MAT 280: Harmonic Analysis on Graphs \& Networks Lecture 11: Distances on Graphs II: Applications of Commute-Time Distances

Naoki Saito

Department of Mathematics
University of California, Davis

October 31, 2019

Outline

(1) Setup of Classification Problems
(2) Intermezzo: Classical Multidimensional Scaling
(3) Commute-Time Guided Transformation
(4) A Face Recognition Algorithm
(5) Numerical Experiments and Some Results
(6) Sparse Graphs

Outline

(1) Setup of Classification Problems
(2) Intermezzo: Classical Multidimensional Scaling
(3) Commute-Time Guided Transformation
4. A Face Recognition Algorithm
(5) Numerical Experiments and Some Results
(6) Sparse Graphs

Problem Setup

- This lecture is mainly based on the paper: Y. Deng, et al.: "Commute time guided transformation for feature extraction," Computer Vision \& Image Understanding, vol. 116, pp. 473-483, 2012.

Problem Setup

- This lecture is mainly based on the paper: Y. Deng, et al.: "Commute time guided transformation for feature extraction," Computer Vision \& Image Understanding, vol. 116, pp. 473-483, 2012.
- Let X be the training data matrix, $X:=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \in \mathbb{R}^{d \times n}$.

Problem Setup

- This lecture is mainly based on the paper: Y. Deng, et al.: "Commute time guided transformation for feature extraction," Computer Vision \& Image Understanding, vol. 116, pp. 473-483, 2012.
- Let X be the training data matrix, $X:=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \in \mathbb{R}^{d \times n}$.
- Let $\widetilde{X}:=X\left(I_{n}-\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n\right)$, i.e., the centered data matrix (the mean of the column vectors $\overline{\boldsymbol{x}}$ is subtracted from each column vector).

Problem Setup

- This lecture is mainly based on the paper: Y. Deng, et al.: "Commute time guided transformation for feature extraction," Computer Vision \& Image Understanding, vol. 116, pp. 473-483, 2012.
- Let X be the training data matrix, $X:=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \in \mathbb{R}^{d \times n}$.
- Let $\widetilde{X}:=X\left(I_{n}-\mathbf{1}_{n} \mathbf{1}_{n}^{\top} / n\right)$, i.e., the centered data matrix (the mean of the column vectors $\overline{\boldsymbol{x}}$ is subtracted from each column vector).
- Let $\Psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ be a low-dimensional embedding map with $s \ll d$. Let $Z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{R}^{s \times n}$ be the embedded training dataset using the $\operatorname{map} \Psi$, i.e., $Z=\Psi(X)=\left(\Psi\left(\boldsymbol{x}_{1}\right), \ldots, \Psi\left(\boldsymbol{x}_{n}\right)\right)$. An initial graph $G=G(V=X, E)$ using the training dataset X is built using either k-NN graph with the Euclidean distances or with the Gaussian similarities, or the sparse graphs (more about them later).

Aims

- The main aims of this article are to answer the following natural questions using the face image databases:

Aims

- The main aims of this article are to answer the following natural questions using the face image databases:
- What embedding Ψ should be used so that the commute-time distance $c\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$ and the squared Euclidean distance $\left\|\boldsymbol{z}_{i}-\boldsymbol{z}_{j}\right\|_{2}^{2}=: \delta_{i j}^{2}$ are preserved as much as possible after embedding?

Aims

- The main aims of this article are to answer the following natural questions using the face image databases:
- What embedding Ψ should be used so that the commute-time distance $c\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$ and the squared Euclidean distance $\left\|\boldsymbol{z}_{i}-\boldsymbol{z}_{j}\right\|_{2}^{2}=: \delta_{i j}^{2}$ are preserved as much as possible after embedding?
- How to conduct out-of-sample extension, i.e., once a graph is built from a given training dataset X, how can we embed a new test sample that has not been used to construct the graph? This consideration is particularly important in classification and regression scenarios!

Aims

- The main aims of this article are to answer the following natural questions using the face image databases:
- What embedding Ψ should be used so that the commute-time distance $c\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)$ and the squared Euclidean distance $\left\|\boldsymbol{z}_{i}-\boldsymbol{z}_{j}\right\|_{2}^{2}=: \delta_{i j}^{2}$ are preserved as much as possible after embedding?
- How to conduct out-of-sample extension, i.e., once a graph is built from a given training dataset X, how can we embed a new test sample that has not been used to construct the graph? This consideration is particularly important in classification and regression scenarios!
- The simplest idea for such an embedding is:

$$
\min _{\left\{z_{1}, \ldots, z_{n}\right\} \subset \mathbb{R}^{s}} \sum_{i, j}\left\|\sqrt{c_{i j}}-\delta_{i j}\right\|_{2}^{2}
$$

which is the so-called classical Multidimensional Scaling (MDS).

Outline

(1) Setup of Classification Problems

(2) Intermezzo: Classical Multidimensional Scaling
(3) Commute-Time Guided Transformation
(4) A Face Recognition Algorithm
© Numerical Experiments and Some Results
6 Sparse Graphs

Intermezzo: Classical Multidimensional Scaling

- Is one of the earliest embedding techiniques (Torgerson, 1952)
- Originally, only dissimilarities (or similarities) among n objects are
given, not the objects $\left\{x_{i}\right\}$ themselves.
MDS is a visualization technique exploring dissimilarities (or
- More specifically, suppose the dissimilarity $d_{i j}$ betwen the i th and j th
objects is given, $i, j=1, \ldots, n$. Then one possible version of classical
MDS embeds (or allocates) such n objects in \mathbb{R}^{s} such that
- Unfortunately, there are two significant drawbacks.

Intermezzo: Classical Multidimensional Scaling

- Is one of the earliest embedding techiniques (Torgerson, 1952)
- Originally, only dissimilarities (or similarities) among n objects are given, not the objects $\left\{\boldsymbol{x}_{i}\right\}$ themselves.
- Unfortunately, there are two significant drawbacks.

Intermezzo: Classical Multidimensional Scaling

- Is one of the earliest embedding techiniques (Torgerson, 1952)
- Originally, only dissimilarities (or similarities) among n objects are given, not the objects $\left\{\boldsymbol{x}_{i}\right\}$ themselves.
- MDS is a visualization technique exploring dissimilarities (or similarities) among such n objects.
- Unfortunately, there are two significant drawbacks.

Intermezzo: Classical Multidimensional Scaling

- Is one of the earliest embedding techiniques (Torgerson, 1952)
- Originally, only dissimilarities (or similarities) among n objects are given, not the objects $\left\{\boldsymbol{x}_{i}\right\}$ themselves.
- MDS is a visualization technique exploring dissimilarities (or similarities) among such n objects.
- More specifically, suppose the dissimilarity $d_{i j}$ betwen the i th and j th objects is given, $i, j=1, \ldots, n$. Then one possible version of classical MDS embeds (or allocates) such n objects in \mathbb{R}^{s} such that

$$
\min _{\left\{z_{1}, \ldots, z_{n}\right\} \subset \mathbb{R}^{s}} \sum_{i, j}\left\|d_{i j}-\delta_{i j}\right\|_{2}^{2}, \quad \delta_{i j}=\delta\left(z_{i}, z_{j}\right)=\left\|z_{i}-z_{j}\right\|_{2} .
$$

Intermezzo: Classical Multidimensional Scaling

- Is one of the earliest embedding techiniques (Torgerson, 1952)
- Originally, only dissimilarities (or similarities) among n objects are given, not the objects $\left\{\boldsymbol{x}_{i}\right\}$ themselves.
- MDS is a visualization technique exploring dissimilarities (or similarities) among such n objects.
- More specifically, suppose the dissimilarity $d_{i j}$ betwen the i th and j th objects is given, $i, j=1, \ldots, n$. Then one possible version of classical MDS embeds (or allocates) such n objects in \mathbb{R}^{s} such that

$$
\min _{\left\{z_{1}, \ldots, z_{n}\right\} \subset \mathbb{R}^{s}} \sum_{i, j}\left\|d_{i j}-\delta_{i j}\right\|_{2}^{2}, \quad \delta_{i j}=\delta\left(z_{i}, z_{j}\right)=\left\|z_{i}-z_{j}\right\|_{2} .
$$

- Unfortunately, there are two significant drawbacks.

Intermezzo: Classical Multidimensional Scaling

- Is one of the earliest embedding techiniques (Torgerson, 1952)
- Originally, only dissimilarities (or similarities) among n objects are given, not the objects $\left\{\boldsymbol{x}_{i}\right\}$ themselves.
- MDS is a visualization technique exploring dissimilarities (or similarities) among such n objects.
- More specifically, suppose the dissimilarity $d_{i j}$ betwen the i th and j th objects is given, $i, j=1, \ldots, n$. Then one possible version of classical MDS embeds (or allocates) such n objects in \mathbb{R}^{s} such that

$$
\min _{\left\{z_{1}, . ., z_{n}\right\} \subset \mathbb{R}^{s}} \sum_{i, j}\left\|d_{i j}-\delta_{i j}\right\|_{2}^{2}, \quad \delta_{i j}=\delta\left(z_{i}, z_{j}\right)=\left\|z_{i}-z_{j}\right\|_{2} .
$$

- Unfortunately, there are two significant drawbacks.
(1) No closed-form solution to the MDS optimization exists, and most of them are based on iterative approaches \Rightarrow could be computationally expensive and get stuck at local minima.

Intermezzo: Classical Multidimensional Scaling

- Is one of the earliest embedding techiniques (Torgerson, 1952)
- Originally, only dissimilarities (or similarities) among n objects are given, not the objects $\left\{\boldsymbol{x}_{i}\right\}$ themselves.
- MDS is a visualization technique exploring dissimilarities (or similarities) among such n objects.
- More specifically, suppose the dissimilarity $d_{i j}$ betwen the i th and j th objects is given, $i, j=1, \ldots, n$. Then one possible version of classical MDS embeds (or allocates) such n objects in \mathbb{R}^{s} such that

$$
\min _{\left\{z_{1}, . ., z_{n}\right\} \subset \mathbb{R}^{s}} \sum_{i, j}\left\|d_{i j}-\delta_{i j}\right\|_{2}^{2}, \quad \delta_{i j}=\delta\left(z_{i}, z_{j}\right)=\left\|z_{i}-z_{j}\right\|_{2} .
$$

- Unfortunately, there are two significant drawbacks.
(1) No closed-form solution to the MDS optimization exists, and most of them are based on iterative approaches \Rightarrow could be computationally expensive and get stuck at local minima.
(2) It is graph-dependent, i.e., all the data including the test samples must be used to contruct an initial graph, which is often infeasible.

Intermezzo: Classical MDS + Input Data Vectors \equiv PCA

- One simplification happens if instead of just similarities among objects actual n objects are given as a set of column vectors of $X=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \in \mathbb{R}^{d \times n}$.

Intermezzo: Classical MDS + Input Data Vectors \equiv PCA

- One simplification happens if instead of just similarities among objects actual n objects are given as a set of column vectors of $X=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \in \mathbb{R}^{d \times n}$.
- Define the similarity between \boldsymbol{x}_{i} and \boldsymbol{x}_{j} by the centered correlation

$$
\alpha\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right):=\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{\top}\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right) .
$$

Intermezzo: Classical MDS + Input Data Vectors \equiv PCA

- One simplification happens if instead of just similarities among objects actual n objects are given as a set of column vectors of $X=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \in \mathbb{R}^{d \times n}$.
- Define the similarity between \boldsymbol{x}_{i} and \boldsymbol{x}_{j} by the centered correlation

$$
\alpha\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right):=\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{\top}\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right) .
$$

- Suppose the centered correlation is also used to measure the similarity among the embedded objects $z_{i}=\Psi\left(\boldsymbol{x}_{i}\right) \in \mathbb{R}^{\mathcal{S}}, i=1, \ldots, n$.

Intermezzo: Classical MDS + Input Data Vectors \equiv PCA

- One simplification happens if instead of just similarities among objects actual n objects are given as a set of column vectors of $X=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \in \mathbb{R}^{d \times n}$.
- Define the similarity between \boldsymbol{x}_{i} and \boldsymbol{x}_{j} by the centered correlation

$$
\alpha\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right):=\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{\top}\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right) .
$$

- Suppose the centered correlation is also used to measure the similarity among the embedded objects $z_{i}=\Psi\left(\boldsymbol{x}_{i}\right) \in \mathbb{R}^{s}, i=1, \ldots, n$.
- Then, the classical MDS seeks the mapping Ψ that minimizes:

$$
J_{\mathrm{CS}}(\Psi):=\sum_{i, j}\left(\alpha\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-\alpha\left(\Psi\left(\boldsymbol{x}_{i}\right), \Psi\left(\boldsymbol{x}_{j}\right)\right)\right)^{2}=\left\|\tilde{X}^{\top} \widetilde{X}-\Psi(\widetilde{X})^{\top} \Psi(\widetilde{X})\right\|_{F}^{2} .
$$

Intermezzo: Classical MDS + Input Data Vectors \equiv PCA

- One simplification happens if instead of just similarities among objects actual n objects are given as a set of column vectors of $X=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \in \mathbb{R}^{d \times n}$.
- Define the similarity between \boldsymbol{x}_{i} and \boldsymbol{x}_{j} by the centered correlation

$$
\alpha\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right):=\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{\top}\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right) .
$$

- Suppose the centered correlation is also used to measure the similarity among the embedded objects $z_{i}=\Psi\left(\boldsymbol{x}_{i}\right) \in \mathbb{R}^{s}, i=1, \ldots, n$.
- Then, the classical MDS seeks the mapping Ψ that minimizes:

$$
J_{\mathrm{CS}}(\Psi):=\sum_{i, j}\left(\alpha\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-\alpha\left(\Psi\left(\boldsymbol{x}_{i}\right), \Psi\left(\boldsymbol{x}_{j}\right)\right)\right)^{2}=\left\|\widetilde{X}^{\top} \widetilde{X}-\Psi(\widetilde{X})^{\top} \Psi(\widetilde{X})\right\|_{F}^{2} .
$$

- We can find this map using the SVD of $\tilde{X}=U \Sigma V^{\top}$ as

$$
\Psi(\widetilde{X})=U_{s}^{\top} \widetilde{X}=\Sigma_{s} V_{s}^{\top},
$$

where U_{s} and V_{s} correpond to the first s left and right singular vectors, and Σ_{s} contains the corresponding singular values. This is exactly the same as using the first s components of PCA!

Intermezzo: Classical MDS + Input Data Vectors \equiv PCA

- One simplification happens if instead of just similarities among objects actual n objects are given as a set of column vectors of $X=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right) \in \mathbb{R}^{d \times n}$.
- Define the similarity between \boldsymbol{x}_{i} and \boldsymbol{x}_{j} by the centered correlation

$$
\alpha\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right):=\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{\top}\left(\boldsymbol{x}_{j}-\overline{\boldsymbol{x}}\right) .
$$

- Suppose the centered correlation is also used to measure the similarity among the embedded objects $z_{i}=\Psi\left(\boldsymbol{x}_{i}\right) \in \mathbb{R}^{s}, i=1, \ldots, n$.
- Then, the classical MDS seeks the mapping Ψ that minimizes:

$$
J_{\mathrm{CS}}(\Psi):=\sum_{i, j}\left(\alpha\left(\boldsymbol{x}_{i}, \boldsymbol{x}_{j}\right)-\alpha\left(\Psi\left(\boldsymbol{x}_{i}\right), \Psi\left(\boldsymbol{x}_{j}\right)\right)\right)^{2}=\left\|\widetilde{X}^{\top} \widetilde{X}-\Psi(\widetilde{X})^{\top} \Psi(\widetilde{X})\right\|_{F}^{2} .
$$

- We can find this map using the SVD of $\tilde{X}=U \Sigma V^{\top}$ as

$$
\Psi(\widetilde{X})=U_{s}^{\top} \widetilde{X}=\Sigma_{s} V_{s}^{\top},
$$

where U_{s} and V_{s} correpond to the first s left and right singular vectors, and Σ_{s} contains the corresponding singular values. This is exactly the same as using the first s components of PCA!

Outline

(1) Setup of Classification Problems

(2) Intermezzo: Classical Multidimensional Scaling
(3) Commute-Time Guided Transformation

4 A Face Recognition Algorithm
(5) Numerical Experiments and Some Results

C0 Sparse Graphs

Commute-Time Guided Transformation

- Recap: the classical MDS trying to preserve the commute-time distances is difficult to compute.
guided transformation.

Commute-Time Guided Transformation

- Recap: the classical MDS trying to preserve the commute-time distances is difficult to compute.
- Hence, Deng et al. introduced a new notion called "commute-time guided transformation."

Commute-Time Guided Transformation

- Recap: the classical MDS trying to preserve the commute-time distances is difficult to compute.
- Hence, Deng et al. introduced a new notion called "commute-time guided transformation."
- Find a unitary matrix $\Psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ that minimizes:

$$
J_{C T G}(\Psi):=\sum_{i, j} \frac{\delta_{i j}^{2}}{c_{i j}}=\sum_{i, j} \frac{\left\|\Psi^{\top} \boldsymbol{x}_{i}-\Psi^{\top} \boldsymbol{x}_{j}\right\|_{2}^{2}}{c_{i j}}
$$

Commute-Time Guided Transformation

- Recap: the classical MDS trying to preserve the commute-time distances is difficult to compute.
- Hence, Deng et al. introduced a new notion called "commute-time guided transformation."
- Find a unitary matrix $\Psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ that minimizes:

$$
J_{C T G}(\Psi):=\sum_{i, j} \frac{\delta_{i j}^{2}}{c_{i j}}=\sum_{i, j} \frac{\left\|\Psi^{\top} \boldsymbol{x}_{i}-\Psi^{\top} \boldsymbol{x}_{j}\right\|_{2}^{2}}{c_{i j}} .
$$

- If $c_{i j}$ is small, then $\delta_{i j}$ should also be small enough to minimize $J_{C T G}(\Psi)$. A small $c_{i j}$ with a large $\delta_{i j}$ may be penalized.

Commute-Time Guided Transformation

- Recap: the classical MDS trying to preserve the commute-time distances is difficult to compute.
- Hence, Deng et al. introduced a new notion called "commute-time guided transformation."
- Find a unitary matrix $\Psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ that minimizes:

$$
J_{C T G}(\Psi):=\sum_{i, j} \frac{\delta_{i j}^{2}}{c_{i j}}=\sum_{i, j} \frac{\left\|\Psi^{\top} \boldsymbol{x}_{i}-\Psi^{\top} \boldsymbol{x}_{j}\right\|_{2}^{2}}{c_{i j}} .
$$

- If $c_{i j}$ is small, then $\delta_{i j}$ should also be small enough to minimize $J_{C T G}(\Psi)$. A small $c_{i j}$ with a large $\delta_{i j}$ may be penalized.
- On the other hand, if $c_{i j}$ is large, then it allows a comparably large $\delta_{i j}$ in \mathbb{R}^{s}.

Commute-Time Guided Transformation

- Recap: the classical MDS trying to preserve the commute-time distances is difficult to compute.
- Hence, Deng et al. introduced a new notion called "commute-time guided transformation."
- Find a unitary matrix $\Psi: \mathbb{R}^{d} \rightarrow \mathbb{R}^{s}$ that minimizes:

$$
J_{C T G}(\Psi):=\sum_{i, j} \frac{\delta_{i j}^{2}}{c_{i j}}=\sum_{i, j} \frac{\left\|\Psi^{\top} \boldsymbol{x}_{i}-\Psi^{\top} \boldsymbol{x}_{j}\right\|_{2}^{2}}{c_{i j}}
$$

- If $c_{i j}$ is small, then $\delta_{i j}$ should also be small enough to minimize $J_{C T G}(\Psi)$. A small $c_{i j}$ with a large $\delta_{i j}$ may be penalized.
- On the other hand, if $c_{i j}$ is large, then it allows a comparably large $\delta_{i j}$ in \mathbb{R}^{s}.
- In other words, the value of $c_{i j}$ is used as a penalty to guide the optimization of $J_{C T G}(\Psi)$; hence the name: the "commute-time guided transformation."

Commute-Time Guided Transformation

$J_{C T G}(\Psi)$ can be simplified using matrices and trace:

$$
\begin{aligned}
J_{C T G}(\Psi) & =\sum_{i, j} \frac{1}{c_{i j}} \operatorname{tr}\left[\left(\Psi^{\top} \boldsymbol{x}_{i}-\Psi^{\top} \boldsymbol{x}_{j}\right)\left(\Psi^{\top} \boldsymbol{x}_{i}-\Psi^{\top} \boldsymbol{x}_{j}\right)^{\top}\right] \\
& =\operatorname{tr}\left[\sum_{i, j} \frac{\left.\left(\Psi^{\top} \boldsymbol{x}_{i}-\Psi^{\top} \boldsymbol{x}_{j}\right)\left(\Psi^{\top} \boldsymbol{x}_{i}-\Psi^{\top} \boldsymbol{x}_{j}\right)^{\top}\right]}{c_{i j}}\right] \\
& =2 \operatorname{tr}\left[\sum_{i} \frac{\Psi^{\top} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \Psi}{c_{i}}-\sum_{i, j} \frac{\Psi^{\top} \boldsymbol{x}_{i} \boldsymbol{x}_{j}^{\top} \Psi}{c_{i j}}\right] \quad \text { via symmetry } \\
& =2 \operatorname{tr}\left[\Psi^{\top} X(\Gamma-K) X^{\top} \Psi\right]
\end{aligned}
$$

where $c_{i} \bullet:=\sum_{j} c_{i j}, K:=\left(1 / c_{i j}\right)$, and $\Gamma:=\operatorname{diag}\left(1 / c_{1} \bullet, \ldots, 1 / c_{n} \bullet\right)$.

Commute-Time Guided Transformation

$J_{C T G}(\Psi)$ can be simplified using matrices and trace:

$$
\begin{aligned}
J_{C T G}(\Psi) & =\sum_{i, j} \frac{1}{c_{i j}} \operatorname{tr}\left[\left(\Psi^{\top} \boldsymbol{x}_{i}-\Psi^{\top} \boldsymbol{x}_{j}\right)\left(\Psi^{\top} \boldsymbol{x}_{i}-\Psi^{\top} \boldsymbol{x}_{j}\right)^{\top}\right] \\
& =\operatorname{tr}\left[\sum_{i, j} \frac{\left.\left(\Psi^{\top} \boldsymbol{x}_{i}-\Psi^{\top} \boldsymbol{x}_{j}\right)\left(\Psi^{\top} \boldsymbol{x}_{i}-\Psi^{\top} \boldsymbol{x}_{j}\right)^{\top}\right]}{c_{i j}}\right] \\
& =2 \operatorname{tr}\left[\sum_{i} \frac{\Psi^{\top} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{\top} \Psi}{c_{i}}-\sum_{i, j} \frac{\Psi^{\top} \boldsymbol{x}_{i} \boldsymbol{x}_{j}^{\top} \Psi}{c_{i j}}\right] \quad \text { via symmetry } \\
& =2 \operatorname{tr}\left[\Psi^{\top} X(\Gamma-K) X^{\top} \Psi\right]
\end{aligned}
$$

where $c_{i}:=\sum_{j} c_{i j}, K:=\left(1 / c_{i j}\right)$, and $\Gamma:=\operatorname{diag}\left(1 / c_{1}, \ldots, 1 / c_{n}\right)$.
The larger the $\Gamma_{i i}$ is, the more important the i th vertex (i.e., the data vector \boldsymbol{x}_{i}) and its embedded point z_{i} become for the minimization problem.

Commute-Time Guided Transformation

- With the constraints $Z \Gamma Z^{\top}=I_{s}$, we have the following constrained minimization problem:

$$
\min _{\Psi \in \mathbb{R}^{d \times s} ; \Psi^{\top} \Psi=I_{s}} \operatorname{tr}^{\operatorname{tr}}\left[\Psi^{\top} X(\Gamma-K) X^{\top} \Psi\right] \quad \text { subject to } \Psi^{\top} X \Gamma X^{\top} \Psi=I_{s} .
$$

- This can be solved by the method of Lagrange multipliers as follows: problem

Commute-Time Guided Transformation

- With the constraints $Z \Gamma Z^{\top}=I_{s}$, we have the following constrained minimization problem:

$$
\min _{\Psi \in \mathbb{R}^{d \times s} ; \Psi^{\top} \Psi=I_{s}} \operatorname{tr}^{\operatorname{tr}}\left[\Psi^{\top} X(\Gamma-K) X^{\top} \Psi\right] \quad \text { subject to } \Psi^{\top} X \Gamma X^{\top} \Psi=I_{s} .
$$

- This can be solved by the method of Lagrange multipliers as follows:

$$
J_{C T G}(\Psi, \Lambda):=\operatorname{tr}\left[\Psi^{\top} X(\Gamma-K) X^{\top} \Psi\right]-\left\langle\Lambda, \Psi^{\top} X \Gamma X^{\top} \Psi-I_{s}\right\rangle,
$$

where $\Lambda \in \mathbb{R}^{s \times s}$ is a diagonal matrix containing the Lagrange multipliers.
problem:

Commute-Time Guided Transformation

- With the constraints $Z \Gamma Z^{\top}=I_{s}$, we have the following constrained minimization problem:

$$
\min _{\Psi \in \mathbb{R}^{d \times s} ; \Psi^{\top} \Psi=I_{s}} \operatorname{tr}^{\operatorname{tr}}\left[\Psi^{\top} X(\Gamma-K) X^{\top} \Psi\right] \quad \text { subject to } \Psi^{\top} X \Gamma X^{\top} \Psi=I_{s} .
$$

- This can be solved by the method of Lagrange multipliers as follows:

$$
J_{C T G}(\Psi, \Lambda):=\operatorname{tr}\left[\Psi^{\top} X(\Gamma-K) X^{\top} \Psi\right]-\left\langle\Lambda, \Psi^{\top} X \Gamma X^{\top} \Psi-I_{s}\right\rangle,
$$

where $\Lambda \in \mathbb{R}^{s \times s}$ is a diagonal matrix containing the Lagrange multipliers.

- Setting $\nabla_{\Psi} J_{C T G}(\Psi, \Lambda)=\mathbf{0}$ leads to the following generalized eigenvalue problem:

$$
\underbrace{X(\Gamma-K) X^{\top}}_{P} \Psi=\underbrace{X \Gamma X^{\top}}_{Q} \Psi \Lambda \text {, i.e., } P \boldsymbol{\psi}_{j}=\lambda_{j} Q \boldsymbol{\psi}_{j}, j=1, \ldots, s \text {. }
$$

Commute-Time Guided Transformation

- With the constraints $Z \Gamma Z^{\top}=I_{s}$, we have the following constrained minimization problem:

$$
\min _{\Psi \in \mathbb{R}^{d} \times s, \Psi^{\top} \Psi=I_{s}} \operatorname{tr}^{\operatorname{tr}}\left[\Psi^{\top} X(\Gamma-K) X^{\top} \Psi\right] \quad \text { subject to } \Psi^{\top} X \Gamma X^{\top} \Psi=I_{s} .
$$

- This can be solved by the method of Lagrange multipliers as follows:

$$
J_{C T G}(\Psi, \Lambda):=\operatorname{tr}\left[\Psi^{\top} X(\Gamma-K) X^{\top} \Psi\right]-\left\langle\Lambda, \Psi^{\top} X \Gamma X^{\top} \Psi-I_{s}\right\rangle,
$$

where $\Lambda \in \mathbb{R}^{s \times s}$ is a diagonal matrix containing the Lagrange multipliers.

- Setting $\nabla_{\Psi} J_{C T G}(\Psi, \Lambda)=\mathbf{0}$ leads to the following generalized eigenvalue problem:

$$
\underbrace{X(\Gamma-K) X^{\top}}_{P} \Psi=\underbrace{X \Gamma X^{\top}}_{Q} \Psi \Lambda \text {, i.e., } P \boldsymbol{\psi}_{j}=\lambda_{j} Q \boldsymbol{\psi}_{j}, j=1, \ldots, s .
$$

- Compare this with the Locality Preserving Projection (LPP) of He and Niyogi (a.k.a. Laplacianfaces): $X L X^{\top} \Psi=X D X^{\top} \Psi \Lambda$.

Commute-Time Guided Transformation

- With the constraints $Z \Gamma Z^{\top}=I_{s}$, we have the following constrained minimization problem:

$$
\min _{\Psi \in \mathbb{R}^{d} \times s, \Psi^{\top} \Psi=I_{s}} \operatorname{tr}^{\operatorname{tr}}\left[\Psi^{\top} X(\Gamma-K) X^{\top} \Psi\right] \quad \text { subject to } \Psi^{\top} X \Gamma X^{\top} \Psi=I_{s} .
$$

- This can be solved by the method of Lagrange multipliers as follows:

$$
J_{C T G}(\Psi, \Lambda):=\operatorname{tr}\left[\Psi^{\top} X(\Gamma-K) X^{\top} \Psi\right]-\left\langle\Lambda, \Psi^{\top} X \Gamma X^{\top} \Psi-I_{s}\right\rangle,
$$

where $\Lambda \in \mathbb{R}^{s \times s}$ is a diagonal matrix containing the Lagrange multipliers.

- Setting $\nabla_{\Psi} J_{C T G}(\Psi, \Lambda)=\mathbf{0}$ leads to the following generalized eigenvalue problem:

$$
\underbrace{X(\Gamma-K) X^{\top}}_{P} \Psi=\underbrace{X \Gamma X^{\top}}_{Q} \Psi \Lambda \text {, i.e., } P \boldsymbol{\psi}_{j}=\lambda_{j} Q \boldsymbol{\psi}_{j}, j=1, \ldots, s .
$$

- Compare this with the Locality Preserving Projection (LPP) of He and Niyogi (a.k.a. Laplacianfaces): $X L X^{\top} \Psi=X D X^{\top} \Psi \Lambda$.
- Hence, the correspondence: $A \Leftrightarrow K$, i.e., $a_{i j} \Leftrightarrow 1 / c_{i j}$.

Outline

(1) Setup of Classification Problems

(2) Intermezzo: Classical Multidimensional Scaling
(3) Commute-Time Guided Transformation
(4) A Face Recognition Algorithm
(5) Numerical Experiments and Some Results
(6) Sparse Graphs

A Face Recognition Algorithm

- Input: Training faces $X \in \mathbb{R}^{d \times n}$; Test faces $Y \in \mathbb{R}^{d \times m}$.

A Face Recognition Algorithm

- Input: Training faces $X \in \mathbb{R}^{d \times n}$; Test faces $Y \in \mathbb{R}^{d \times m}$.
- Training:
(1) Build a graph G from X;
(2) Compute the commute-time matrix $C=\left(c_{i j}\right)$ using $L^{\dagger}(G)$
(3) Compute matrices K and Γ.
(a) Solve the above generalized eigenvalue problem to obtain $\Psi \in \mathbb{R}^{d \times}$. (5) Embed the training faces via $Z=\Psi^{\top} X$.
- Recognition/Test:
- Output: The list of labels of the test faces

A Face Recognition Algorithm

- Input: Training faces $X \in \mathbb{R}^{d \times n}$; Test faces $Y \in \mathbb{R}^{d \times m}$.
- Training:
(1) Build a graph G from X;Recognition/Test:
- Output: The list of labels of the test faces

A Face Recognition Algorithm

- Input: Training faces $X \in \mathbb{R}^{d \times n}$; Test faces $Y \in \mathbb{R}^{d \times m}$.
- Training:
(1) Build a graph G from X;
(2) Compute the commute-time matrix $C=\left(c_{i j}\right)$ using $L^{\dagger}(G)$.
- Output: The list of labels of the test faces.

A Face Recognition Algorithm

- Input: Training faces $X \in \mathbb{R}^{d \times n}$; Test faces $Y \in \mathbb{R}^{d \times m}$.
- Training:
(1) Build a graph G from X;
(2) Compute the commute-time matrix $C=\left(c_{i j}\right)$ using $L^{\dagger}(G)$.
(3) Compute matrices K and Γ.
- Recognition/Test:
- Output: The list of labels of the test faces.

A Face Recognition Algorithm

- Input: Training faces $X \in \mathbb{R}^{d \times n}$; Test faces $Y \in \mathbb{R}^{d \times m}$.
- Training:
(1) Build a graph G from X;
(2) Compute the commute-time matrix $C=\left(c_{i j}\right)$ using $L^{\dagger}(G)$.
(3) Compute matrices K and Γ.
(4) Solve the above generalized eigenvalue problem to obtain $\Psi \in \mathbb{R}^{d \times s}$.
- Output: The list of labels of the test faces.

A Face Recognition Algorithm

- Input: Training faces $X \in \mathbb{R}^{d \times n}$; Test faces $Y \in \mathbb{R}^{d \times m}$.
- Training:
(1) Build a graph G from X;
(2) Compute the commute-time matrix $C=\left(c_{i j}\right)$ using $L^{\dagger}(G)$.
(3) Compute matrices K and Γ.
(9) Solve the above generalized eigenvalue problem to obtain $\Psi \in \mathbb{R}^{d \times s}$.
(5) Embed the training faces via $Z=\Psi^{\top} X$.
- Output: The list of labels of the test faces.

A Face Recognition Algorithm

- Input: Training faces $X \in \mathbb{R}^{d \times n}$; Test faces $Y \in \mathbb{R}^{d \times m}$.
- Training:
(1) Build a graph G from X;
(2) Compute the commute-time matrix $C=\left(c_{i j}\right)$ using $L^{\dagger}(G)$.
(3) Compute matrices K and Γ.
(9) Solve the above generalized eigenvalue problem to obtain $\Psi \in \mathbb{R}^{d \times s}$.
(5) Embed the training faces via $Z=\Psi^{\top} X$.
- Recognition/Test:
(1)
- Output: The list of labels of the test faces

A Face Recognition Algorithm

- Input: Training faces $X \in \mathbb{R}^{d \times n}$; Test faces $Y \in \mathbb{R}^{d \times m}$.
- Training:
(1) Build a graph G from X;
(2) Compute the commute-time matrix $C=\left(c_{i j}\right)$ using $L^{\dagger}(G)$.
(3) Compute matrices K and Γ.
(9) Solve the above generalized eigenvalue problem to obtain $\Psi \in \mathbb{R}^{d \times s}$.
(5) Embed the training faces via $Z=\Psi^{\top} X$.
- Recognition/Test:
(1) Embed the test faces via $\Upsilon=\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right)=\Psi^{\top} Y$.

A Face Recognition Algorithm

- Input: Training faces $X \in \mathbb{R}^{d \times n}$; Test faces $Y \in \mathbb{R}^{d \times m}$.
- Training:
(1) Build a graph G from X;
(2) Compute the commute-time matrix $C=\left(c_{i j}\right)$ using $L^{\dagger}(G)$.
(3) Compute matrices K and Γ.
(4) Solve the above generalized eigenvalue problem to obtain $\Psi \in \mathbb{R}^{d \times s}$.
(5) Embed the training faces via $Z=\Psi^{\top} X$.
- Recognition/Test:
(1) Embed the test faces via $\Upsilon=\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right)=\Psi^{\top} Y$.
(2) For $k=1: m$ do select the nearest neighbor of \boldsymbol{v}_{k} from the embedded training faces Z using the ℓ^{2}-distance in the embedded space \mathbb{R}^{s}. Then assign its label to \boldsymbol{v}_{k}.

A Face Recognition Algorithm

- Input: Training faces $X \in \mathbb{R}^{d \times n}$; Test faces $Y \in \mathbb{R}^{d \times m}$.
- Training:
(1) Build a graph G from X;
(2) Compute the commute-time matrix $C=\left(c_{i j}\right)$ using $L^{\dagger}(G)$.
(3) Compute matrices K and Γ.
(9) Solve the above generalized eigenvalue problem to obtain $\Psi \in \mathbb{R}^{d \times s}$.
(5) Embed the training faces via $Z=\Psi^{\top} X$.
- Recognition/Test:
(1) Embed the test faces via $\Upsilon=\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right)=\Psi^{\top} Y$.
(2) For $k=1: m$ do select the nearest neighbor of \boldsymbol{v}_{k} from the embedded training faces Z using the ℓ^{2}-distance in the embedded space \mathbb{R}^{s}. Then assign its label to \boldsymbol{v}_{k}.
- Output: The list of labels of the test faces.

Outline

(1) Setup of Classification Problems

(2) Intermezzo: Classical Multidimensional Scaling
(3) Commute-Time Guided Transformation
C) A Face Recognition Algorithm
(5) Numerical Experiments and Some Results

6 Sparse Graphs

Numerical Experiments

- Face recognition rates over four different face databases were computed.
conditions

illumination, expression, and occlusion

pose, illumination, expression
 normalization to 64×64 pixel resolution; histogram equalization Compared methods include: DCA, IDA, NMAF (nonnegative matrix factorization), SR (sparse representation), LPP (locality preserving projection), GEO (geodesic projection), and CTG (commute-time guided transformation)

Numerical Experiments

- Face recognition rates over four different face databases were computed.
- Yale face dataset: 165 faces of 15 individuals with various lighting conditions.

Numerical Experiments

- Face recognition rates over four different face databases were computed.
- Yale face dataset: 165 faces of 15 individuals with various lighting conditions.
- CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose, illumination, expression.

Numerical Experiments

- Face recognition rates over four different face databases were computed.
- Yale face dataset: 165 faces of 15 individuals with various lighting conditions.
- CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose, illumination, expression.
- AR dataset: over 4,000 faces of 126 individuals with varying illumination, expression, and occlusion.

Numerical Experiments

- Face recognition rates over four different face databases were computed.
- Yale face dataset: 165 faces of 15 individuals with various lighting conditions.
- CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose, illumination, expression.
- AR dataset: over 4,000 faces of 126 individuals with varying illumination, expression, and occlusion.
- FERET dataset: From NIST. More than 1,100 individuals with varying pose, illumination, expression.

Numerical Experiments

- Face recognition rates over four different face databases were computed.
- Yale face dataset: 165 faces of 15 individuals with various lighting conditions.
- CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose, illumination, expression.
- AR dataset: over 4,000 faces of 126 individuals with varying illumination, expression, and occlusion.
- FERET dataset: From NIST. More than 1,100 individuals with varying pose, illumination, expression.
- Each face image was preprocessed, e.g., color \rightarrow grayscale; normalization to 64×64 pixel resolution; histogram equalization, ...

Numerical Experiments

- Face recognition rates over four different face databases were computed.
- Yale face dataset: 165 faces of 15 individuals with various lighting conditions.
- CMU PIE face dataset: 41,368 faces of 68 subjects under varying pose, illumination, expression.
- AR dataset: over 4,000 faces of 126 individuals with varying illumination, expression, and occlusion.
- FERET dataset: From NIST. More than 1,100 individuals with varying pose, illumination, expression.
- Each face image was preprocessed, e.g., color \rightarrow grayscale; normalization to 64×64 pixel resolution; histogram equalization, ...
- Compared methods include: PCA, LDA, NMF (nonnegative matrix factorization), SR (sparse representation), LPP (locality preserving projection), GEO (geodesic projection), and CTG (commute-time guided transformation).

Numerical Experiments...

- For each face database, 50% of the faces (randomly selected) are used as the training faces, and the rest as the test faces. test faces 10 times for each method in each face database. - For graph-based methods, k-NN graphs and sparse graphs we re used - k of the k-NN graphs was fixed to be $k=n_{t}-1$ where n_{t} is the average number of training samples for one individual - Various values of the dimension of the embedded space (or feature dimensionality) s were tested

Numerical Experiments...

- For each face database, 50% of the faces (randomly selected) are used as the training faces, and the rest as the test faces.
- Repeat such random selection of the training faces and recognition of test faces 10 times for each method in each face database.
- Various values of the dimension of the embedded space (or feature dimensionality) s were tested.

Numerical Experiments...

- For each face database, 50% of the faces (randomly selected) are used as the training faces, and the rest as the test faces.
- Repeat such random selection of the training faces and recognition of test faces 10 times for each method in each face database.
- For graph-based methods, k-NN graphs and sparse graphs were used.

Numerical Experiments...

- For each face database, 50% of the faces (randomly selected) are used as the training faces, and the rest as the test faces.
- Repeat such random selection of the training faces and recognition of test faces 10 times for each method in each face database.
- For graph-based methods, k-NN graphs and sparse graphs were used.
- k of the k-NN graphs was fixed to be $k=n_{t}-1$ where n_{t} is the average number of training samples for one individual.

Numerical Experiments...

- For each face database, 50% of the faces (randomly selected) are used as the training faces, and the rest as the test faces.
- Repeat such random selection of the training faces and recognition of test faces 10 times for each method in each face database.
- For graph-based methods, k-NN graphs and sparse graphs were used.
- k of the k-NN graphs was fixed to be $k=n_{t}-1$ where n_{t} is the average number of training samples for one individual.
- Various values of the dimension of the embedded space (or feature dimensionality) s were tested.

Some Results

(a) Eigen-faces

(b) Fisher-faces

(c) Laplacian-faces

(d) CTG-faces

Fig. 2. The first six projections extracted from the Yale dataset based on (a) PCA, (b) LDA, (c) LPP, and (d) CTG.

Some Results

Fig. 4. Recognition rate versus different feature dimensionality based on the four different datasets.

Outline

(1) Setup of Classification Problems

(2) Intermezzo: Classical Multidimensional Scaling
(3) Commute-Time Guided Transformation

4 A Face Recognition Algorithm
(5) Numerical Experiments and Some Results

(6) Sparse Graphs

Sparse Graphs

- New graph construction methods that were proposed relatively recently by H. Cheng et al. (2009) and by B. Cheng et al. (2010).
sparse approximation, but assigns weights via:

Sparse Graphs

- New graph construction methods that were proposed relatively recently by H. Cheng et al. (2009) and by B. Cheng et al. (2010).
- Influenced by the idea of compressed sensing.
sparse approximation, but assigns weights via:

Sparse Graphs

- New graph construction methods that were proposed relatively recently by H. Cheng et al. (2009) and by B. Cheng et al. (2010).
- Influenced by the idea of compressed sensing.
- ℓ^{1}-graph of B . Cheng et al. uses the sparse approximation of each \boldsymbol{x}_{i} using all the other vectors $X^{(i)}:=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{i-1}, \boldsymbol{x}_{i+1}, \ldots, \boldsymbol{x}_{n}\right] \in \mathbb{R}^{d \times(n-1)}$ via the following ℓ^{1}-minimization:

$$
\min _{\boldsymbol{\alpha}^{(i)} \in \mathbb{R}^{n-1}}\left\|\boldsymbol{\alpha}^{(i)}\right\|_{1} \quad \text { subject to } \boldsymbol{x}_{i}=X^{(i)} \boldsymbol{\alpha}^{(i)}, i=1, \ldots, n .
$$

Then, if $\alpha_{j}^{(i)}>0$, then set $a_{i j}=1$. So, ℓ^{1}-graph is a sparse unweighted graph constructed from the input data vectors.
sparse approximation, but assigns weights via:

Sparse Graphs

- New graph construction methods that were proposed relatively recently by H. Cheng et al. (2009) and by B. Cheng et al. (2010).
- Influenced by the idea of compressed sensing.
- ℓ^{1}-graph of B . Cheng et al. uses the sparse approximation of each \boldsymbol{x}_{i} using all the other vectors $X^{(i)}:=\left[\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{i-1}, \boldsymbol{x}_{i+1}, \ldots, \boldsymbol{x}_{n}\right] \in \mathbb{R}^{d \times(n-1)}$ via the following ℓ^{1}-minimization:

$$
\min _{\boldsymbol{\alpha}^{(i)} \in \mathbb{R}^{n-1}}\left\|\boldsymbol{\alpha}^{(i)}\right\|_{1} \quad \text { subject to } \boldsymbol{x}_{i}=X^{(i)} \boldsymbol{\alpha}^{(i)}, i=1, \ldots, n .
$$

Then, if $\alpha_{j}^{(i)}>0$, then set $a_{i j}=1$. So, ℓ^{1}-graph is a sparse unweighted graph constructed from the input data vectors.

- Sparseness Induced Graph (SIG) of H. Cheng et al. uses the same ℓ^{1} sparse approximation, but assigns weights via:

$$
a_{i j}=\frac{\max \left(\alpha_{j}^{(i)}, 0\right)}{\sum_{k=1}^{n-1} \max \left(\alpha_{k}^{(i)}, 0\right)}
$$

