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Problem Setup

@ This lecture is mainly based on the paper: Y. Deng, et al.: “Commute
time guided transformation for feature extraction,” Computer Vision &
Image Understanding, vol. 116, pp. 473-483, 2012.
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@ This lecture is mainly based on the paper: Y. Deng, et al.: “Commute
time guided transformation for feature extraction,” Computer Vision &
Image Understanding, vol. 116, pp. 473-483, 2012.

o Let X be the training data matrix, X := (x1,...,x,) € R4
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Problem Setup

@ This lecture is mainly based on the paper: Y. Deng, et al.: “Commute
time guided transformation for feature extraction,” Computer Vision &
Image Understanding, vol. 116, pp. 473-483, 2012.

@ Let X be the training data matrix, X := (x1,...,X5) e RY*",

o Let X := X(I,,— 1,1]/n), i.e., the centered data matrix (the mean of
the column vectors X is subtracted from each column vector).
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Problem Setup

@ This lecture is mainly based on the paper: Y. Deng, et al.: “Commute
time guided transformation for feature extraction,” Computer Vision &
Image Understanding, vol. 116, pp. 473-483, 2012.

@ Let X be the training data matrix, X := (x1,...,X5) e RY*",

o Let X := X(Ip—1,1},/n), i.e., the centered data matrix (the mean of
the column vectors X is subtracted from each column vector).

o Let ¥:R? - R® be a low-dimensional embedding map with s < d. Let
Z =(z1,...,2,) ERS*™ be the embedded training dataset using the
map ¥, i.e., Z=¥Y(X) = (¥(x1),..., ¥(x,)). An initial graph
G = G(V = X, E) using the training dataset X is built using either k-NN
graph with the Euclidean distances or with the Gaussian similarities, or
the sparse graphs (more about them later).
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Setup of Classification Problems

Aims

@ The main aims of this article are to answer the following natural
questions using the face image databases:
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Aims

@ The main aims of this article are to answer the following natural
questions using the face image databases:

o What embedding ¥ should be used so that the commute-time distance
c(x;,x;) and the squared Euclidean distance ||z; - z;|3 =:5?j are
preserved as much as possible after embedding?
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Setup of Classification Problems

Aims

@ The main aims of this article are to answer the following natural
questions using the face image databases:

o What embedding ¥ should be used so that the commute-time distance
c(x;,x;) and the squared Euclidean distance ||z; - z;|3 ::5?]. are
preserved as much as possible after embedding?

e How to conduct out-of-sample extension, i.e., once a graph is built
from a given training dataset X, how can we embed a new test sample
that has not been used to construct the graph? This consideration is
particularly important in classification and regression scenarios!
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Setup of Classification Problems

Aims

@ The main aims of this article are to answer the following natural
questions using the face image databases:

o What embedding ¥ should be used so that the commute-time distance
c(x;,x;) and the squared Euclidean distance ||z; - z;[5 = 52

preserved as much as possible after embedding?

e How to conduct out-of-sample extension, i.e., once a graph is built
from a given training dataset X, how can we embed a new test sample
that has not been used to construct the graph? This consideration is
particularly important in classification and regression scenarios!

@ The simplest idea for such an embedding is:
Veij—0ijll3,
Z ,zn}C[R Z” Cij 11”2

which is the so-called classical Multidimensional Scaling (MDS).
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Intermezzo: Classical Multidimensional Scaling

@ Is one of the earliest embedding techiniques (Torgerson, 1952)
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Intermezzo: Classical Multidimensional Scaling

@ Is one of the earliest embedding techiniques (Torgerson, 1952)
@ Originally, only dissimilarities (or similarities) among n objects are
given, not the objects {x;} themselves.
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Intermezzo: Classical Multidimensional Scaling

@ Is one of the earliest embedding techiniques (Torgerson, 1952)

@ Originally, only dissimilarities (or similarities) among n objects are
given, not the objects {x;} themselves.

e MDS is a visualization technique exploring dissimilarities (or
similarities) among such n objects.

@ More specifically, suppose the dissimilarity d;; betwen the ith and jth
objects is given, i,j=1,...,n. Then one possible version of classical
MDS embeds (or allocates) such n objects in R* such that

min Idij =615, 8ij=06(zi,2)) = lzi - zjll2.

{z1,...,2}CRS ij
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Intermezzo: Classical Multidimensional Scaling

@ Is one of the earliest embedding techiniques (Torgerson, 1952)

@ Originally, only dissimilarities (or similarities) among n objects are
given, not the objects {x;} themselves.

e MDS is a visualization technique exploring dissimilarities (or
similarities) among such n objects.

@ More specifically, suppose the dissimilarity d;; betwen the ith and jth
objects is given, i,j=1,...,n. Then one possible version of classical
MDS embeds (or allocates) such n objects in R* such that

{zh.I"I’lziBCms ) Ndij ~6jl5, 8ij=06(zi,2)) = lzi — zjll2.

1]
@ Unfortunately, there are two significant drawbacks.
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@ Is one of the earliest embedding techiniques (Torgerson, 1952)

@ Originally, only dissimilarities (or similarities) among n objects are
given, not the objects {x;} themselves.

e MDS is a visualization technique exploring dissimilarities (or
similarities) among such n objects.

@ More specifically, suppose the dissimilarity d;; betwen the ith and jth
objects is given, i,j=1,...,n. Then one possible version of classical
MDS embeds (or allocates) such n objects in R* such that

. 2
min ld;i—8;il 0;i=0(zi,zj))=lz;i—z]l?.
{Zh-.-,zn}CRsij 1] 12, iy i &j 14 J

@ Unfortunately, there are two significant drawbacks.
© No closed-form solution to the MDS optimization exists, and most of
them are based on iterative approaches => could be computationally
expensive and get stuck at local minima.
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Intermezzo: Classical Multidimensional Scaling

@ Is one of the earliest embedding techiniques (Torgerson, 1952)

@ Originally, only dissimilarities (or similarities) among n objects are
given, not the objects {x;} themselves.

e MDS is a visualization technique exploring dissimilarities (or
similarities) among such n objects.

@ More specifically, suppose the dissimilarity d;; betwen the ith and jth
objects is given, i,j=1,...,n. Then one possible version of classical
MDS embeds (or allocates) such n objects in R* such that

. 2
min ld;i—8;il 0;i=0(zi,zj))=lz;i—z]l?.
{Zh-.-,zn}CRsij 1] 12, iy i &j 14 J

@ Unfortunately, there are two significant drawbacks.
© No closed-form solution to the MDS optimization exists, and most of
them are based on iterative approaches => could be computationally
expensive and get stuck at local minima.

@ It is graph-dependent, i.e., all the data including the test samples must
be used to contruct an initial graph, which is often infeasible.
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Intermezzo: Classical MDS + Input Data Vectors = PCA

@ One simplification happens if instead of just similarities among objects actual
n objects are given as a set of column vectors of X = (x1,...,%,) € R4,
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@ One simplification happens if instead of just similarities among objects actual
n objects are given as a set of column vectors of X = (x1,...,%,) € R4,

@ Define the similarity between x; and x; by the centered correlation

a(x;,xj) = (x; - %) (x; - X).
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@ One simplification happens if instead of just similarities among objects actual
n objects are given as a set of column vectors of X = (x1,...,%,) € R4,

@ Define the similarity between x; and x; by the centered correlation
a(x;,x;) = (x; %) (x; —%).

@ Suppose the centered correlation is also used to measure the similarity
among the embedded objects z; =¥ (x;) eR®, i =1,...,n.
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Intermezzo: Classical MDS + Input Data Vectors = PCA

@ One simplification happens if instead of just similarities among objects actual
n objects are given as a set of column vectors of X = (x1,...,%,) € R4,

@ Define the similarity between x; and x; by the centered correlation
a(x;,x;) = (x; %) (x; —%).

@ Suppose the centered correlation is also used to measure the similarity
among the embedded objects z; =¥ (x;) eR®, i =1,...,n.

@ Then, the classical MDS seeks the mapping W that minimizes:

Jos(W) = Y (@i, x)) — a(P(x), Y(x )2 = | XX -w(X) w7
i,j
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Intermezzo: Classical MDS + Input Data Vectors = PCA

@ One simplification happens if instead of just similarities among objects actual
n objects are given as a set of column vectors of X = (x1,...,%,) € R4,

@ Define the similarity between x; and x; by the centered correlation
a(x;,xj) = (x; - %) (x; - X).
@ Suppose the centered correlation is also used to measure the similarity
among the embedded objects z; =¥ (x;) eR®, i =1,...,n.

@ Then, the classical MDS seeks the mapping W that minimizes:

Jos(W) = Y (@i, x)) — a(P(x), Y(x )2 = | XX -w(X) w7
ij
@ We can find this map using the SVD of X =UZVT as
Y(X)=Ul X =3,Vy,
where U and V; correpond to the first s left and right singular vectors, and

T contains the corresponding singular values. This is exactly the same as
using the first s components of PCA!
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@ One simplification happens if instead of just similarities among objects actual
n objects are given as a set of column vectors of X = (x1,...,%,) € R4,

@ Define the similarity between x; and x; by the centered correlation
a(x;,xj) = (x; - %) (x; - X).
@ Suppose the centered correlation is also used to measure the similarity
among the embedded objects z; =¥ (x;) eR®, i =1,...,n.

@ Then, the classical MDS seeks the mapping W that minimizes:

Jos(W) = Y (@i, x)) — a(P(x), Y(x )2 = | XX -w(X) w7
ij
@ We can find this map using the SVD of X =UZVT as
Y(X)=Ul X =3,Vy,
where U and V; correpond to the first s left and right singular vectors, and

T contains the corresponding singular values. This is exactly the same as
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Commute-Time Guided Transformation

Commute-Time Guided Transformation

@ Recap: the classical MDS trying to preserve the commute-time
distances is difficult to compute.
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guided transformation.”
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Commute-Time Guided Transformation

Commute-Time Guided Transformation

@ Recap: the classical MDS trying to preserve the commute-time
distances is difficult to compute.

@ Hence, Deng et al. introduced a new notion called “commute-time
guided transformation.”

e Find a unitary matrix ¥ :R? — R that minimizes:

62. IPTx; —WTx; |2
1 1
Jerg(W) := Z—J =) 12,
ij Cij i Cij
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Commute-Time Guided Transformation

Commute-Time Guided Transformation

@ Recap: the classical MDS trying to preserve the commute-time
distances is difficult to compute.

@ Hence, Deng et al. introduced a new notion called “commute-time
guided transformation.”

e Find a unitary matrix ¥ :R? — R that minimizes:

0% Iy — W13
Jera(W) :=Zl=z l 12,
ij Cij i Cij

o If ¢;j is small, then §;; should also be small enough to minimize
Jerc(W). A small ¢;; with a large §;; may be penalized.
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Commute-Time Guided Transformation

Commute-Time Guided Transformation

@ Recap: the classical MDS trying to preserve the commute-time
distances is difficult to compute.

@ Hence, Deng et al. introduced a new notion called “commute-time
guided transformation.”

e Find a unitary matrix ¥ :R? — R that minimizes:

0% Iy — W13
Jera(W) :=Zl=z l 12,
ij Cij i Cij

o If ¢;j is small, then §;; should also be small enough to minimize
Jerc(W). A small ¢;; with a large §;; may be penalized.

@ On the other hand, if ¢;; is large, then it allows a comparably large §;;
in RS,
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Commute-Time Guided Transformation

Commute-Time Guided Transformation

@ Recap: the classical MDS trying to preserve the commute-time
distances is difficult to compute.

@ Hence, Deng et al. introduced a new notion called “commute-time
guided transformation.”

e Find a unitary matrix ¥ :R? — R that minimizes:

0% IVTx— W13
JereW) =Y L =% ’ 12,
ij Cij i Cij

o If ¢;j is small, then §;; should also be small enough to minimize
Jerc(W). A small ¢;; with a large §;; may be penalized.

@ On the other hand, if ¢;; is large, then it allows a comparably large §;;
in RS

@ In other words, the value of ¢;; is used as a penalty to guide the
optimization of Jorg(¥); hence the name: the “commute-time guided
transformation.”
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Commute-Time Guided Transformation

Commute-Time Guided Transformation . ..
Jerg (W) can be simplified using matrices and trace:

Jera(¥)

e[ (PT W) (P - )]
L]

i Ci. l,] Cl]
= 2 [V XT-KX"Y],

where ¢;. := ¥ cij, K:= (1/¢;j), and T := diag(1/cy., ..., 1/ cpa).
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Commute-Time Guided Transformation

Commute-Time Guided Transformation . ..
Jerg (W) can be simplified using matrices and trace:

Jerg(¥) = ). %tr RETRREDICETTRETN
i,j Yij

= tr|)
L

(‘I’Txi - ‘I”ij) (‘PTxi - \I’ij)T

Cl'j
5 Wixx] ¥ 5 Vxixi ¥

i Cie ij  Cij
= 2 [V XT-KX"Y],

= 2tr

via symmetry

where ¢;. := ¥ cij, K:= (1/¢;j), and T := diag(1/cy., ..., 1/ cpa).

The larger the T';; is, the more important the ith vertex (i.e., the data
vector x;) and its embedded point z; become for the minimization
problem.
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Commute-Time Guided Transformation . ..

@ With the constraints ZI'Z" = I, we have the following constrained
minimization problem:

min [P XT-KX"¥] subject to YV'XITX'¥ = I,
WeRd*s;, wTW=]
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Commute-Time Guided Transformation . ..

@ With the constraints ZI'Z" = I, we have the following constrained
minimization problem:

min [P XT-KX"¥] subject to YV'XITX'¥ = I,
WeRd*s;, wTW=]

@ This can be solved by the method of Lagrange multipliers as follows:
Jerg (P, A) = [¥TXT-KX V|- (A Y XTX"V-1I),

where A € R¥*S is a diagonal matrix containing the Lagrange multipliers.
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Commute-Time Guided Transformation

Commute-Time Guided Transformation . ..

@ With the constraints ZI'Z" = I, we have the following constrained
minimization problem:

min  tr[Y'XT-K)X'¥] subject to VTXTX"V = I,
WeRd*s;, wTW=]

@ This can be solved by the method of Lagrange multipliers as follows:
Jerg (W, A) = [PTXT-KX V] - (AYXTXY - I),
where A € R¥*S is a diagonal matrix containing the Lagrange multipliers.

@ Setting Vy Jorg(¥,A) =0 leads to the following generalized eigenvalue
problem:

XT-KX'W=XTX"WA, e, Py;=1;Qy; j=1,...,s.
P Q
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@ With the constraints ZI'Z" = I, we have the following constrained
minimization problem:

min  tr[Y'XT-K)X'¥] subject to VTXTX"V = I,
WeRd*s;, wTW=]

@ This can be solved by the method of Lagrange multipliers as follows:
Jerg (W, A) = [PTXT-KX V] - (AYXTXY - I),
where A € R¥*S is a diagonal matrix containing the Lagrange multipliers.

@ Setting Vy Jorg(¥,A) =0 leads to the following generalized eigenvalue
problem:

XT-KX'W=XTX"WA, e, Py;=1;Qy; j=1,...,s.
P Q

@ Compare this with the Locality Preserving Projection (LPP) of He and
Niyogi (a.k.a. Laplacianfaces): XLX™¥ = XDX"WA.
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Commute-Time Guided Transformation

Commute-Time Guided Transformation . ..

With the constraints ZT'Z" = I, we have the following constrained
minimization problem:

min  tr[Y'XT-K)X'¥] subject to VTXTX"V = I,
WeRd*s;, wTW=]

This can be solved by the method of Lagrange multipliers as follows:
Jerg (W, A) = [PTXT-KX V] - (AYXTXY - I),
where A € R¥*S is a diagonal matrix containing the Lagrange multipliers.

Setting Vy Jerg (¥, A) =0 leads to the following generalized eigenvalue
problem:

XT-KX'W=XTX"WA, e, Py;=1;Qy; j=1,...,s.
P Q

Compare this with the Locality Preserving Projection (LPP) of He and
Niyogi (a.k.a. Laplacianfaces): XLX™¥ = XDX"WA.

Hence, the correspondence: A e K, i.e., a;; < 1/¢;j.
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@ A Face Recognition Algorithm
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A Face Recognition Algorithm

o Input: Training faces X € R%*"; Test faces Y € R4*™.
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A Face Recognition Algorithm

o Input: Training faces X € R%*"; Test faces Y € R4*™.
e Training:
© Build a graph G from X;
@ Compute the commute-time matrix C = (c;;) using LT(G).
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A Face Recognition Algorithm

o Input: Training faces X € R%*"; Test faces Y € R4*™.

e Training:
© Build a graph G from X;
@ Compute the commute-time matrix C = (c;;) using LYG).
© Compute matrices K and T'.
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© Embed the training faces via Z=¥TX.
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e Training:
© Build a graph G from X;
@ Compute the commute-time matrix C = (c;;) using LY.
© Compute matrices K and T'.
@ Solve the above generalized eigenvalue problem to obtain W e R4S,
© Embed the training faces via Z=¥TX.

@ Recognition/Test:
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A Face Recognition Algorithm

o Input: Training faces X € R%*"; Test faces Y € R4*™.
e Training:
© Build a graph G from X;
@ Compute the commute-time matrix C = (c;;) using LY.
© Compute matrices K and T'.
@ Solve the above generalized eigenvalue problem to obtain W e R4S,
© Embed the training faces via Z=¥TX.
@ Recognition/Test:
@ Embed the test faces via Y = (vy,...,v,,) =PTY.
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A Face Recognition Algorithm

e Input: Training faces X € R4*"; Test faces Y € R?*™,
e Training:
© Build a graph G from X;
@ Compute the commute-time matrix C = (c;;) using LY.
© Compute matrices K and T'.
@ Solve the above generalized eigenvalue problem to obtain W € R4S,
© Embed the training faces via Z=¥TX.

@ Recognition/Test:

@ Embed the test faces via Y = (vy,...,v,,) =¥'Y.

@ For k=1:m do select the nearest neighbor of v; from the embedded
training faces Z using the ¢?-distance in the embedded space R®. Then
assign its label to vg.
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A Face Recognition Algorithm

e Input: Training faces X € R4*"; Test faces Y € R?*™,
e Training:
© Build a graph G from X;
@ Compute the commute-time matrix C = (c;;) using LY.
© Compute matrices K and T'.
@ Solve the above generalized eigenvalue problem to obtain W € R4S,
© Embed the training faces via Z=¥TX.

@ Recognition/Test:

@ Embed the test faces via Y = (vy,...,v,,) =¥'Y.

@ For k=1:m do select the nearest neighbor of v; from the embedded
training faces Z using the ¢?-distance in the embedded space R®. Then
assign its label to vg.

@ Output: The list of labels of the test faces.
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© Numerical Experiments and Some Results
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Numerical Experiments

@ Face recognition rates over four different face databases were
computed.
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@ Face recognition rates over four different face databases were
computed.

o Yale face dataset: 165 faces of 15 individuals with various lighting
conditions.
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@ Face recognition rates over four different face databases were
computed.

o Yale face dataset: 165 faces of 15 individuals with various lighting
conditions.

o CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose,
illumination, expression.

o AR dataset: over 4,000 faces of 126 individuals with varying
illumination, expression, and occlusion.

e FERET dataset: From NIST. More than 1,100 individuals with varying
pose, illumination, expression.

o Each face image was preprocessed, e.g., color — grayscale;
normalization to 64 x 64 pixel resolution; histogram equalization, ...

o Compared methods include: PCA, LDA, NMF (nonnegative matrix
factorization), SR (sparse representation), LPP (locality preserving
projection), GEO (geodesic projection), and CTG (commute-time
guided transformation).
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@ For each face database, 50% of the faces (randomly selected) are used
as the training faces, and the rest as the test faces.

@ Repeat such random selection of the training faces and recognition of
test faces 10 times for each method in each face database.

@ For graph-based methods, k-NN graphs and sparse graphs were used.

@ k of the k-NN graphs was fixed to be k= n,—1 where n; is the
average number of training samples for one individual.

@ Various values of the dimension of the embedded space (or feature
dimensionality) s were tested.
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B

(a) Eigen-faces

(c) Laplacian-faces

(d) CTG-faces

Fig. 2. The first six projections extracted from the Yale dataset based on (a) PCA, (b) LDA, (c) LPP, and (d) CTG.
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(a) Face recognition results in Yale dataset. (b) Face recognition results in PIE dataset.
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(c) Face recognition results in AR dataset. (d) Face recognition results in FERET.

Fig. 4. Recognition rate versus different feature dimensionality based on the four different datasets.
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Sparse Graphs

@ New graph construction methods that were proposed relatively
recently by H. Cheng et al. (2009) and by B. Cheng et al. (2010).
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Sparse Graphs

@ New graph construction methods that were proposed relatively
recently by H. Cheng et al. (2009) and by B. Cheng et al. (2010).

@ Influenced by the idea of compressed sensing.

e ('-graph of B. Cheng et al. uses the sparse approximation of each x;
using all the other vectors X := [x1,...,%i_1,Xi+1,..., X,) € RX("1)
via the following #!-minimization:

min
aeRn-1
Then, if ay) >0, then set a;;=1. So, ¢!-graph is a sparse unweighted
graph constructed from the input data vectors.

al? “1 subject to x; = XD i=1,... n
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@ Influenced by the idea of compressed sensing.

e ('-graph of B. Cheng et al. uses the sparse approximation of each x;
using all the other vectors X := [x1,...,%i_1,Xi+1,..., X,) € RX("1)
via the following #!-minimization:

min
aeRn-1

al? “1 subject to x; = XD i=1,... n

Then, if a;") >0, then set a;;=1. So, ¢!-graph is a sparse unweighted
graph constructed from the input data vectors.

e Sparseness Induced Graph (SIG) of H. Cheng et al. uses the same ¢!
sparse approximation, but assigns weights via:

max (a;.i ) s 0)

Yz %max( () 0)
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