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Need of a Variety of Graph Distances

Need of a Variety of Graph Distances

Suppose a simple, weighted, and connected graph G(V ,E) is already
built from the dataset X = {x1, . . . , xn} ⊂Rd .
Assume the data vector x i is associated with the vertex vi .
Let w(e) = we ≥ 0 be an edge weight of the edge e ∈ E(G), which we
also write ai j , i.e., (i , j )th entry of the weighted adjacent matrix A if
e = (vi , v j ).
In many applications, we want to know the similarity or dissimilarity
between vertices vi and v j . Note that vi and v j may not be adjacent
(i.e., they may not be endpoints of a single edge).
Such applications include: search engines; data mining; social network
analysis; pattern recognition; image processing, . . .
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The (Shortest) Path Distance

The (Shortest) Path Distance

Most common metric on a graph
Let u, v ∈V (G) be any two vertices of G. Then, the (shortest) path
distance (a.k.a. the geodesic distance) between u and v is the sum of
the weights along the path connecting u and v such that it becomes
minimum, i.e.,

dpath(u, v) := min
P∈P (u,v)

∑
e∈P

w(e)

If G is directed, then dpath(u, v) 6= dpath(v,u) in general.
Efficient algorithms to compute dpath(·, ·) exist, e.g., the A∗ algorithm
of Hart-Nilsson-Raphael (1968), etc. Yet, in general, its complexity is
at least polynomial time w.r.t. n. =⇒ See the excellent Wikipedia
page!
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Resistance Distance

Resistance Distance

The shortest path distance may not be always relevant. Consider the
following two subgraphs where each we ≡ 1:

vi vj vi vj

In both cases in the above, dpath(vi , v j ) = 2. But it is clear that there
are more paths connecting vi and v j in the subgraph in the left than
in the right.
Hence, it is reasonable that the “distance” between vi and v j should
be smaller in the left than in the right.
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Resistance Distance

Resistance Distance . . .

Now, let’s interpret the edge weights as resistances in an electrical network.

For any vi , v j , i 6= j , suppose that a battery is connected across them so
that one unit of a current flows in at vi and out in v j .

Then, the voltage (potential) difference is the effective resistance between vi

and v j by Ohm’s law (V = I ·R), which is called the resistance distance
between vi and v j and written as r (vi , v j ) = ri j .

Hence, 1/ri j is the conductance between vi and v j , which is a measure of
connectivity (or similarity) between them, which should be the edge weight
ai j .

Hence, given resistance distances {ri j }, one can construct the corresponding
weighted adjacency matrix A by

ai j =
{

1/ri j if vi ∼ v j and ri j 	 0;
0 otherwise.

But, how can we compute {ri j } if A is given? Note that ri j should be
defined even if vi � v j .
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Resistance Distance

Resistance Distance . . .
The amazing fact is the following relationship between the resistance
distance and the (Moore-Penrose) pseudoinverse L†(G) of the unnormalized
graph Laplacian L(G)!

ri j = (L†)i i + (L†) j j − (L†)i j − (L†) j i

=
〈

e i −e j ,L†(e i −e j )
〉

= (L†)i i + (L†) j j −2(L†)i j if G is undirected;

Hence, the resistance matrix R(G) = (ri j ) can be computed via L†(G).

If G is sparse, then one can utilize a sparse Cholesky factorization of L(G) to
compute i th column vector `†

i of L† as follows:
1 Compute the projection of e i onto range(L(G)), say y i via

y i = (I −1n 1T
n/n)e i [Note null(L(G)) = span{1n} if G is connected.]

2 Find a solution ̂̀i of L`= y i where the Cholesky factorization of L
should be utilized.

3 Project the result on the row space of L (which is the same as the
column space thanks to LT = L) to compute the i th column vector
`†

i = (I −1n 1T
n/n)̂̀i .
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Resistance Distance

Intermezzo: The (Moore-Penrose) Pseudoinverse

Definition

The pseudoinverse A† ∈Cn×m of a general matrix A ∈Cm×n is defined to be
the unique matrix X ∈Cn×m that satisfies the following Moore-Penrose
conditions: i) AX A = A; ii) X AX = X ; iii) (AX )∗ = AX ; iv) (X A)∗ = X A,
where A∗ is the Hermitian transposition of A.

Using the SVD of A =UΣV ∗ where U ∈Cm×m , V ∈Cn×n are unitary and
Σ= diag(σ1, · · · ,σr ,0, · · · ,0) ∈Rm×n , r = rank(A) ≤ min(m,n), A† can be
expressed as

A† =V Σ†U∗, Σ† := diag(1/σ1, · · · ,1/σr ,0, · · · ,0) ∈Rn×m .

Note that A A† and A† A are the orthogonal projectors onto range(A) and
range(A∗), respectively.
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expressed as

A† =V Σ†U∗, Σ† := diag(1/σ1, · · · ,1/σr ,0, · · · ,0) ∈Rn×m .

Note that A A† and A† A are the orthogonal projectors onto range(A) and
range(A∗), respectively.
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Resistance Distance

Intermezzo: The EP Matrices

Definition

If A ∈Cm×m commutes with its pseudoinverse, i.e., A† A = A A†, then it is
called an EP matrix (EP for Equal Projection).

The properties of an EP matrix:
If (λi 6= 0,φi ) is an eigenpair of A, then (1/λi ,φi ) is an eigenpair of A†.
If (λi = 0,φi ) is an eigenpair of A, then (λi = 0,φi ) is also an eigenpair
of A†.
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Resistance Distance

Properties of the Pseudoinverse L†(G)

(
L†

)T = L†

rank
(
L†

)= n −1.
null(L) = null(L†) = span{1n}.
L† is doubly centered just like L, i.e., its column sum and row sum are
zeros.
L† is positive semidefinite just like L is.
L† = (

L−1n1T
n/n

)−1 +1n1T
n/n.

Since L represents the local properties of G (e.g., connectivities, etc.),
L† represents the global properties of G =⇒ What is the relationship
between L† and the integral operator commuting with L in Lecture 2?
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Commute-Time Distance

Outline

1 Need of a Variety of Graph Distances

2 The (Shortest) Path Distance

3 Resistance Distance

4 Commute-Time Distance
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Commute-Time Distance

Commute-Time Distance

Is quite similar to the resistance distance.
Is intimately related to random walks on G.
The commute time between vi and v j is the expected time it takes
the random walk to travel from vi to v j and back.
The commute time c(vi , v j ) is intimately related to the resistance
distance r (vi , v j ):

c(vi , v j ) = ci j = vol(V (G)) · r (vi , v j ) = vol(V (G)) · ri j .
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Commute-Time Distance

Intermezzo 2: Random Walks on Graphs

The Markov chain describing the sequence of vertices in G (weighted,
undirected, simple, and connected) visited by a random walker is
called a random walk.
A random variable s(t ) represents the state (i.e., vertex) of the Markov
chain/random walker at time t .
The random walk is defined with the following single-step transition
probability of jumping from the state vi = s(t ) at time t to an adjacent
vertex v j = s(t +1) at time t +1:

Pr(s(t +1) = v j | s(t ) = vi ) = ai j /di =: pi j .

The transition probabilities depend only on the current state and not
on the past states, i.e., the first-order Markov chain.
Since G is connected, the Markov chain is irreducible, i.e., every state
can be reached from any other state.
Let π(t ) = [π1(t ), . . . ,πn(t )]T where πi (t ) := Pr(s(t ) = vi ), and let
P = (pi j ) = D−1 A be the transition matrix.
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Commute-Time Distance

Intermezzo 2: Random Walks on Graphs . . .

Then, the evolution of the Markov chain is characterized by

π(t +1) = PTπ(t ) ⇔πT(t +1) =πT(t )P .

Let π0 =π(0) be the initial distribution.
The stationary distribution π∞ satisfies π∞ = PTπ∞, i.e., the
eigenvector of PT (a.k.a. the left eigenvector of P) corresponding to
the eigenvalue 1.
Can show π∞ = [d1, . . . ,dn]T/vol(V ).

Proof: Since L = D − A = D(I −P ), PT = I −LD−1. Now, we have
PTD1n = D1n −L1n = D1n . Hence, D1n = [d1, . . . ,dn]T is the eigenvector of
PT corresponding to the eigenvalue 1 modulo normalization constants. To
make it as a probability distribution over V , we need to normalize it by
vol(V ) =∑

j d j , i.e., π∞ = D1n/vol(V ). ä
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Commute-Time Distance

Intermezzo 2: Random Walks on Graphs . . .

There is a formal equivalence between Ncut and transition probabilities of
the random walk:

Proposition (Meila and Shi (2001))

Let G be connected and non bipartite. Assume that we run the random
walk s(t ) starting with s(0) in the stationary distribution π∞. For disjoint
subsets X ,Y ⊂V , denote Pr(Y |X ) := Pr(s(1) ∈ Y | s(0) ∈ X ). Then

Ncut(X , X c ) = Pr(X c |X )+Pr(X |X c ).
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Commute-Time Distance

Intermezzo 2: Random Walks on Graphs . . .

Proof: First of all, observe that

Pr(s(0) ∈ X , s(1) ∈ Y ) = ∑
x∈X ,y∈Y

Pr(s(0) = x, s(1) = y) = ∑
x∈X ,y∈Y

π∞
x px y

= ∑
x∈X ,y∈Y

dx

vol(V )
· ax y

dx
= 1

vol(V )

∑
x∈X ,y∈Y

ax y .

Using this, we obtain

Pr(s(1) ∈ Y | s(0) ∈ X ) = Pr(s(0) ∈ X , s(1) ∈ Y )

Pr(s(0) ∈ X )

= 1

vol(V )

( ∑
x∈X ,y∈Y

ax y

)
·
(

vol(X )

vol(V )

)−1

=
∑

x∈X ,y∈Y ax y

vol(X )
.

Now, it is clear that the proposition holds. ä
saito@math.ucdavis.edu (UC Davis) Distances on Graphs 10/29/19 19 / 24



Commute-Time Distance

Average First-Passage Time/Cost

The average first-passage time m(vk |vi ) = m(k | i ) is defined as the
average number of steps that a random walker, starting in state
vi 6= vk , will take to enter state vk for the first time. More precisely,
we define the minimum time until hitting state vk , when staring from
state vi , as Ti k := min(t ≥ 0 | s(t ) = vk ; s(0) = vi ) for one realization of
the stochastic process.
The random walker may pass through vk repeatedly; the minimum
time corresponds to the first passage.
The average first-passage time is the expected first-passage time:
m(k | i ) := E [Ti k | s(0) = vi ].
Similarly, the average first-passage cost o(vk |vi ) = o(k | i ) is the
average cost incurred by the random walker starting from state vi to
reach state vk for the first time. Let γ( j | i ) be the cost of transition
from state vi to v j . For example, γ( j | i ) = 1/ai j (if i ∼ j ) is a
possibility.
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Commute-Time Distance

Average First-Passage Time & Average Commute Time
The recurrence relations computing m(k | i ) and o(k | i ) can easily be
obtained by first-step analysis:

m(k | i ) =
{

0 if i = k;
1+∑n

j=1 pi j m(k | j ) otherwise.

o(k | i ) =
{

0 if i = k;∑n
j=1 pi j

(
γ( j | i )+o(k | j )

)
otherwise.

A closely related quantity, the average commute time c(vi , v j ) = c(i , j ) = ci j

is defined as the average number of steps that a random walker, starting in
state vi , will take to enter state v j , i 6= j for the first time and go back to vi .

That is, c(i , j ) = m( j | i )+m(i | j ).

Note that c(i , j ) = c( j , i ) but m( j | i ) 6= m(i | j ) in general.

c(i , j ) is a metric on G:
1 c(i , j ) ≥ 0, and the equality holds iff vi = v j ;
2 c(i , j ) = c( j , i ) ;
3 c(i , j ) ≤ c(i ,k)+ c(k, j ) .
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Commute-Time Distance

Commute-Time Distance & Resistance Distance

Hence, c(i , j ) is called the commute-time distance between vi and v j .
That amazing property of the resistance distance carries over to the
commute-time distance:

ci j = vol(V ) · ri j

= vol(V )
〈

e i −e j ,L†(e i −e j )
〉

= vol(V )
(
(L†)i i + (L†) j j −2(L†)i j

)
.

Hence, both p
ri j and p

ci j are nothing but a Mahalanobis distance
with a weighting matrix L† and vol(V )L†, respectively.
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Commute-Time Distance

Commute-Time Distance & Resistance Distance . . .

The above formula also allows us to interpret pri j and p
ci j as

Euclidean distances on V (G), i.e., to embed vi ∈V (G) on a point
z i ∈Rn .
Let L =ΦΛΦT be the eigendecomposition of L. Then, L† =ΦΛ†ΦT

where Λ† = diag
(
λ†

0, . . . ,λ†
n−1

)
is defined as

λ†
i :=

{
1/λi if λi 6= 0;

0 otherwise.

Hence, zT

i =
(
Φ
p
Λ†

)
i ,1:n

for the resistance distance and

zT

i =
(
Φ

√
vol(V )Λ†

)
i ,1:n

for the commute-time distance.
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Commute-Time Distance

Commute-Time Distance & Resistance Distance . . .

Compare these embeddings with the one used in the spectral
clustering (with L) in Lecture 7, i.e., yT

i =Φi ,1:k , k ≤ n.
{z i } and {y i } could be considerably different. For example, in the
optimal case where G consists of k disconnected components, the first
k eigenvalues of L are zeros and the corresponding columns of Φ are
the indicator vectors of these k components. However, the first k
columns of the matrix Φ

p
Λ† are zero vectors.

On the other hand, if G is connected, z i ’s got more influenced by the
eigenvectors corresponding to the small eigenvalues because λ†

i = 1/λi

if λi 6= 0.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs 10/29/19 24 / 24



Commute-Time Distance

Commute-Time Distance & Resistance Distance . . .

Compare these embeddings with the one used in the spectral
clustering (with L) in Lecture 7, i.e., yT

i =Φi ,1:k , k ≤ n.
{z i } and {y i } could be considerably different. For example, in the
optimal case where G consists of k disconnected components, the first
k eigenvalues of L are zeros and the corresponding columns of Φ are
the indicator vectors of these k components. However, the first k
columns of the matrix Φ

p
Λ† are zero vectors.

On the other hand, if G is connected, z i ’s got more influenced by the
eigenvectors corresponding to the small eigenvalues because λ†

i = 1/λi

if λi 6= 0.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs 10/29/19 24 / 24



Commute-Time Distance

Commute-Time Distance & Resistance Distance . . .

Compare these embeddings with the one used in the spectral
clustering (with L) in Lecture 7, i.e., yT

i =Φi ,1:k , k ≤ n.
{z i } and {y i } could be considerably different. For example, in the
optimal case where G consists of k disconnected components, the first
k eigenvalues of L are zeros and the corresponding columns of Φ are
the indicator vectors of these k components. However, the first k
columns of the matrix Φ

p
Λ† are zero vectors.

On the other hand, if G is connected, z i ’s got more influenced by the
eigenvectors corresponding to the small eigenvalues because λ†

i = 1/λi

if λi 6= 0.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs 10/29/19 24 / 24


	Need of a Variety of Graph Distances
	The (Shortest) Path Distance
	Resistance Distance
	Commute-Time Distance

