
MAT 280: Harmonic Analysis on Graphs & Networks
Lecture 11: Distances on Graphs II: Applications of

Commute-Time Distances

Naoki Saito

Department of Mathematics
University of California, Davis

October 31, 2019

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 1 / 21



Outline

1 Setup of Classification Problems

2 Intermezzo: Classical Multidimensional Scaling

3 Commute-Time Guided Transformation

4 A Face Recognition Algorithm

5 Numerical Experiments and Some Results

6 Sparse Graphs

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 2 / 21



Setup of Classification Problems

Outline

1 Setup of Classification Problems

2 Intermezzo: Classical Multidimensional Scaling

3 Commute-Time Guided Transformation

4 A Face Recognition Algorithm

5 Numerical Experiments and Some Results

6 Sparse Graphs

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 3 / 21



Setup of Classification Problems

Problem Setup

This lecture is mainly based on the paper: Y. Deng, et al.: “Commute
time guided transformation for feature extraction,” Computer Vision &
Image Understanding, vol. 116, pp. 473–483, 2012.
Let X be the training data matrix, X := (x1, . . . , xn) ∈Rd×n .
Let X̃ := X (In −1n1T

n/n), i.e., the centered data matrix (the mean of
the column vectors x is subtracted from each column vector).
Let Ψ :Rd →Rs be a low-dimensional embedding map with s ¿ d . Let
Z = (z1, . . . , zn) ∈Rs×n be the embedded training dataset using the
map Ψ, i.e., Z =Ψ(X ) = (Ψ(x1), . . . ,Ψ(xn)). An initial graph
G =G(V = X ,E) using the training dataset X is built using either k-NN
graph with the Euclidean distances or with the Gaussian similarities, or
the sparse graphs (more about them later).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 4 / 21



Setup of Classification Problems

Problem Setup

This lecture is mainly based on the paper: Y. Deng, et al.: “Commute
time guided transformation for feature extraction,” Computer Vision &
Image Understanding, vol. 116, pp. 473–483, 2012.
Let X be the training data matrix, X := (x1, . . . , xn) ∈Rd×n .
Let X̃ := X (In −1n1T

n/n), i.e., the centered data matrix (the mean of
the column vectors x is subtracted from each column vector).
Let Ψ :Rd →Rs be a low-dimensional embedding map with s ¿ d . Let
Z = (z1, . . . , zn) ∈Rs×n be the embedded training dataset using the
map Ψ, i.e., Z =Ψ(X ) = (Ψ(x1), . . . ,Ψ(xn)). An initial graph
G =G(V = X ,E) using the training dataset X is built using either k-NN
graph with the Euclidean distances or with the Gaussian similarities, or
the sparse graphs (more about them later).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 4 / 21



Setup of Classification Problems

Problem Setup

This lecture is mainly based on the paper: Y. Deng, et al.: “Commute
time guided transformation for feature extraction,” Computer Vision &
Image Understanding, vol. 116, pp. 473–483, 2012.
Let X be the training data matrix, X := (x1, . . . , xn) ∈Rd×n .
Let X̃ := X (In −1n1T

n/n), i.e., the centered data matrix (the mean of
the column vectors x is subtracted from each column vector).
Let Ψ :Rd →Rs be a low-dimensional embedding map with s ¿ d . Let
Z = (z1, . . . , zn) ∈Rs×n be the embedded training dataset using the
map Ψ, i.e., Z =Ψ(X ) = (Ψ(x1), . . . ,Ψ(xn)). An initial graph
G =G(V = X ,E) using the training dataset X is built using either k-NN
graph with the Euclidean distances or with the Gaussian similarities, or
the sparse graphs (more about them later).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 4 / 21



Setup of Classification Problems

Problem Setup

This lecture is mainly based on the paper: Y. Deng, et al.: “Commute
time guided transformation for feature extraction,” Computer Vision &
Image Understanding, vol. 116, pp. 473–483, 2012.
Let X be the training data matrix, X := (x1, . . . , xn) ∈Rd×n .
Let X̃ := X (In −1n1T

n/n), i.e., the centered data matrix (the mean of
the column vectors x is subtracted from each column vector).
Let Ψ :Rd →Rs be a low-dimensional embedding map with s ¿ d . Let
Z = (z1, . . . , zn) ∈Rs×n be the embedded training dataset using the
map Ψ, i.e., Z =Ψ(X ) = (Ψ(x1), . . . ,Ψ(xn)). An initial graph
G =G(V = X ,E) using the training dataset X is built using either k-NN
graph with the Euclidean distances or with the Gaussian similarities, or
the sparse graphs (more about them later).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 4 / 21



Setup of Classification Problems

Aims

The main aims of this article are to answer the following natural
questions using the face image databases:

What embedding Ψ should be used so that the commute-time distance
c(x i , x j ) and the squared Euclidean distance ‖z i − z j ‖2

2 =: δ2
i j are

preserved as much as possible after embedding?
How to conduct out-of-sample extension, i.e., once a graph is built
from a given training dataset X , how can we embed a new test sample
that has not been used to construct the graph? This consideration is
particularly important in classification and regression scenarios!

The simplest idea for such an embedding is:

min
{z 1,...,z n }⊂Rs

∑
i , j

‖√ci j −δi j‖2
2,

which is the so-called classical Multidimensional Scaling (MDS).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 5 / 21



Setup of Classification Problems

Aims

The main aims of this article are to answer the following natural
questions using the face image databases:

What embedding Ψ should be used so that the commute-time distance
c(x i , x j ) and the squared Euclidean distance ‖z i − z j ‖2

2 =: δ2
i j are

preserved as much as possible after embedding?
How to conduct out-of-sample extension, i.e., once a graph is built
from a given training dataset X , how can we embed a new test sample
that has not been used to construct the graph? This consideration is
particularly important in classification and regression scenarios!

The simplest idea for such an embedding is:

min
{z 1,...,z n }⊂Rs

∑
i , j

‖√ci j −δi j‖2
2,

which is the so-called classical Multidimensional Scaling (MDS).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 5 / 21



Setup of Classification Problems

Aims

The main aims of this article are to answer the following natural
questions using the face image databases:

What embedding Ψ should be used so that the commute-time distance
c(x i , x j ) and the squared Euclidean distance ‖z i − z j ‖2

2 =: δ2
i j are

preserved as much as possible after embedding?
How to conduct out-of-sample extension, i.e., once a graph is built
from a given training dataset X , how can we embed a new test sample
that has not been used to construct the graph? This consideration is
particularly important in classification and regression scenarios!

The simplest idea for such an embedding is:

min
{z 1,...,z n }⊂Rs

∑
i , j

‖√ci j −δi j‖2
2,

which is the so-called classical Multidimensional Scaling (MDS).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 5 / 21



Setup of Classification Problems

Aims

The main aims of this article are to answer the following natural
questions using the face image databases:

What embedding Ψ should be used so that the commute-time distance
c(x i , x j ) and the squared Euclidean distance ‖z i − z j ‖2

2 =: δ2
i j are

preserved as much as possible after embedding?
How to conduct out-of-sample extension, i.e., once a graph is built
from a given training dataset X , how can we embed a new test sample
that has not been used to construct the graph? This consideration is
particularly important in classification and regression scenarios!

The simplest idea for such an embedding is:

min
{z 1,...,z n }⊂Rs

∑
i , j

‖√ci j −δi j‖2
2,

which is the so-called classical Multidimensional Scaling (MDS).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 5 / 21



Intermezzo: Classical Multidimensional Scaling

Outline

1 Setup of Classification Problems

2 Intermezzo: Classical Multidimensional Scaling

3 Commute-Time Guided Transformation

4 A Face Recognition Algorithm

5 Numerical Experiments and Some Results

6 Sparse Graphs

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 6 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical Multidimensional Scaling

Is one of the earliest embedding techiniques (Torgerson, 1952)
Originally, only dissimilarities (or similarities) among n objects are
given, not the objects {x i } themselves.
MDS is a visualization technique exploring dissimilarities (or
similarities) among such n objects.
More specifically, suppose the dissimilarity di j betwen the i th and j th
objects is given, i , j = 1, . . . ,n. Then one possible version of classical
MDS embeds (or allocates) such n objects in Rs such that

min
{z 1,...,z n }⊂Rs

∑
i , j

‖di j −δi j‖2
2, δi j = δ(z i , z j ) = ‖z i − z j‖2.

Unfortunately, there are two significant drawbacks.
1 No closed-form solution to the MDS optimization exists, and most of

them are based on iterative approaches =⇒ could be computationally
expensive and get stuck at local minima.

2 It is graph-dependent, i.e., all the data including the test samples must
be used to contruct an initial graph, which is often infeasible.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 7 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical Multidimensional Scaling

Is one of the earliest embedding techiniques (Torgerson, 1952)
Originally, only dissimilarities (or similarities) among n objects are
given, not the objects {x i } themselves.
MDS is a visualization technique exploring dissimilarities (or
similarities) among such n objects.
More specifically, suppose the dissimilarity di j betwen the i th and j th
objects is given, i , j = 1, . . . ,n. Then one possible version of classical
MDS embeds (or allocates) such n objects in Rs such that

min
{z 1,...,z n }⊂Rs

∑
i , j

‖di j −δi j‖2
2, δi j = δ(z i , z j ) = ‖z i − z j‖2.

Unfortunately, there are two significant drawbacks.
1 No closed-form solution to the MDS optimization exists, and most of

them are based on iterative approaches =⇒ could be computationally
expensive and get stuck at local minima.

2 It is graph-dependent, i.e., all the data including the test samples must
be used to contruct an initial graph, which is often infeasible.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 7 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical Multidimensional Scaling

Is one of the earliest embedding techiniques (Torgerson, 1952)
Originally, only dissimilarities (or similarities) among n objects are
given, not the objects {x i } themselves.
MDS is a visualization technique exploring dissimilarities (or
similarities) among such n objects.
More specifically, suppose the dissimilarity di j betwen the i th and j th
objects is given, i , j = 1, . . . ,n. Then one possible version of classical
MDS embeds (or allocates) such n objects in Rs such that

min
{z 1,...,z n }⊂Rs

∑
i , j

‖di j −δi j‖2
2, δi j = δ(z i , z j ) = ‖z i − z j‖2.

Unfortunately, there are two significant drawbacks.
1 No closed-form solution to the MDS optimization exists, and most of

them are based on iterative approaches =⇒ could be computationally
expensive and get stuck at local minima.

2 It is graph-dependent, i.e., all the data including the test samples must
be used to contruct an initial graph, which is often infeasible.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 7 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical Multidimensional Scaling

Is one of the earliest embedding techiniques (Torgerson, 1952)
Originally, only dissimilarities (or similarities) among n objects are
given, not the objects {x i } themselves.
MDS is a visualization technique exploring dissimilarities (or
similarities) among such n objects.
More specifically, suppose the dissimilarity di j betwen the i th and j th
objects is given, i , j = 1, . . . ,n. Then one possible version of classical
MDS embeds (or allocates) such n objects in Rs such that

min
{z 1,...,z n }⊂Rs

∑
i , j

‖di j −δi j‖2
2, δi j = δ(z i , z j ) = ‖z i − z j‖2.

Unfortunately, there are two significant drawbacks.
1 No closed-form solution to the MDS optimization exists, and most of

them are based on iterative approaches =⇒ could be computationally
expensive and get stuck at local minima.

2 It is graph-dependent, i.e., all the data including the test samples must
be used to contruct an initial graph, which is often infeasible.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 7 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical Multidimensional Scaling

Is one of the earliest embedding techiniques (Torgerson, 1952)
Originally, only dissimilarities (or similarities) among n objects are
given, not the objects {x i } themselves.
MDS is a visualization technique exploring dissimilarities (or
similarities) among such n objects.
More specifically, suppose the dissimilarity di j betwen the i th and j th
objects is given, i , j = 1, . . . ,n. Then one possible version of classical
MDS embeds (or allocates) such n objects in Rs such that

min
{z 1,...,z n }⊂Rs

∑
i , j

‖di j −δi j‖2
2, δi j = δ(z i , z j ) = ‖z i − z j‖2.

Unfortunately, there are two significant drawbacks.
1 No closed-form solution to the MDS optimization exists, and most of

them are based on iterative approaches =⇒ could be computationally
expensive and get stuck at local minima.

2 It is graph-dependent, i.e., all the data including the test samples must
be used to contruct an initial graph, which is often infeasible.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 7 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical Multidimensional Scaling

Is one of the earliest embedding techiniques (Torgerson, 1952)
Originally, only dissimilarities (or similarities) among n objects are
given, not the objects {x i } themselves.
MDS is a visualization technique exploring dissimilarities (or
similarities) among such n objects.
More specifically, suppose the dissimilarity di j betwen the i th and j th
objects is given, i , j = 1, . . . ,n. Then one possible version of classical
MDS embeds (or allocates) such n objects in Rs such that

min
{z 1,...,z n }⊂Rs

∑
i , j

‖di j −δi j‖2
2, δi j = δ(z i , z j ) = ‖z i − z j‖2.

Unfortunately, there are two significant drawbacks.
1 No closed-form solution to the MDS optimization exists, and most of

them are based on iterative approaches =⇒ could be computationally
expensive and get stuck at local minima.

2 It is graph-dependent, i.e., all the data including the test samples must
be used to contruct an initial graph, which is often infeasible.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 7 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical Multidimensional Scaling

Is one of the earliest embedding techiniques (Torgerson, 1952)
Originally, only dissimilarities (or similarities) among n objects are
given, not the objects {x i } themselves.
MDS is a visualization technique exploring dissimilarities (or
similarities) among such n objects.
More specifically, suppose the dissimilarity di j betwen the i th and j th
objects is given, i , j = 1, . . . ,n. Then one possible version of classical
MDS embeds (or allocates) such n objects in Rs such that

min
{z 1,...,z n }⊂Rs

∑
i , j

‖di j −δi j‖2
2, δi j = δ(z i , z j ) = ‖z i − z j‖2.

Unfortunately, there are two significant drawbacks.
1 No closed-form solution to the MDS optimization exists, and most of

them are based on iterative approaches =⇒ could be computationally
expensive and get stuck at local minima.

2 It is graph-dependent, i.e., all the data including the test samples must
be used to contruct an initial graph, which is often infeasible.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 7 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical MDS + Input Data Vectors ≡ PCA

One simplification happens if instead of just similarities among objects actual
n objects are given as a set of column vectors of X = (x1, . . . , xn) ∈Rd×n .

Define the similarity between x i and x j by the centered correlation

α(x i , x j ) := (x i −x)T(x j −x).

Suppose the centered correlation is also used to measure the similarity
among the embedded objects z i =Ψ(x i ) ∈Rs , i = 1, . . . ,n.

Then, the classical MDS seeks the mapping Ψ that minimizes:

JCS(Ψ) := ∑
i , j

(α(x i , x j )−α(Ψ(x i ),Ψ(x j )))2 = ∥∥X̃ T X̃ −Ψ(X̃ )TΨ(X̃ )
∥∥2

F .

We can find this map using the SVD of X̃ =UΣV T as

Ψ(X̃ ) =UT
s X̃ =ΣsV T

s ,

where Us and Vs correpond to the first s left and right singular vectors, and
Σs contains the corresponding singular values. This is exactly the same as
using the first s components of PCA!

A drawback: too global and not incorporating local geometry!saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 8 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical MDS + Input Data Vectors ≡ PCA

One simplification happens if instead of just similarities among objects actual
n objects are given as a set of column vectors of X = (x1, . . . , xn) ∈Rd×n .

Define the similarity between x i and x j by the centered correlation

α(x i , x j ) := (x i −x)T(x j −x).

Suppose the centered correlation is also used to measure the similarity
among the embedded objects z i =Ψ(x i ) ∈Rs , i = 1, . . . ,n.

Then, the classical MDS seeks the mapping Ψ that minimizes:

JCS(Ψ) := ∑
i , j

(α(x i , x j )−α(Ψ(x i ),Ψ(x j )))2 = ∥∥X̃ T X̃ −Ψ(X̃ )TΨ(X̃ )
∥∥2

F .

We can find this map using the SVD of X̃ =UΣV T as

Ψ(X̃ ) =UT
s X̃ =ΣsV T

s ,

where Us and Vs correpond to the first s left and right singular vectors, and
Σs contains the corresponding singular values. This is exactly the same as
using the first s components of PCA!

A drawback: too global and not incorporating local geometry!saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 8 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical MDS + Input Data Vectors ≡ PCA

One simplification happens if instead of just similarities among objects actual
n objects are given as a set of column vectors of X = (x1, . . . , xn) ∈Rd×n .

Define the similarity between x i and x j by the centered correlation

α(x i , x j ) := (x i −x)T(x j −x).

Suppose the centered correlation is also used to measure the similarity
among the embedded objects z i =Ψ(x i ) ∈Rs , i = 1, . . . ,n.

Then, the classical MDS seeks the mapping Ψ that minimizes:

JCS(Ψ) := ∑
i , j

(α(x i , x j )−α(Ψ(x i ),Ψ(x j )))2 = ∥∥X̃ T X̃ −Ψ(X̃ )TΨ(X̃ )
∥∥2

F .

We can find this map using the SVD of X̃ =UΣV T as

Ψ(X̃ ) =UT
s X̃ =ΣsV T

s ,

where Us and Vs correpond to the first s left and right singular vectors, and
Σs contains the corresponding singular values. This is exactly the same as
using the first s components of PCA!

A drawback: too global and not incorporating local geometry!saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 8 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical MDS + Input Data Vectors ≡ PCA

One simplification happens if instead of just similarities among objects actual
n objects are given as a set of column vectors of X = (x1, . . . , xn) ∈Rd×n .

Define the similarity between x i and x j by the centered correlation

α(x i , x j ) := (x i −x)T(x j −x).

Suppose the centered correlation is also used to measure the similarity
among the embedded objects z i =Ψ(x i ) ∈Rs , i = 1, . . . ,n.

Then, the classical MDS seeks the mapping Ψ that minimizes:

JCS(Ψ) := ∑
i , j

(α(x i , x j )−α(Ψ(x i ),Ψ(x j )))2 = ∥∥X̃ T X̃ −Ψ(X̃ )TΨ(X̃ )
∥∥2

F .

We can find this map using the SVD of X̃ =UΣV T as

Ψ(X̃ ) =UT
s X̃ =ΣsV T

s ,

where Us and Vs correpond to the first s left and right singular vectors, and
Σs contains the corresponding singular values. This is exactly the same as
using the first s components of PCA!

A drawback: too global and not incorporating local geometry!saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 8 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical MDS + Input Data Vectors ≡ PCA

One simplification happens if instead of just similarities among objects actual
n objects are given as a set of column vectors of X = (x1, . . . , xn) ∈Rd×n .

Define the similarity between x i and x j by the centered correlation

α(x i , x j ) := (x i −x)T(x j −x).

Suppose the centered correlation is also used to measure the similarity
among the embedded objects z i =Ψ(x i ) ∈Rs , i = 1, . . . ,n.

Then, the classical MDS seeks the mapping Ψ that minimizes:

JCS(Ψ) := ∑
i , j

(α(x i , x j )−α(Ψ(x i ),Ψ(x j )))2 = ∥∥X̃ T X̃ −Ψ(X̃ )TΨ(X̃ )
∥∥2

F .

We can find this map using the SVD of X̃ =UΣV T as

Ψ(X̃ ) =UT
s X̃ =ΣsV T

s ,

where Us and Vs correpond to the first s left and right singular vectors, and
Σs contains the corresponding singular values. This is exactly the same as
using the first s components of PCA!

A drawback: too global and not incorporating local geometry!saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 8 / 21



Intermezzo: Classical Multidimensional Scaling

Intermezzo: Classical MDS + Input Data Vectors ≡ PCA

One simplification happens if instead of just similarities among objects actual
n objects are given as a set of column vectors of X = (x1, . . . , xn) ∈Rd×n .

Define the similarity between x i and x j by the centered correlation

α(x i , x j ) := (x i −x)T(x j −x).

Suppose the centered correlation is also used to measure the similarity
among the embedded objects z i =Ψ(x i ) ∈Rs , i = 1, . . . ,n.

Then, the classical MDS seeks the mapping Ψ that minimizes:

JCS(Ψ) := ∑
i , j

(α(x i , x j )−α(Ψ(x i ),Ψ(x j )))2 = ∥∥X̃ T X̃ −Ψ(X̃ )TΨ(X̃ )
∥∥2

F .

We can find this map using the SVD of X̃ =UΣV T as

Ψ(X̃ ) =UT
s X̃ =ΣsV T

s ,

where Us and Vs correpond to the first s left and right singular vectors, and
Σs contains the corresponding singular values. This is exactly the same as
using the first s components of PCA!

A drawback: too global and not incorporating local geometry!saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 8 / 21



Commute-Time Guided Transformation

Outline

1 Setup of Classification Problems

2 Intermezzo: Classical Multidimensional Scaling

3 Commute-Time Guided Transformation

4 A Face Recognition Algorithm

5 Numerical Experiments and Some Results

6 Sparse Graphs

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 9 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation

Recap: the classical MDS trying to preserve the commute-time
distances is difficult to compute.
Hence, Deng et al. introduced a new notion called “commute-time
guided transformation.”
Find a unitary matrix Ψ :Rd →Rs that minimizes:

JC T G (Ψ) := ∑
i , j

δ2
i j

ci j
=∑

i , j

‖ΨTx i −ΨTx j‖2
2

ci j
.

If ci j is small, then δi j should also be small enough to minimize
JC T G (Ψ). A small ci j with a large δi j may be penalized.
On the other hand, if ci j is large, then it allows a comparably large δi j

in Rs .
In other words, the value of ci j is used as a penalty to guide the
optimization of JC T G (Ψ); hence the name: the “commute-time guided
transformation.”

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 10 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation

Recap: the classical MDS trying to preserve the commute-time
distances is difficult to compute.
Hence, Deng et al. introduced a new notion called “commute-time
guided transformation.”
Find a unitary matrix Ψ :Rd →Rs that minimizes:

JC T G (Ψ) := ∑
i , j

δ2
i j

ci j
=∑

i , j

‖ΨTx i −ΨTx j‖2
2

ci j
.

If ci j is small, then δi j should also be small enough to minimize
JC T G (Ψ). A small ci j with a large δi j may be penalized.
On the other hand, if ci j is large, then it allows a comparably large δi j

in Rs .
In other words, the value of ci j is used as a penalty to guide the
optimization of JC T G (Ψ); hence the name: the “commute-time guided
transformation.”

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 10 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation

Recap: the classical MDS trying to preserve the commute-time
distances is difficult to compute.
Hence, Deng et al. introduced a new notion called “commute-time
guided transformation.”
Find a unitary matrix Ψ :Rd →Rs that minimizes:

JC T G (Ψ) := ∑
i , j

δ2
i j

ci j
=∑

i , j

‖ΨTx i −ΨTx j‖2
2

ci j
.

If ci j is small, then δi j should also be small enough to minimize
JC T G (Ψ). A small ci j with a large δi j may be penalized.
On the other hand, if ci j is large, then it allows a comparably large δi j

in Rs .
In other words, the value of ci j is used as a penalty to guide the
optimization of JC T G (Ψ); hence the name: the “commute-time guided
transformation.”

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 10 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation

Recap: the classical MDS trying to preserve the commute-time
distances is difficult to compute.
Hence, Deng et al. introduced a new notion called “commute-time
guided transformation.”
Find a unitary matrix Ψ :Rd →Rs that minimizes:

JC T G (Ψ) := ∑
i , j

δ2
i j

ci j
=∑

i , j

‖ΨTx i −ΨTx j‖2
2

ci j
.

If ci j is small, then δi j should also be small enough to minimize
JC T G (Ψ). A small ci j with a large δi j may be penalized.
On the other hand, if ci j is large, then it allows a comparably large δi j

in Rs .
In other words, the value of ci j is used as a penalty to guide the
optimization of JC T G (Ψ); hence the name: the “commute-time guided
transformation.”

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 10 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation

Recap: the classical MDS trying to preserve the commute-time
distances is difficult to compute.
Hence, Deng et al. introduced a new notion called “commute-time
guided transformation.”
Find a unitary matrix Ψ :Rd →Rs that minimizes:

JC T G (Ψ) := ∑
i , j

δ2
i j

ci j
=∑

i , j

‖ΨTx i −ΨTx j‖2
2

ci j
.

If ci j is small, then δi j should also be small enough to minimize
JC T G (Ψ). A small ci j with a large δi j may be penalized.
On the other hand, if ci j is large, then it allows a comparably large δi j

in Rs .
In other words, the value of ci j is used as a penalty to guide the
optimization of JC T G (Ψ); hence the name: the “commute-time guided
transformation.”

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 10 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation

Recap: the classical MDS trying to preserve the commute-time
distances is difficult to compute.
Hence, Deng et al. introduced a new notion called “commute-time
guided transformation.”
Find a unitary matrix Ψ :Rd →Rs that minimizes:

JC T G (Ψ) := ∑
i , j

δ2
i j

ci j
=∑

i , j

‖ΨTx i −ΨTx j‖2
2

ci j
.

If ci j is small, then δi j should also be small enough to minimize
JC T G (Ψ). A small ci j with a large δi j may be penalized.
On the other hand, if ci j is large, then it allows a comparably large δi j

in Rs .
In other words, the value of ci j is used as a penalty to guide the
optimization of JC T G (Ψ); hence the name: the “commute-time guided
transformation.”

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 10 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation . . .

JC T G (Ψ) can be simplified using matrices and trace:

JC T G (Ψ) = ∑
i , j

1

ci j
tr

[(
ΨTx i −ΨTx j

)(
ΨTx i −ΨTx j

)T]
= tr

[∑
i , j

(
ΨTx i −ΨTx j

)(
ΨTx i −ΨTx j

)T
ci j

]

= 2tr

[∑
i

ΨTx i xT

i Ψ

ci •
−∑

i , j

ΨTx i xT

jΨ

ci j

]
via symmetry

= 2tr
[
ΨTX (Γ−K )X TΨ

]
,

where ci • := ∑
j ci j , K := (

1/ci j
)
, and Γ := diag(1/c1•, . . . ,1/cn •).

The larger the Γi i is, the more important the i th vertex (i.e., the data
vector x i ) and its embedded point z i become for the minimization
problem.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 11 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation . . .

JC T G (Ψ) can be simplified using matrices and trace:

JC T G (Ψ) = ∑
i , j

1

ci j
tr

[(
ΨTx i −ΨTx j

)(
ΨTx i −ΨTx j

)T]
= tr

[∑
i , j

(
ΨTx i −ΨTx j

)(
ΨTx i −ΨTx j

)T
ci j

]

= 2tr

[∑
i

ΨTx i xT

i Ψ

ci •
−∑

i , j

ΨTx i xT

jΨ

ci j

]
via symmetry

= 2tr
[
ΨTX (Γ−K )X TΨ

]
,

where ci • := ∑
j ci j , K := (

1/ci j
)
, and Γ := diag(1/c1•, . . . ,1/cn •).

The larger the Γi i is, the more important the i th vertex (i.e., the data
vector x i ) and its embedded point z i become for the minimization
problem.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 11 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation . . .

With the constraints ZΓZT = Is , we have the following constrained
minimization problem:

min
Ψ∈Rd×s ;ΨTΨ=Is

tr
[
ΨTX (Γ−K )X TΨ

]
subject to ΨTXΓX TΨ= Is .

This can be solved by the method of Lagrange multipliers as follows:

JC T G (Ψ,Λ) := tr
[
ΨTX (Γ−K )X TΨ

]−〈
Λ,ΨTXΓX TΨ− Is

〉
,

where Λ ∈Rs×s is a diagonal matrix containing the Lagrange multipliers.

Setting ∇Ψ JC T G (Ψ,Λ) = 0 leads to the following generalized eigenvalue
problem:

X (Γ−K )X T︸ ︷︷ ︸
P

Ψ= XΓX T︸ ︷︷ ︸
Q

ΨΛ, i.e., Pψ j =λ j Qψ j , j = 1, . . . , s.

Compare this with the Locality Preserving Projection (LPP) of He and
Niyogi (a.k.a. Laplacianfaces): X LX TΨ= X D X TΨΛ.

Hence, the correspondence: A ⇔ K , i.e., ai j ⇔ 1/ci j .

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 12 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation . . .

With the constraints ZΓZT = Is , we have the following constrained
minimization problem:

min
Ψ∈Rd×s ;ΨTΨ=Is

tr
[
ΨTX (Γ−K )X TΨ

]
subject to ΨTXΓX TΨ= Is .

This can be solved by the method of Lagrange multipliers as follows:

JC T G (Ψ,Λ) := tr
[
ΨTX (Γ−K )X TΨ

]−〈
Λ,ΨTXΓX TΨ− Is

〉
,

where Λ ∈Rs×s is a diagonal matrix containing the Lagrange multipliers.

Setting ∇Ψ JC T G (Ψ,Λ) = 0 leads to the following generalized eigenvalue
problem:

X (Γ−K )X T︸ ︷︷ ︸
P

Ψ= XΓX T︸ ︷︷ ︸
Q

ΨΛ, i.e., Pψ j =λ j Qψ j , j = 1, . . . , s.

Compare this with the Locality Preserving Projection (LPP) of He and
Niyogi (a.k.a. Laplacianfaces): X LX TΨ= X D X TΨΛ.

Hence, the correspondence: A ⇔ K , i.e., ai j ⇔ 1/ci j .

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 12 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation . . .

With the constraints ZΓZT = Is , we have the following constrained
minimization problem:

min
Ψ∈Rd×s ;ΨTΨ=Is

tr
[
ΨTX (Γ−K )X TΨ

]
subject to ΨTXΓX TΨ= Is .

This can be solved by the method of Lagrange multipliers as follows:

JC T G (Ψ,Λ) := tr
[
ΨTX (Γ−K )X TΨ

]−〈
Λ,ΨTXΓX TΨ− Is

〉
,

where Λ ∈Rs×s is a diagonal matrix containing the Lagrange multipliers.

Setting ∇Ψ JC T G (Ψ,Λ) = 0 leads to the following generalized eigenvalue
problem:

X (Γ−K )X T︸ ︷︷ ︸
P

Ψ= XΓX T︸ ︷︷ ︸
Q

ΨΛ, i.e., Pψ j =λ j Qψ j , j = 1, . . . , s.

Compare this with the Locality Preserving Projection (LPP) of He and
Niyogi (a.k.a. Laplacianfaces): X LX TΨ= X D X TΨΛ.

Hence, the correspondence: A ⇔ K , i.e., ai j ⇔ 1/ci j .

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 12 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation . . .

With the constraints ZΓZT = Is , we have the following constrained
minimization problem:

min
Ψ∈Rd×s ;ΨTΨ=Is

tr
[
ΨTX (Γ−K )X TΨ

]
subject to ΨTXΓX TΨ= Is .

This can be solved by the method of Lagrange multipliers as follows:

JC T G (Ψ,Λ) := tr
[
ΨTX (Γ−K )X TΨ

]−〈
Λ,ΨTXΓX TΨ− Is

〉
,

where Λ ∈Rs×s is a diagonal matrix containing the Lagrange multipliers.

Setting ∇Ψ JC T G (Ψ,Λ) = 0 leads to the following generalized eigenvalue
problem:

X (Γ−K )X T︸ ︷︷ ︸
P

Ψ= XΓX T︸ ︷︷ ︸
Q

ΨΛ, i.e., Pψ j =λ j Qψ j , j = 1, . . . , s.

Compare this with the Locality Preserving Projection (LPP) of He and
Niyogi (a.k.a. Laplacianfaces): X LX TΨ= X D X TΨΛ.

Hence, the correspondence: A ⇔ K , i.e., ai j ⇔ 1/ci j .

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 12 / 21



Commute-Time Guided Transformation

Commute-Time Guided Transformation . . .

With the constraints ZΓZT = Is , we have the following constrained
minimization problem:

min
Ψ∈Rd×s ;ΨTΨ=Is

tr
[
ΨTX (Γ−K )X TΨ

]
subject to ΨTXΓX TΨ= Is .

This can be solved by the method of Lagrange multipliers as follows:

JC T G (Ψ,Λ) := tr
[
ΨTX (Γ−K )X TΨ

]−〈
Λ,ΨTXΓX TΨ− Is

〉
,

where Λ ∈Rs×s is a diagonal matrix containing the Lagrange multipliers.

Setting ∇Ψ JC T G (Ψ,Λ) = 0 leads to the following generalized eigenvalue
problem:

X (Γ−K )X T︸ ︷︷ ︸
P

Ψ= XΓX T︸ ︷︷ ︸
Q

ΨΛ, i.e., Pψ j =λ j Qψ j , j = 1, . . . , s.

Compare this with the Locality Preserving Projection (LPP) of He and
Niyogi (a.k.a. Laplacianfaces): X LX TΨ= X D X TΨΛ.

Hence, the correspondence: A ⇔ K , i.e., ai j ⇔ 1/ci j .

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 12 / 21



A Face Recognition Algorithm

Outline

1 Setup of Classification Problems

2 Intermezzo: Classical Multidimensional Scaling

3 Commute-Time Guided Transformation

4 A Face Recognition Algorithm

5 Numerical Experiments and Some Results

6 Sparse Graphs

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 13 / 21



A Face Recognition Algorithm

A Face Recognition Algorithm

Input: Training faces X ∈Rd×n ; Test faces Y ∈Rd×m .
Training:

1 Build a graph G from X ;
2 Compute the commute-time matrix C = (ci j ) using L†(G).
3 Compute matrices K and Γ.
4 Solve the above generalized eigenvalue problem to obtain Ψ ∈Rd×s .
5 Embed the training faces via Z =ΨTX .

Recognition/Test:
1 Embed the test faces via Υ= (υ1, . . . ,υm) =ΨTY .
2 For k = 1 : m do select the nearest neighbor of υk from the embedded

training faces Z using the `2-distance in the embedded space Rs . Then
assign its label to υk .

Output: The list of labels of the test faces.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 14 / 21



A Face Recognition Algorithm

A Face Recognition Algorithm

Input: Training faces X ∈Rd×n ; Test faces Y ∈Rd×m .
Training:

1 Build a graph G from X ;
2 Compute the commute-time matrix C = (ci j ) using L†(G).
3 Compute matrices K and Γ.
4 Solve the above generalized eigenvalue problem to obtain Ψ ∈Rd×s .
5 Embed the training faces via Z =ΨTX .

Recognition/Test:
1 Embed the test faces via Υ= (υ1, . . . ,υm) =ΨTY .
2 For k = 1 : m do select the nearest neighbor of υk from the embedded

training faces Z using the `2-distance in the embedded space Rs . Then
assign its label to υk .

Output: The list of labels of the test faces.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 14 / 21



A Face Recognition Algorithm

A Face Recognition Algorithm

Input: Training faces X ∈Rd×n ; Test faces Y ∈Rd×m .
Training:

1 Build a graph G from X ;
2 Compute the commute-time matrix C = (ci j ) using L†(G).
3 Compute matrices K and Γ.
4 Solve the above generalized eigenvalue problem to obtain Ψ ∈Rd×s .
5 Embed the training faces via Z =ΨTX .

Recognition/Test:
1 Embed the test faces via Υ= (υ1, . . . ,υm) =ΨTY .
2 For k = 1 : m do select the nearest neighbor of υk from the embedded

training faces Z using the `2-distance in the embedded space Rs . Then
assign its label to υk .

Output: The list of labels of the test faces.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 14 / 21



A Face Recognition Algorithm

A Face Recognition Algorithm

Input: Training faces X ∈Rd×n ; Test faces Y ∈Rd×m .
Training:

1 Build a graph G from X ;
2 Compute the commute-time matrix C = (ci j ) using L†(G).
3 Compute matrices K and Γ.
4 Solve the above generalized eigenvalue problem to obtain Ψ ∈Rd×s .
5 Embed the training faces via Z =ΨTX .

Recognition/Test:
1 Embed the test faces via Υ= (υ1, . . . ,υm) =ΨTY .
2 For k = 1 : m do select the nearest neighbor of υk from the embedded

training faces Z using the `2-distance in the embedded space Rs . Then
assign its label to υk .

Output: The list of labels of the test faces.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 14 / 21



A Face Recognition Algorithm

A Face Recognition Algorithm

Input: Training faces X ∈Rd×n ; Test faces Y ∈Rd×m .
Training:

1 Build a graph G from X ;
2 Compute the commute-time matrix C = (ci j ) using L†(G).
3 Compute matrices K and Γ.
4 Solve the above generalized eigenvalue problem to obtain Ψ ∈Rd×s .
5 Embed the training faces via Z =ΨTX .

Recognition/Test:
1 Embed the test faces via Υ= (υ1, . . . ,υm) =ΨTY .
2 For k = 1 : m do select the nearest neighbor of υk from the embedded

training faces Z using the `2-distance in the embedded space Rs . Then
assign its label to υk .

Output: The list of labels of the test faces.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 14 / 21



A Face Recognition Algorithm

A Face Recognition Algorithm

Input: Training faces X ∈Rd×n ; Test faces Y ∈Rd×m .
Training:

1 Build a graph G from X ;
2 Compute the commute-time matrix C = (ci j ) using L†(G).
3 Compute matrices K and Γ.
4 Solve the above generalized eigenvalue problem to obtain Ψ ∈Rd×s .
5 Embed the training faces via Z =ΨTX .

Recognition/Test:
1 Embed the test faces via Υ= (υ1, . . . ,υm) =ΨTY .
2 For k = 1 : m do select the nearest neighbor of υk from the embedded

training faces Z using the `2-distance in the embedded space Rs . Then
assign its label to υk .

Output: The list of labels of the test faces.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 14 / 21



A Face Recognition Algorithm

A Face Recognition Algorithm

Input: Training faces X ∈Rd×n ; Test faces Y ∈Rd×m .
Training:

1 Build a graph G from X ;
2 Compute the commute-time matrix C = (ci j ) using L†(G).
3 Compute matrices K and Γ.
4 Solve the above generalized eigenvalue problem to obtain Ψ ∈Rd×s .
5 Embed the training faces via Z =ΨTX .

Recognition/Test:
1 Embed the test faces via Υ= (υ1, . . . ,υm) =ΨTY .
2 For k = 1 : m do select the nearest neighbor of υk from the embedded

training faces Z using the `2-distance in the embedded space Rs . Then
assign its label to υk .

Output: The list of labels of the test faces.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 14 / 21



A Face Recognition Algorithm

A Face Recognition Algorithm

Input: Training faces X ∈Rd×n ; Test faces Y ∈Rd×m .
Training:

1 Build a graph G from X ;
2 Compute the commute-time matrix C = (ci j ) using L†(G).
3 Compute matrices K and Γ.
4 Solve the above generalized eigenvalue problem to obtain Ψ ∈Rd×s .
5 Embed the training faces via Z =ΨTX .

Recognition/Test:
1 Embed the test faces via Υ= (υ1, . . . ,υm) =ΨTY .
2 For k = 1 : m do select the nearest neighbor of υk from the embedded

training faces Z using the `2-distance in the embedded space Rs . Then
assign its label to υk .

Output: The list of labels of the test faces.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 14 / 21



A Face Recognition Algorithm

A Face Recognition Algorithm

Input: Training faces X ∈Rd×n ; Test faces Y ∈Rd×m .
Training:

1 Build a graph G from X ;
2 Compute the commute-time matrix C = (ci j ) using L†(G).
3 Compute matrices K and Γ.
4 Solve the above generalized eigenvalue problem to obtain Ψ ∈Rd×s .
5 Embed the training faces via Z =ΨTX .

Recognition/Test:
1 Embed the test faces via Υ= (υ1, . . . ,υm) =ΨTY .
2 For k = 1 : m do select the nearest neighbor of υk from the embedded

training faces Z using the `2-distance in the embedded space Rs . Then
assign its label to υk .

Output: The list of labels of the test faces.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 14 / 21



A Face Recognition Algorithm

A Face Recognition Algorithm

Input: Training faces X ∈Rd×n ; Test faces Y ∈Rd×m .
Training:

1 Build a graph G from X ;
2 Compute the commute-time matrix C = (ci j ) using L†(G).
3 Compute matrices K and Γ.
4 Solve the above generalized eigenvalue problem to obtain Ψ ∈Rd×s .
5 Embed the training faces via Z =ΨTX .

Recognition/Test:
1 Embed the test faces via Υ= (υ1, . . . ,υm) =ΨTY .
2 For k = 1 : m do select the nearest neighbor of υk from the embedded

training faces Z using the `2-distance in the embedded space Rs . Then
assign its label to υk .

Output: The list of labels of the test faces.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 14 / 21



A Face Recognition Algorithm

A Face Recognition Algorithm

Input: Training faces X ∈Rd×n ; Test faces Y ∈Rd×m .
Training:

1 Build a graph G from X ;
2 Compute the commute-time matrix C = (ci j ) using L†(G).
3 Compute matrices K and Γ.
4 Solve the above generalized eigenvalue problem to obtain Ψ ∈Rd×s .
5 Embed the training faces via Z =ΨTX .

Recognition/Test:
1 Embed the test faces via Υ= (υ1, . . . ,υm) =ΨTY .
2 For k = 1 : m do select the nearest neighbor of υk from the embedded

training faces Z using the `2-distance in the embedded space Rs . Then
assign its label to υk .

Output: The list of labels of the test faces.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 14 / 21



Numerical Experiments and Some Results

Outline

1 Setup of Classification Problems

2 Intermezzo: Classical Multidimensional Scaling

3 Commute-Time Guided Transformation

4 A Face Recognition Algorithm

5 Numerical Experiments and Some Results

6 Sparse Graphs

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 15 / 21



Numerical Experiments and Some Results

Numerical Experiments

Face recognition rates over four different face databases were
computed.

Yale face dataset: 165 faces of 15 individuals with various lighting
conditions.
CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose,
illumination, expression.
AR dataset: over 4,000 faces of 126 individuals with varying
illumination, expression, and occlusion.
FERET dataset: From NIST. More than 1,100 individuals with varying
pose, illumination, expression.

Each face image was preprocessed, e.g., color → grayscale;
normalization to 64×64 pixel resolution; histogram equalization, . . .
Compared methods include: PCA, LDA, NMF (nonnegative matrix
factorization), SR (sparse representation), LPP (locality preserving
projection), GEO (geodesic projection), and CTG (commute-time
guided transformation).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 16 / 21



Numerical Experiments and Some Results

Numerical Experiments

Face recognition rates over four different face databases were
computed.

Yale face dataset: 165 faces of 15 individuals with various lighting
conditions.
CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose,
illumination, expression.
AR dataset: over 4,000 faces of 126 individuals with varying
illumination, expression, and occlusion.
FERET dataset: From NIST. More than 1,100 individuals with varying
pose, illumination, expression.

Each face image was preprocessed, e.g., color → grayscale;
normalization to 64×64 pixel resolution; histogram equalization, . . .
Compared methods include: PCA, LDA, NMF (nonnegative matrix
factorization), SR (sparse representation), LPP (locality preserving
projection), GEO (geodesic projection), and CTG (commute-time
guided transformation).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 16 / 21



Numerical Experiments and Some Results

Numerical Experiments

Face recognition rates over four different face databases were
computed.

Yale face dataset: 165 faces of 15 individuals with various lighting
conditions.
CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose,
illumination, expression.
AR dataset: over 4,000 faces of 126 individuals with varying
illumination, expression, and occlusion.
FERET dataset: From NIST. More than 1,100 individuals with varying
pose, illumination, expression.

Each face image was preprocessed, e.g., color → grayscale;
normalization to 64×64 pixel resolution; histogram equalization, . . .
Compared methods include: PCA, LDA, NMF (nonnegative matrix
factorization), SR (sparse representation), LPP (locality preserving
projection), GEO (geodesic projection), and CTG (commute-time
guided transformation).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 16 / 21



Numerical Experiments and Some Results

Numerical Experiments

Face recognition rates over four different face databases were
computed.

Yale face dataset: 165 faces of 15 individuals with various lighting
conditions.
CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose,
illumination, expression.
AR dataset: over 4,000 faces of 126 individuals with varying
illumination, expression, and occlusion.
FERET dataset: From NIST. More than 1,100 individuals with varying
pose, illumination, expression.

Each face image was preprocessed, e.g., color → grayscale;
normalization to 64×64 pixel resolution; histogram equalization, . . .
Compared methods include: PCA, LDA, NMF (nonnegative matrix
factorization), SR (sparse representation), LPP (locality preserving
projection), GEO (geodesic projection), and CTG (commute-time
guided transformation).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 16 / 21



Numerical Experiments and Some Results

Numerical Experiments

Face recognition rates over four different face databases were
computed.

Yale face dataset: 165 faces of 15 individuals with various lighting
conditions.
CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose,
illumination, expression.
AR dataset: over 4,000 faces of 126 individuals with varying
illumination, expression, and occlusion.
FERET dataset: From NIST. More than 1,100 individuals with varying
pose, illumination, expression.

Each face image was preprocessed, e.g., color → grayscale;
normalization to 64×64 pixel resolution; histogram equalization, . . .
Compared methods include: PCA, LDA, NMF (nonnegative matrix
factorization), SR (sparse representation), LPP (locality preserving
projection), GEO (geodesic projection), and CTG (commute-time
guided transformation).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 16 / 21



Numerical Experiments and Some Results

Numerical Experiments

Face recognition rates over four different face databases were
computed.

Yale face dataset: 165 faces of 15 individuals with various lighting
conditions.
CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose,
illumination, expression.
AR dataset: over 4,000 faces of 126 individuals with varying
illumination, expression, and occlusion.
FERET dataset: From NIST. More than 1,100 individuals with varying
pose, illumination, expression.

Each face image was preprocessed, e.g., color → grayscale;
normalization to 64×64 pixel resolution; histogram equalization, . . .
Compared methods include: PCA, LDA, NMF (nonnegative matrix
factorization), SR (sparse representation), LPP (locality preserving
projection), GEO (geodesic projection), and CTG (commute-time
guided transformation).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 16 / 21



Numerical Experiments and Some Results

Numerical Experiments

Face recognition rates over four different face databases were
computed.

Yale face dataset: 165 faces of 15 individuals with various lighting
conditions.
CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose,
illumination, expression.
AR dataset: over 4,000 faces of 126 individuals with varying
illumination, expression, and occlusion.
FERET dataset: From NIST. More than 1,100 individuals with varying
pose, illumination, expression.

Each face image was preprocessed, e.g., color → grayscale;
normalization to 64×64 pixel resolution; histogram equalization, . . .
Compared methods include: PCA, LDA, NMF (nonnegative matrix
factorization), SR (sparse representation), LPP (locality preserving
projection), GEO (geodesic projection), and CTG (commute-time
guided transformation).

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 16 / 21



Numerical Experiments and Some Results

Numerical Experiments . . .

For each face database, 50% of the faces (randomly selected) are used
as the training faces, and the rest as the test faces.
Repeat such random selection of the training faces and recognition of
test faces 10 times for each method in each face database.
For graph-based methods, k-NN graphs and sparse graphs were used.
k of the k-NN graphs was fixed to be k = nt −1 where nt is the
average number of training samples for one individual.
Various values of the dimension of the embedded space (or feature
dimensionality) s were tested.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 17 / 21



Numerical Experiments and Some Results

Numerical Experiments . . .

For each face database, 50% of the faces (randomly selected) are used
as the training faces, and the rest as the test faces.
Repeat such random selection of the training faces and recognition of
test faces 10 times for each method in each face database.
For graph-based methods, k-NN graphs and sparse graphs were used.
k of the k-NN graphs was fixed to be k = nt −1 where nt is the
average number of training samples for one individual.
Various values of the dimension of the embedded space (or feature
dimensionality) s were tested.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 17 / 21



Numerical Experiments and Some Results

Numerical Experiments . . .

For each face database, 50% of the faces (randomly selected) are used
as the training faces, and the rest as the test faces.
Repeat such random selection of the training faces and recognition of
test faces 10 times for each method in each face database.
For graph-based methods, k-NN graphs and sparse graphs were used.
k of the k-NN graphs was fixed to be k = nt −1 where nt is the
average number of training samples for one individual.
Various values of the dimension of the embedded space (or feature
dimensionality) s were tested.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 17 / 21



Numerical Experiments and Some Results

Numerical Experiments . . .

For each face database, 50% of the faces (randomly selected) are used
as the training faces, and the rest as the test faces.
Repeat such random selection of the training faces and recognition of
test faces 10 times for each method in each face database.
For graph-based methods, k-NN graphs and sparse graphs were used.
k of the k-NN graphs was fixed to be k = nt −1 where nt is the
average number of training samples for one individual.
Various values of the dimension of the embedded space (or feature
dimensionality) s were tested.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 17 / 21



Numerical Experiments and Some Results

Numerical Experiments . . .

For each face database, 50% of the faces (randomly selected) are used
as the training faces, and the rest as the test faces.
Repeat such random selection of the training faces and recognition of
test faces 10 times for each method in each face database.
For graph-based methods, k-NN graphs and sparse graphs were used.
k of the k-NN graphs was fixed to be k = nt −1 where nt is the
average number of training samples for one individual.
Various values of the dimension of the embedded space (or feature
dimensionality) s were tested.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 17 / 21



Numerical Experiments and Some Results

Some Results

via different poses, under various illuminations and with different
expressions. In our experiment, we only use the frontal faces and
the faces whose pose angles are less than 15�. Prior to processing,
the faces are registered to each other based on the eye locations,
and are normalized to the resolution of 64 � 64 pixels. The illumi-
nation histogram equalization is applied to all the images.

In the experiment, we randomly select half of faces in AR data-
set and FERET dataset as training samples. The other half of faces in
each dataset are treated as testing samples. Randomly choosing the
training set ensures that the results and conclusions will not de-
pend on any special choice of the training data. We follow steps
in Algorithm 1 to conduct experiments on face recognition and it
is repeated for 10 times. The average recognition rates on different
graph topologies with different graph similarities are shown in
Fig. 3.

In the AR dataset, commute time outperforms geodesic distance
and locality similarity on KNN, GKNN, Sparse Graph and Sparse-
ness induced graph. Commute time achieves the recognition rate
of 80.2%, 76.3% and 81.2% on these three graph topologies, respec-
tively. However, on the SIG, geodesic distance is the best one
whose recognition rate is 73.2%, which only makes the improve-
ments of 0.5% on commute time metric. The detailed comparisons
on AR dataset are shown in the left part of Fig. 3. Among all the
graph results, the highest recognition rate on AR dataset is
achieved by the commute time on the sparse graph (81.2%). The
second high recognition rate is obtained by random walk on the
KNN graph (80.2%).

In the FERET dataset, the commute time based method is the
best one on all the four kinds of graph structures. It achieves the
recognition rate of 78.3%, 72.3%,79.4% and 77.7%, respectively. Geo-
desic distance gains similar performance as commute time, the
recognition rates of which are 72.1%, 71.2%, 79.3%, and 76.2%,

respectively. Both these two metrics outperform the locality
similarity. The highest recognition rate is also achieved on the
sparse graph with random walk. The recognition results on FERET
dataset are shown in the right part of Fig. 3, based on which, some
discussions on graph similarities and graph topologies are
extended.

4.2.1. Graph similarity
Commute time and geodesic distance outperform the locality

similarity on the face recognition test. It may be ascribed to that
the locality similarity only represent the local relationship of con-
necting nodes. However, the commute time and geodesic distance
could reveal both the local and global similarities of nodes no mat-
ter whether they are connected or not.

Commute time and geodesic distance achieve similar recogni-
tion performances. However, compared with geodesic distance,
the commute time owns one prominent advantage. The calculation
of commute time is much more efficient than the calculation of
geodesic distance. The calculation of geodesic distance is mainly
based on the greedy search, which is quite expensive. But the cal-
culation of commute time just requires to solve a general inverse
problem (see Eq. (2)). On the face manifold spanned by faces in
AR dataset, it requires more than 47 s to calculate the geodesic dis-
tances between all pairs of nodes. and only 6 s to compute the
commute time.

4.2.2. Graph topology
Among these four graph topologies, sparse graph is the best one

for manifold based face recognition. Almost all the three graph
similarities achieve their highest recognition rates on the sparse
graph. However, there is one significant drawback of the SG. The
construction of SG graph is too much time consuming, which

(a) Eigen-faces

(b) Fisher-faces

(c) Laplacian-faces

(d) CTG-faces

Fig. 2. The first six projections extracted from the Yale dataset based on (a) PCA, (b) LDA, (c) LPP, and (d) CTG.

478 Y. Deng et al. / Computer Vision and Image Understanding 116 (2012) 473–483

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 18 / 21



Numerical Experiments and Some Results

Some Results . . .

mance. SR loses its effectiveness since there are many faces with
slightly pose variations. The basic assumption made in the SR is
that it could only recognize frontal faces [28].

In Yale and PIE datasets, the improvements of CTG to other
methods are not that significant. These two datasets are quite
simple, on which typical algorithms can already achieve good per-
formances. But, with the complicated and large datasets e.g. AR
and FERET datasets, the manifold distribution of data will come
out.

In the AR and the FERET datasets, three manifold based methods
(LPP, GEO and CTG) significantly outperform linear subspace meth-
ods (PCA, LDA and NMF). Averagely, the manifold based ap-
proaches make about 15% improvements to the linear subspace
methods. Moreover, CTG outperforms the other two manifold
based methods on both the KNN graph and the sparse graph.

It is also interesting to note that the proposed CTG method is
robust to graph topologies. The recognition performances by CTG
are consistent on different graphs. However, the geodesic embed-
ding (GEO) is much sensitive to graph topology. It achieves better
performances on sparse graph while performs poorly one KNN
graph.

4.4. Robustness verification

In previous parts, the experimental results on benchmark data-
sets demonstrate the effectiveness of the proposed CTG for general
verification. In this part, we will further extend discussions to
investigate the robustness of the CTGfaces to noises. The noise on
faces always means illuminations and occlusions. Accordingly, in
this part, two experiments on face recognition with illuminations
and occlusions will be conducted. In order to avoid the heavy com-
putational cost of the ‘1 minimization, all the graph based algo-
rithms are performed on the KNN graph.

4.4.1. Face recognition with illumination
In this part, we will use the CTG-features to recognize faces cap-

tured under various illumination conditions. For this purpose, the
extended Yale-B [31] is used.

The extended Yale-B dataset consists of 2414 frontal-face
images of 38 individuals [31]. Each image is converted to grayscale
and normalized to a size of 192 � 168. The histogram equalizations
are applied to all the images. It worths noting that all the faces in
Yale-B dataset are captured under various laboratory-controlled
lighting conditions. Therefore, the extended Yale-B dataset is a
desirable dataset for illumination test. Some faces captured under
different lighting conditions in Yale-B are shown in Fig. 5.

There are 38 subjects in the extended Yale-B dataset. For each
subject, we randomly select half of the images for training (about
32 faces per person) and the other half are for test. We will com-
pare the CTG methods with PCA, LPP, GEO and SR. The training
and testing procedures are repeated for 10 times. The average re-
sults and the ROCs are shown in Table 2 and Fig. 6, respectively.

The recognition results demonstrate the robustness of the CTG-
faces for face recognition with illumination variations. The mani-
fold based methods (CTG, GEO and LPP) outperform linear
method, i.e., PCA. These findings also serve to back up the claims
of some previous works, e.g. [9,1], that manifold-based-approaches
are effective to recognize faces with illumination variations. Be-
sides, on the same manifold, the CTG outperforms both LPP and
GEO. The improvements may be ascribed to the robustness of com-
mute time metric for manifold learning. The recognition rate of SR
is about 4% lower than CTG in Yale-B dataset.

4.4.2. Occluded face recognition
Occluded face recognition is an important topic in computer vi-

sion [32]. The occlusions on the faces are always regarded as sparse
noises [28]. In this part, we will test the CTG method to recognize
the occluded faces in AR dataset.

(a) Face recognition results in Yale dataset. (b) Face recognition results in PIE dataset.

(c) Face recognition results in AR dataset. (d) Face recognition results in FERET.

Fig. 4. Recognition rate versus different feature dimensionality based on the four different datasets.

480 Y. Deng et al. / Computer Vision and Image Understanding 116 (2012) 473–483

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 19 / 21



Sparse Graphs

Outline

1 Setup of Classification Problems

2 Intermezzo: Classical Multidimensional Scaling

3 Commute-Time Guided Transformation

4 A Face Recognition Algorithm

5 Numerical Experiments and Some Results

6 Sparse Graphs

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 20 / 21



Sparse Graphs

Sparse Graphs
New graph construction methods that were proposed relatively
recently by H. Cheng et al. (2009) and by B. Cheng et al. (2010).
Influenced by the idea of compressed sensing.
`1-graph of B. Cheng et al. uses the sparse approximation of each x i

using all the other vectors X (i ) := [x1, . . . , x i−1, x i+1, . . . , xn] ∈Rd×(n−1)

via the following `1-minimization:

min
α(i )∈Rn−1

∥∥∥α(i )
∥∥∥
1

subject to x i = X (i )α(i ), i = 1, . . . ,n.

Then, if α(i )
j > 0, then set ai j = 1. So, `1-graph is a sparse unweighted

graph constructed from the input data vectors.
Sparseness Induced Graph (SIG) of H. Cheng et al. uses the same `1

sparse approximation, but assigns weights via:

ai j =
max

(
α(i )

j ,0
)

∑n−1
k=1 max

(
α(i )

k ,0
) .

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 21 / 21



Sparse Graphs

Sparse Graphs
New graph construction methods that were proposed relatively
recently by H. Cheng et al. (2009) and by B. Cheng et al. (2010).
Influenced by the idea of compressed sensing.
`1-graph of B. Cheng et al. uses the sparse approximation of each x i

using all the other vectors X (i ) := [x1, . . . , x i−1, x i+1, . . . , xn] ∈Rd×(n−1)

via the following `1-minimization:

min
α(i )∈Rn−1

∥∥∥α(i )
∥∥∥
1

subject to x i = X (i )α(i ), i = 1, . . . ,n.

Then, if α(i )
j > 0, then set ai j = 1. So, `1-graph is a sparse unweighted

graph constructed from the input data vectors.
Sparseness Induced Graph (SIG) of H. Cheng et al. uses the same `1

sparse approximation, but assigns weights via:

ai j =
max

(
α(i )

j ,0
)

∑n−1
k=1 max

(
α(i )

k ,0
) .

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 21 / 21



Sparse Graphs

Sparse Graphs
New graph construction methods that were proposed relatively
recently by H. Cheng et al. (2009) and by B. Cheng et al. (2010).
Influenced by the idea of compressed sensing.
`1-graph of B. Cheng et al. uses the sparse approximation of each x i

using all the other vectors X (i ) := [x1, . . . , x i−1, x i+1, . . . , xn] ∈Rd×(n−1)

via the following `1-minimization:

min
α(i )∈Rn−1

∥∥∥α(i )
∥∥∥
1

subject to x i = X (i )α(i ), i = 1, . . . ,n.

Then, if α(i )
j > 0, then set ai j = 1. So, `1-graph is a sparse unweighted

graph constructed from the input data vectors.
Sparseness Induced Graph (SIG) of H. Cheng et al. uses the same `1

sparse approximation, but assigns weights via:

ai j =
max

(
α(i )

j ,0
)

∑n−1
k=1 max

(
α(i )

k ,0
) .

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 21 / 21



Sparse Graphs

Sparse Graphs
New graph construction methods that were proposed relatively
recently by H. Cheng et al. (2009) and by B. Cheng et al. (2010).
Influenced by the idea of compressed sensing.
`1-graph of B. Cheng et al. uses the sparse approximation of each x i

using all the other vectors X (i ) := [x1, . . . , x i−1, x i+1, . . . , xn] ∈Rd×(n−1)

via the following `1-minimization:

min
α(i )∈Rn−1

∥∥∥α(i )
∥∥∥
1

subject to x i = X (i )α(i ), i = 1, . . . ,n.

Then, if α(i )
j > 0, then set ai j = 1. So, `1-graph is a sparse unweighted

graph constructed from the input data vectors.
Sparseness Induced Graph (SIG) of H. Cheng et al. uses the same `1

sparse approximation, but assigns weights via:

ai j =
max

(
α(i )

j ,0
)

∑n−1
k=1 max

(
α(i )

k ,0
) .

saito@math.ucdavis.edu (UC Davis) Distances on Graphs II 10/31/19 21 / 21


	Setup of Classification Problems
	Intermezzo: Classical Multidimensional Scaling
	Commute-Time Guided Transformation
	A Face Recognition Algorithm
	Numerical Experiments and Some Results
	Sparse Graphs

