \dots, \pi_n(t)]^\top$ where $\pi_i(t) := \Pr(s(t) = v_i)$, and let $P = (p_{ij}) = D^{-1}A$ be the *transition matrix*.

- The *Markov chain* describing the sequence of vertices in *G* (weighted, undirected, simple, and connected) visited by a random walker is called a *random walk*.
- A random variable *s*(*t*) represents the state (i.e., vertex) of the Markov chain/random walker at time *t*.
- The random walk is defined with the following single-step *transition* probability of jumping from the state $v_i = s(t)$ at time t to an adjacent vertex $v_j = s(t+1)$ at time t+1:

$$\Pr(s(t+1) = v_j | s(t) = v_i) = a_{ij}/d_i =: p_{ij}.$$

- The transition probabilities depend only on the current state and not on the past states, i.e., the first-order Markov chain.
- Since G is connected, the Markov chain is *irreducible*, i.e., every state can be reached from any other state.
- Let $\boldsymbol{\pi}(t) = [\pi_1(t), \dots, \pi_n(t)]^\top$ where $\pi_i(t) := \Pr(s(t) = v_i)$, and let $P = (p_{ij}) = D^{-1}A$ be the *transition matrix*.

saito@math.ucdavis.edu (UC Davis)

Distances on Graphs

- The *Markov chain* describing the sequence of vertices in *G* (weighted, undirected, simple, and connected) visited by a random walker is called a *random walk*.
- A random variable *s*(*t*) represents the state (i.e., vertex) of the Markov chain/random walker at time *t*.
- The random walk is defined with the following single-step *transition* probability of jumping from the state $v_i = s(t)$ at time t to an adjacent vertex $v_j = s(t+1)$ at time t+1:

$$\Pr(s(t+1) = v_j | s(t) = v_i) = a_{ij}/d_i =: p_{ij}.$$

- The transition probabilities depend only on the current state and not on the past states, i.e., the first-order Markov chain.
- Since G is connected, the Markov chain is *irreducible*, i.e., every state can be reached from any other state.
- Let $\boldsymbol{\pi}(t) = [\pi_1(t), \dots, \pi_n(t)]^{\mathsf{T}}$ where $\pi_i(t) := \Pr(s(t) = v_i)$, and let $P = (p_{ij}) = D^{-1}A$ be the *transition matrix*.

saito@math.ucdavis.edu (UC Davis)

Distances on Graphs

- The *Markov chain* describing the sequence of vertices in *G* (weighted, undirected, simple, and connected) visited by a random walker is called a *random walk*.
- A random variable *s*(*t*) represents the state (i.e., vertex) of the Markov chain/random walker at time *t*.
- The random walk is defined with the following single-step *transition* probability of jumping from the state $v_i = s(t)$ at time t to an adjacent vertex $v_j = s(t+1)$ at time t+1:

$$\Pr(s(t+1) = v_j | s(t) = v_i) = a_{ij}/d_i =: p_{ij}.$$

- The transition probabilities depend only on the current state and not on the past states, i.e., the first-order Markov chain.
- Since *G* is connected, the Markov chain is *irreducible*, i.e., every state can be reached from any other state.
- Let $\boldsymbol{\pi}(t) = [\pi_1(t), \dots, \pi_n(t)]^{\mathsf{T}}$ where $\pi_i(t) := \Pr(s(t) = v_i)$, and let $P = (p_{ij}) = D^{-1}A$ be the *transition matrix*.

• Then, the evolution of the Markov chain is characterized by

 $\boldsymbol{\pi}(t+1) = P^{\mathsf{T}}\boldsymbol{\pi}(t) \Leftrightarrow \boldsymbol{\pi}^{\mathsf{T}}(t+1) = \boldsymbol{\pi}^{\mathsf{T}}(t)P.$

• Let $\pi^0 = \pi(0)$ be the initial distribution.

• The stationary distribution π^{∞} satisfies $\pi^{\infty} = P^{\mathsf{T}} \pi^{\infty}$, i.e., the eigenvector of P^{T} (a.k.a. the *left* eigenvector of P) corresponding to the eigenvalue 1.

• Can show
$$\boldsymbol{\pi}^{\infty} = [d_1, \dots, d_n]^{\mathsf{T}} / \operatorname{vol}(V)$$
.

<u>Proof:</u> Since L = D - A = D(I - P), $P^{\mathsf{T}} = I - LD^{-1}$. Now, we have $P^{\mathsf{T}}D\mathbf{1}_n = D\mathbf{1}_n - L\mathbf{1}_n = D\mathbf{1}_n$. Hence, $D\mathbf{1}_n = [d_1, \dots, d_n]^{\mathsf{T}}$ is the eigenvector of P^{T} corresponding to the eigenvalue 1 modulo normalization constants. To make it as a probability distribution over V, we need to normalize it by $\operatorname{vol}(V) = \sum_i d_i$, i.e., $\pi^{\infty} = D\mathbf{1}_n / \operatorname{vol}(V)$.

• Then, the evolution of the Markov chain is characterized by

$$\boldsymbol{\pi}(t+1) = P^{\mathsf{T}}\boldsymbol{\pi}(t) \Leftrightarrow \boldsymbol{\pi}^{\mathsf{T}}(t+1) = \boldsymbol{\pi}^{\mathsf{T}}(t)P.$$

- Let $\pi^0 = \pi(0)$ be the initial distribution.
- The stationary distribution π^{∞} satisfies $\pi^{\infty} = P^{\mathsf{T}} \pi^{\infty}$, i.e., the eigenvector of P^{T} (a.k.a. the *left* eigenvector of P) corresponding to the eigenvalue 1.

• Can show
$$\boldsymbol{\pi}^{\infty} = [d_1, \dots, d_n]^{\mathsf{T}} / \operatorname{vol}(V)$$
.

<u>Proof:</u> Since L = D - A = D(I - P), $P^{\mathsf{T}} = I - LD^{-1}$. Now, we have $P^{\mathsf{T}}D\mathbf{1}_n = D\mathbf{1}_n - L\mathbf{1}_n = D\mathbf{1}_n$. Hence, $D\mathbf{1}_n = [d_1, \dots, d_n]^{\mathsf{T}}$ is the eigenvector of P^{T} corresponding to the eigenvalue 1 modulo normalization constants. To make it as a probability distribution over V, we need to normalize it by $\operatorname{vol}(V) = \sum_i d_i$, i.e., $\pi^{\infty} = D\mathbf{1}_n/\operatorname{vol}(V)$.

• Then, the evolution of the Markov chain is characterized by

$$\boldsymbol{\pi}(t+1) = P^{\mathsf{T}}\boldsymbol{\pi}(t) \Leftrightarrow \boldsymbol{\pi}^{\mathsf{T}}(t+1) = \boldsymbol{\pi}^{\mathsf{T}}(t)P.$$

- Let $\pi^0 = \pi(0)$ be the initial distribution.
- The stationary distribution π^{∞} satisfies $\pi^{\infty} = P^{\mathsf{T}}\pi^{\infty}$, i.e., the eigenvector of P^{T} (a.k.a. the *left* eigenvector of P) corresponding to the eigenvalue 1.

• Can show
$$\boldsymbol{\pi}^{\infty} = [d_1, \dots, d_n]^{\mathsf{T}} / \operatorname{vol}(V)$$
.

<u>Proof:</u> Since L = D - A = D(I - P), $P^{\top} = I - LD^{-1}$. Now, we have $P^{\top}D\mathbf{1}_n = D\mathbf{1}_n - L\mathbf{1}_n = D\mathbf{1}_n$. Hence, $D\mathbf{1}_n = [d_1, \dots, d_n]^{\top}$ is the eigenvector of P^{\top} corresponding to the eigenvalue 1 modulo normalization constants. To make it as a probability distribution over V, we need to normalize it by $V_n^{(1)}(D) = \sum_{n=1}^{\infty} d_{n-1} = \sum_{$

• Then, the evolution of the Markov chain is characterized by

$$\boldsymbol{\pi}(t+1) = P^{\mathsf{T}}\boldsymbol{\pi}(t) \Leftrightarrow \boldsymbol{\pi}^{\mathsf{T}}(t+1) = \boldsymbol{\pi}^{\mathsf{T}}(t)P.$$

- Let $\pi^0 = \pi(0)$ be the initial distribution.
- The stationary distribution π[∞] satisfies π[∞] = P^Tπ[∞], i.e., the eigenvector of P^T (a.k.a. the *left* eigenvector of P) corresponding to the eigenvalue 1.

• Can show
$$\boldsymbol{\pi}^{\infty} = [d_1, \dots, d_n]^{\mathsf{T}} / \operatorname{vol}(V)$$
.

<u>Proof:</u> Since L = D - A = D(I - P), $P^{\top} = I - LD^{-1}$. Now, we have $P^{\top}D\mathbf{1}_n = D\mathbf{1}_n - L\mathbf{1}_n = D\mathbf{1}_n$. Hence, $D\mathbf{1}_n = [d_1, \dots, d_n]^{\top}$ is the eigenvector of P^{\top} corresponding to the eigenvalue 1 modulo normalization constants. To make it as a probability distribution over V, we need to normalize it by $\operatorname{vol}(V) = \sum_i d_i$, i.e., $\pi^{\infty} = D\mathbf{1}_n / \operatorname{vol}(V)$.

• Then, the evolution of the Markov chain is characterized by

$$\boldsymbol{\pi}(t+1) = P^{\mathsf{T}}\boldsymbol{\pi}(t) \Leftrightarrow \boldsymbol{\pi}^{\mathsf{T}}(t+1) = \boldsymbol{\pi}^{\mathsf{T}}(t)P.$$

- Let $\pi^0 = \pi(0)$ be the initial distribution.
- The stationary distribution π^{∞} satisfies $\pi^{\infty} = P^{\mathsf{T}}\pi^{\infty}$, i.e., the eigenvector of P^{T} (a.k.a. the *left* eigenvector of P) corresponding to the eigenvalue 1.

• Can show
$$\boldsymbol{\pi}^{\infty} = [d_1, \dots, d_n]^{\mathsf{T}} / \operatorname{vol}(V)$$
.

<u>Proof:</u> Since L = D - A = D(I - P), $P^{\mathsf{T}} = I - LD^{-1}$. Now, we have $P^{\mathsf{T}}D\mathbf{1}_n = D\mathbf{1}_n - L\mathbf{1}_n = D\mathbf{1}_n$. Hence, $D\mathbf{1}_n = [d_1, \dots, d_n]^{\mathsf{T}}$ is the eigenvector of P^{T} corresponding to the eigenvalue 1 modulo normalization constants. To make it as a probability distribution over V, we need to normalize it by $\operatorname{vol}(V) = \sum_i d_i$, i.e., $\pi^{\infty} = D\mathbf{1}_n / \operatorname{vol}(V)$.

There is a formal equivalence between Ncut and transition probabilities of the random walk:

Proposition (Meila and Shi (2001))

Let G be connected and non bipartite. Assume that we run the random walk s(t) starting with s(0) in the stationary distribution π^{∞} . For disjoint subsets $X, Y \subset V$, denote $\Pr(Y | X) := \Pr(s(1) \in Y | s(0) \in X)$. Then

 $Ncut(X, X^{c}) = Pr(X^{c} | X) + Pr(X | X^{c}).$

Proof: First of all, observe that

$$\Pr(s(0) \in X, s(1) \in Y) = \sum_{x \in X, y \in Y} \Pr(s(0) = x, s(1) = y) = \sum_{x \in X, y \in Y} \pi_x^{\infty} p_{xy}$$
$$= \sum_{x \in X, y \in Y} \frac{d_x}{\operatorname{vol}(V)} \cdot \frac{a_{xy}}{d_x} = \frac{1}{\operatorname{vol}(V)} \sum_{x \in X, y \in Y} a_{xy}.$$

Using this, we obtain

$$\Pr(s(1) \in Y \mid s(0) \in X) = \frac{\Pr(s(0) \in X, s(1) \in Y)}{\Pr(s(0) \in X)}$$
$$= \frac{1}{\operatorname{vol}(V)} \left(\sum_{x \in X, y \in Y} a_{xy}\right) \cdot \left(\frac{\operatorname{vol}(X)}{\operatorname{vol}(V)}\right)^{-1}$$
$$= \frac{\sum_{x \in X, y \in Y} a_{xy}}{\operatorname{vol}(X)}.$$

Now, it is clear that the proposition holds.

- The average first-passage time $m(v_k | v_i) = m(k | i)$ is defined as the average number of steps that a random walker, starting in state $v_i \neq v_k$, will take to enter state v_k for the first time. More precisely, we define the minimum time until hitting state v_k , when staring from state v_i , as $T_{ik} := \min(t \ge 0 | s(t) = v_k; s(0) = v_i)$ for one realization of the stochastic process.
- The random walker may pass through v_k repeatedly; the minimum time corresponds to the first passage.
- The average first-passage time is the expected first-passage time: $m(k|i) := E[T_{ik}|s(0) = v_i].$
- Similarly, the average first-passage cost $o(v_k | v_i) = o(k | i)$ is the average cost incurred by the random walker starting from state v_i to reach state v_k for the first time. Let $\gamma(j|i)$ be the cost of transition from state v_i to v_j . For example, $\gamma(j|i) = 1/a_{ij}$ (if $i \sim j$) is a possibility.

saito@math.ucdavis.edu (UC Davis)

- The average first-passage time $m(v_k | v_i) = m(k | i)$ is defined as the average number of steps that a random walker, starting in state $v_i \neq v_k$, will take to enter state v_k for the first time. More precisely, we define the minimum time until hitting state v_k , when staring from state v_i , as $T_{ik} := \min(t \ge 0 | s(t) = v_k; s(0) = v_i)$ for one realization of the stochastic process.
- The random walker may pass through v_k repeatedly; the minimum time corresponds to the first passage.
- The average first-passage time is the expected first-passage time: m(k|i) := E[T_{ik}|s(0) = v_i].
- Similarly, the average first-passage cost $o(v_k | v_i) = o(k | i)$ is the average cost incurred by the random walker starting from state v_i to reach state v_k for the first time. Let $\gamma(j | i)$ be the cost of transition from state v_i to v_j . For example, $\gamma(j | i) = 1/a_{ij}$ (if $i \sim j$) is a possibility.

- The average first-passage time $m(v_k | v_i) = m(k | i)$ is defined as the average number of steps that a random walker, starting in state $v_i \neq v_k$, will take to enter state v_k for the first time. More precisely, we define the minimum time until hitting state v_k , when staring from state v_i , as $T_{ik} := \min(t \ge 0 | s(t) = v_k; s(0) = v_i)$ for one realization of the stochastic process.
- The random walker may pass through v_k repeatedly; the minimum time corresponds to the first passage.
- The average first-passage time is the expected first-passage time: m(k|i) := E[T_{ik}|s(0) = v_i].
- Similarly, the average first-passage cost $o(v_k | v_i) = o(k | i)$ is the average cost incurred by the random walker starting from state v_i to reach state v_k for the first time. Let $\gamma(j|i)$ be the cost of transition from state v_i to v_j . For example, $\gamma(j|i) = 1/a_{ij}$ (if $i \sim j$) is a possibility.

saito@math.ucdavis.edu (UC Davis)

- The average first-passage time $m(v_k | v_i) = m(k | i)$ is defined as the average number of steps that a random walker, starting in state $v_i \neq v_k$, will take to enter state v_k for the first time. More precisely, we define the minimum time until hitting state v_k , when staring from state v_i , as $T_{ik} := \min(t \ge 0 | s(t) = v_k; s(0) = v_i)$ for one realization of the stochastic process.
- The random walker may pass through v_k repeatedly; the minimum time corresponds to the first passage.
- The average first-passage time is the expected first-passage time: $m(k | i) := E[T_{ik} | s(0) = v_i].$
- Similarly, the average first-passage cost $o(v_k | v_i) = o(k | i)$ is the average cost incurred by the random walker starting from state v_i to reach state v_k for the first time. Let $\gamma(j | i)$ be the cost of transition from state v_i to v_j . For example, $\gamma(j | i) = 1/a_{ij}$ (if $i \sim j$) is a possibility.

• The recurrence relations computing m(k|i) and o(k|i) can easily be obtained by first-step analysis:

$$m(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ 1 + \sum_{j=1}^{n} p_{ij} m(k \mid j) & \text{otherwise.} \end{cases}$$
$$o(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ \sum_{j=1}^{n} p_{ij} \left(\gamma(j \mid i) + o(k \mid j) \right) & \text{otherwise.} \end{cases}$$

- A closely related quantity, the *average commute time* $c(v_i, v_j) = c(i, j) = c_{ij}$ is defined as the average number of steps that a random walker, starting in state v_i , will take to enter state v_j , $i \neq j$ for the first time and *go back to* v_i .
- That is, c(i, j) = m(j | i) + m(i | j).
- Note that c(i, j) = c(j, i) but $m(j | i) \neq m(i | j)$ in general.
- *c*(*i*, *j*) is a *metric* on *G*:

 $c(i, j) \ge 0$, and the equality holds iff $v_i = v_j$;

• The recurrence relations computing m(k|i) and o(k|i) can easily be obtained by first-step analysis:

$$m(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ 1 + \sum_{j=1}^{n} p_{ij} m(k \mid j) & \text{otherwise.} \end{cases}$$
$$o(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ \sum_{j=1}^{n} p_{ij} \left(\gamma(j \mid i) + o(k \mid j) \right) & \text{otherwise.} \end{cases}$$

- A closely related quantity, the average commute time c(v_i, v_j) = c(i, j) = c_{ij} is defined as the average number of steps that a random walker, starting in state v_i, will take to enter state v_j, i ≠ j for the first time and go back to v_i.
- That is, c(i, j) = m(j | i) + m(i | j).
- Note that c(i, j) = c(j, i) but $m(j | i) \neq m(i | j)$ in general.
- *c*(*i*, *j*) is a *metric* on *G*:

 $c(i, j) \ge 0$, and the equality holds iff $v_i = v_j$;

• The recurrence relations computing m(k|i) and o(k|i) can easily be obtained by first-step analysis:

$$m(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ 1 + \sum_{j=1}^{n} p_{ij} m(k \mid j) & \text{otherwise.} \end{cases}$$
$$o(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ \sum_{j=1}^{n} p_{ij} \left(\gamma(j \mid i) + o(k \mid j) \right) & \text{otherwise.} \end{cases}$$

- A closely related quantity, the *average commute time* $c(v_i, v_j) = c(i, j) = c_{ij}$ is defined as the average number of steps that a random walker, starting in state v_i , will take to enter state v_j , $i \neq j$ for the first time and *go back to* v_i .
- That is, c(i, j) = m(j | i) + m(i | j).
- Note that c(i, j) = c(j, i) but $m(j | i) \neq m(i | j)$ in general.
- c(i, j) is a *metric* on G:

 $c(i, j) \ge 0$, and the equality holds iff $v_i = v_j$;

• The recurrence relations computing m(k|i) and o(k|i) can easily be obtained by first-step analysis:

$$m(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ 1 + \sum_{j=1}^{n} p_{ij} m(k \mid j) & \text{otherwise.} \end{cases}$$
$$o(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ \sum_{j=1}^{n} p_{ij} \left(\gamma(j \mid i) + o(k \mid j) \right) & \text{otherwise.} \end{cases}$$

- A closely related quantity, the *average commute time* $c(v_i, v_j) = c(i, j) = c_{ij}$ is defined as the average number of steps that a random walker, starting in state v_i , will take to enter state v_j , $i \neq j$ for the first time and *go back to* v_i .
- That is, c(i, j) = m(j | i) + m(i | j).
- Note that c(i, j) = c(j, i) but $m(j | i) \neq m(i | j)$ in general.
- c(i, j) is a *metric* on *G*

 $c(i, j) \ge 0$, and the equality holds iff $v_i = v_i$;

• The recurrence relations computing m(k|i) and o(k|i) can easily be obtained by first-step analysis:

$$m(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ 1 + \sum_{j=1}^{n} p_{ij} m(k \mid j) & \text{otherwise.} \end{cases}$$
$$o(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ \sum_{j=1}^{n} p_{ij} \left(\gamma(j \mid i) + o(k \mid j) \right) & \text{otherwise.} \end{cases}$$

- A closely related quantity, the *average commute time* $c(v_i, v_j) = c(i, j) = c_{ij}$ is defined as the average number of steps that a random walker, starting in state v_i , will take to enter state v_j , $i \neq j$ for the first time and *go back to* v_i .
- That is, c(i, j) = m(j | i) + m(i | j).
- Note that c(i, j) = c(j, i) but $m(j | i) \neq m(i | j)$ in general.
- c(i, j) is a *metric* on G:
 - **D** $c(i, j) \ge 0$, and the equality holds iff $v_i = v_j$;
 - 2 c(i, j) = c(j, i);
 - $\ \ \, {\it 3} \ \ \, c(i,j) \leq c(i,k) + c(k,j) \ .$

saito@math.ucdavis.edu (UC Davis)

• The recurrence relations computing m(k|i) and o(k|i) can easily be obtained by first-step analysis:

$$m(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ 1 + \sum_{j=1}^{n} p_{ij} m(k \mid j) & \text{otherwise.} \end{cases}$$
$$o(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ \sum_{j=1}^{n} p_{ij} \left(\gamma(j \mid i) + o(k \mid j) \right) & \text{otherwise.} \end{cases}$$

- A closely related quantity, the *average commute time* $c(v_i, v_j) = c(i, j) = c_{ij}$ is defined as the average number of steps that a random walker, starting in state v_i , will take to enter state v_j , $i \neq j$ for the first time and *go back to* v_i .
- That is, c(i, j) = m(j | i) + m(i | j).
- Note that c(i, j) = c(j, i) but $m(j | i) \neq m(i | j)$ in general.
- c(i, j) is a *metric* on G:
 - **1** $c(i, j) \ge 0$, and the equality holds iff $v_i = v_j$;
 - 2) c(i, j) = c(j, i);
 - 3 $c(i, j) \le c(i, k) + c(k, j)$

• The recurrence relations computing m(k|i) and o(k|i) can easily be obtained by first-step analysis:

$$m(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ 1 + \sum_{j=1}^{n} p_{ij} m(k \mid j) & \text{otherwise.} \end{cases}$$
$$o(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ \sum_{j=1}^{n} p_{ij} \left(\gamma(j \mid i) + o(k \mid j) \right) & \text{otherwise.} \end{cases}$$

- A closely related quantity, the *average commute time* $c(v_i, v_j) = c(i, j) = c_{ij}$ is defined as the average number of steps that a random walker, starting in state v_i , will take to enter state v_j , $i \neq j$ for the first time and *go back to* v_i .
- That is, c(i, j) = m(j | i) + m(i | j).
- Note that c(i, j) = c(j, i) but $m(j | i) \neq m(i | j)$ in general.
- *c*(*i*, *j*) is a *metric* on *G*:
 - $c(i, j) \ge 0$, and the equality holds iff $v_i = v_j$;

2
$$c(i, j) = c(j, i)$$
;

• The recurrence relations computing m(k|i) and o(k|i) can easily be obtained by first-step analysis:

$$m(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ 1 + \sum_{j=1}^{n} p_{ij} m(k \mid j) & \text{otherwise.} \end{cases}$$
$$o(k \mid i) = \begin{cases} 0 & \text{if } i = k; \\ \sum_{j=1}^{n} p_{ij} \left(\gamma(j \mid i) + o(k \mid j) \right) & \text{otherwise.} \end{cases}$$

- A closely related quantity, the *average commute time* $c(v_i, v_j) = c(i, j) = c_{ij}$ is defined as the average number of steps that a random walker, starting in state v_i , will take to enter state v_j , $i \neq j$ for the first time and *go back to* v_i .
- That is, c(i, j) = m(j | i) + m(i | j).
- Note that c(i, j) = c(j, i) but $m(j | i) \neq m(i | j)$ in general.
- c(i, j) is a *metric* on G:

1
$$c(i, j) \ge 0$$
, and the equality holds iff $v_i = v_j$
2 $c(i, j) = c(j, i)$;
3 $c(i, j) \le c(i, k) + c(k, j)$.

saito@math.ucdavis.edu (UC Davis)

• Hence, c(i, j) is called the *commute-time distance* between v_i and v_j .

• That amazing property of the resistance distance carries over to the commute-time distance:

$$\begin{aligned} c_{ij} &= \operatorname{vol}(V) \cdot r_{ij} \\ &= \operatorname{vol}(V) \left\langle \boldsymbol{e}_i - \boldsymbol{e}_j, L^{\dagger}(\boldsymbol{e}_i - \boldsymbol{e}_j) \right\rangle \\ &= \operatorname{vol}(V) \left((L^{\dagger})_{ii} + (L^{\dagger})_{jj} - 2(L^{\dagger})_{ij} \right). \end{aligned}$$

• Hence, both $\sqrt{r_{ij}}$ and $\sqrt{c_{ij}}$ are nothing but a *Mahalanobis distance* with a weighting matrix L^{\dagger} and $\operatorname{vol}(V)L^{\dagger}$, respectively.

- Hence, c(i, j) is called the *commute-time distance* between v_i and v_j .
- That amazing property of the resistance distance carries over to the commute-time distance:

$$c_{ij} = \operatorname{vol}(V) \cdot r_{ij}$$

= $\operatorname{vol}(V) \left\langle \boldsymbol{e}_i - \boldsymbol{e}_j, L^{\dagger}(\boldsymbol{e}_i - \boldsymbol{e}_j) \right\rangle$
= $\operatorname{vol}(V) \left((L^{\dagger})_{ii} + (L^{\dagger})_{jj} - 2(L^{\dagger})_{ij} \right).$

• Hence, both $\sqrt{r_{ij}}$ and $\sqrt{c_{ij}}$ are nothing but a *Mahalanobis distance* with a weighting matrix L^{\dagger} and $\operatorname{vol}(V)L^{\dagger}$, respectively.

- Hence, c(i, j) is called the *commute-time distance* between v_i and v_j .
- That amazing property of the resistance distance carries over to the commute-time distance:

$$c_{ij} = \operatorname{vol}(V) \cdot r_{ij}$$

= $\operatorname{vol}(V) \left\langle \boldsymbol{e}_i - \boldsymbol{e}_j, L^{\dagger}(\boldsymbol{e}_i - \boldsymbol{e}_j) \right\rangle$
= $\operatorname{vol}(V) \left((L^{\dagger})_{ii} + (L^{\dagger})_{jj} - 2(L^{\dagger})_{ij} \right).$

• Hence, both $\sqrt{r_{ij}}$ and $\sqrt{c_{ij}}$ are nothing but a *Mahalanobis distance* with a weighting matrix L^{\dagger} and $\operatorname{vol}(V)L^{\dagger}$, respectively.

- The above formula also allows us to interpret $\sqrt{r_{ij}}$ and $\sqrt{c_{ij}}$ as Euclidean distances on V(G), i.e., to *embed* $v_i \in V(G)$ on a point $z_i \in \mathbb{R}^n$.
- Let $L = \Phi \Lambda \Phi^{\top}$ be the eigendecomposition of L. Then, $L^{\dagger} = \Phi \Lambda^{\dagger} \Phi^{\top}$ where $\Lambda^{\dagger} = \text{diag}(\lambda_0^{\dagger}, \dots, \lambda_{n-1}^{\dagger})$ is defined as

$$\lambda_i^{\dagger} := \begin{cases} 1/\lambda_i & \text{if } \lambda_i \neq 0; \\ 0 & \text{otherwise.} \end{cases}$$

• Hence, $\boldsymbol{z}_{i}^{\mathsf{T}} = \left(\Phi\sqrt{\Lambda^{\dagger}}\right)_{i,1:n}$ for the resistance distance and $\boldsymbol{z}_{i}^{\mathsf{T}} = \left(\Phi\sqrt{\operatorname{vol}(V)\Lambda^{\dagger}}\right)_{i,1:n}$ for the commute-time distance.

- The above formula also allows us to interpret $\sqrt{r_{ij}}$ and $\sqrt{c_{ij}}$ as Euclidean distances on V(G), i.e., to *embed* $v_i \in V(G)$ on a point $z_i \in \mathbb{R}^n$.
- Let $L = \Phi \Lambda \Phi^{\mathsf{T}}$ be the eigendecomposition of L. Then, $L^{\dagger} = \Phi \Lambda^{\dagger} \Phi^{\mathsf{T}}$ where $\Lambda^{\dagger} = \operatorname{diag} \left(\lambda_{0}^{\dagger}, \dots, \lambda_{n-1}^{\dagger} \right)$ is defined as

$$\lambda_i^{\dagger} := \begin{cases} 1/\lambda_i & \text{if } \lambda_i \neq 0; \\ 0 & \text{otherwise.} \end{cases}$$

• Hence, $\boldsymbol{z}_{i}^{\mathsf{T}} = \left(\Phi\sqrt{\Lambda^{\dagger}}\right)_{i,1:n}$ for the resistance distance and $\boldsymbol{z}_{i}^{\mathsf{T}} = \left(\Phi\sqrt{\operatorname{vol}(V)\Lambda^{\dagger}}\right)_{i,1:n}$ for the commute-time distance.

- The above formula also allows us to interpret $\sqrt{r_{ij}}$ and $\sqrt{c_{ij}}$ as Euclidean distances on V(G), i.e., to *embed* $v_i \in V(G)$ on a point $z_i \in \mathbb{R}^n$.
- Let $L = \Phi \Lambda \Phi^{\mathsf{T}}$ be the eigendecomposition of L. Then, $L^{\dagger} = \Phi \Lambda^{\dagger} \Phi^{\mathsf{T}}$ where $\Lambda^{\dagger} = \operatorname{diag}(\lambda_0^{\dagger}, \dots, \lambda_{n-1}^{\dagger})$ is defined as

$$\lambda_i^{\dagger} := egin{cases} 1/\lambda_i & ext{if } \lambda_i
eq 0; \ 0 & ext{otherwise.} \end{cases}$$

• Hence,
$$\boldsymbol{z}_{i}^{\mathsf{T}} = \left(\Phi\sqrt{\Lambda^{\dagger}}\right)_{i,1:n}$$
 for the resistance distance and $\boldsymbol{z}_{i}^{\mathsf{T}} = \left(\Phi\sqrt{\operatorname{vol}(V)\Lambda^{\dagger}}\right)_{i,1:n}$ for the commute-time distance.

- Compare these embeddings with the one used in the spectral clustering (with *L*) in Lecture 7, i.e., $y_i^{\mathsf{T}} = \Phi_{i,1:k}$, $k \le n$.
- {z_i} and {y_i} could be considerably different. For example, in the optimal case where G consists of k disconnected components, the first k eigenvalues of L are zeros and the corresponding columns of Φ are the indicator vectors of these k components. However, the first k columns of the matrix Φ√Λ[†] are zero vectors.
- On the other hand, if G is connected, z_i 's got more influenced by the eigenvectors corresponding to the small eigenvalues because $\lambda_i^{\dagger} = 1/\lambda_i$ if $\lambda_i \neq 0$.

- Compare these embeddings with the one used in the spectral clustering (with *L*) in Lecture 7, i.e., $y_i^{\mathsf{T}} = \Phi_{i,1:k}$, $k \le n$.
- {z_i} and {y_i} could be considerably different. For example, in the optimal case where G consists of k disconnected components, the first k eigenvalues of L are zeros and the corresponding columns of Φ are the indicator vectors of these k components. However, the first k columns of the matrix Φ√Λ[†] are zero vectors.
- On the other hand, if G is connected, z_i 's got more influenced by the eigenvectors corresponding to the small eigenvalues because $\lambda_i^{\dagger} = 1/\lambda_i$ if $\lambda_i \neq 0$.

- Compare these embeddings with the one used in the spectral clustering (with *L*) in Lecture 7, i.e., $y_i^{\mathsf{T}} = \Phi_{i,1:k}$, $k \le n$.
- {z_i} and {y_i} could be considerably different. For example, in the optimal case where G consists of k disconnected components, the first k eigenvalues of L are zeros and the corresponding columns of Φ are the indicator vectors of these k components. However, the first k columns of the matrix Φ√Λ[†] are zero vectors.
- On the other hand, if G is connected, z_i 's got more influenced by the eigenvectors corresponding to the small eigenvalues because $\lambda_i^{\dagger} = 1/\lambda_i$ if $\lambda_i \neq 0$.