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Classification Basics

Classification Basics

Let X := {x1, . . . , x N } be a set of data samples in Rm with class structure,
i.e., each x i has a class label from the set {1, . . . ,L}, 1 < L ≤ N .

Setup:
Set aside a training set Xtr ⊂X where the class label of each sample
is known and available
Goal: Classify (predict the labels of) the remaining samples in the test
set Xte := X \Xtr

Examples:
Face recognition: Classes are subjects (people)
Automated reading of postal zip codes: Classes are the digits 0,1, . . . ,9.
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Classification Basics

Some Common Assumptions

The intrinsic dimension of the data d is much lower than the ambient
dimension m: d ¿ m

Example: The space of all face images

The data in each class lie on a so-called class manifold:
- Smooth
- Might intersect other class manifolds
- Could be highly nonlinear
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Sparse Representation-Based Classification (SRC)

Sparse Representation-Based Classification (SRC)
Proposed by Wright, Yang, Ganesh, Sastry, and Ma in 2009

Begin with the dictionary of training samples:

Xtr := [x1, . . . , x Ntr ] ∈Rm×Ntr .

- Each x i is normalized to have ‖x i‖2 = 1.
- m < Ntr

Goal: Write the test sample y ∈Rm as a linear combination of the training
samples using as few samples as possible:

β∗ = arg min
β∈RNtr

‖β‖0 subject to Xtrβ= y (NP-Hard)

where ‖β‖0 is a quasinorm counting the number of nonzero entries of β.

In reality: Finding the sparsest linear combination is not tractable!
Approximate it by finding the linear combination whose coefficient vector
has the smallest `1-norm:

β∗ = arg min
β∈RNtr

‖β‖1 subject to Xtrβ= y (LP)
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Sparse Representation-Based Classification (SRC)

Sparse Representation-Based Classification (SRC)

As real-world data is often corrupted by noise, it is often more practical to
solve

β∗ = arg min
β∈RNtr

{
‖y −Xtrβ‖2 +λ‖β‖1

}
,

where λ> 0 is the trade off between accuracy in the approximation and
sparsity of the coefficient vector.

This form of the problem formulation is called the Lasso estimation; see the
excellent book by Hastie, Tibshirani, and Wainwright for the details!

The test sample y is assigned to the class whose training samples contribute
the most to the sparsest approximation of y over the entire training set:

class_label(y) = argmin
l

‖y −Xtrδl (β∗)‖2,

where δl (β∗) is the result of setting all components of β∗ except those
corresponding to class l to zero.
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Sparse Representation-Based Classification (SRC)

Weaknesses in SRC

SRC assumes that class manifolds are approximately linear subspaces that
are spanned by their training samples. Yet, class manifolds for facial images
under varying poses and expressions are generally nonlinear.

If we can sparsely approximate y using more than one class, then SRC may
not be able to distinguish these classes, which can happen when y is close to
more than one class manifold.

The high computational complexity of the `1-minimization algorithm means
that feature extraction/dimension reduction is necessary. Yet some
discriminant information may be lost in this process, especially if the class
manifolds are sparsely sampled.
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Our Proposed Algorithm: LPCA-SRC

Proposed Algorithm: Overview

Our proposed classification algorithm, Local Principal Component Analysis
SRC (LPCA-SRC), aims to address these issues by

Generating new training samples in order to increase the sampling
density;
Adding a degree of locality to SRC, so that only nearby training
samples can contribute to the classification of the given test sample.

LPCA-SRC has two parts:
Offline phase: A new set of training samples is generated by finding a basis

for the approximate tangent hyperplane at each training
sample using local PCA. These new training samples are
shifted and scaled versions of these tangent plane basis
vectors.

Online phase: The matrix/dictionary of (new and original) training samples
is pruned to include only the original training samples that
are close to the test sample (with respect to Euclidean
distance), and their tangent plane basis vectors.
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Our Proposed Algorithm: LPCA-SRC

Illustration of Tangent Vectors

Txi
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Our Proposed Algorithm: LPCA-SRC

LPCA-SRC Algorithm

Offline Phase: For each class l , and for each normalized training sample
x (l )

i in class l ,

1 Find the tangent plane basis vectors u(l ,i )
1 , . . . ,u(l ,i )

d at x (l )
i using local

PCA.
2 Save the matrix X̃ (l ,i ) := [x (l )

i ,cu(l ,i )
1 +x (l )

i , . . . ,cu(l ,i )
d +x (l )

i ] ∈Rm×(d+1),
where c = rγ, γ∼ unif(0,1), r is the estimated neighborhood radius.

Online Phase: For a given normalized test sample y ,
1 Initialize the dictionary D y =;.
2 For each x (l )

i , check to see if ‖y −x (l )
i ‖2 ≤ r or ‖y +x (l )

i ‖2 ≤ r . If either
is true, add X̃ (l ,i ) to the dictionary: D y ← [D y , X̃ (l ,i )].

3 Perform SRC, replacing the dictionary Xtr with D y . Now the
dictionary contains only nearby training samples and the (shifted and
scaled) basis vectors of their local tangent planes.
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Our Proposed Algorithm: LPCA-SRC

Advantage of Including Tangent Vectors
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Our Proposed Algorithm: LPCA-SRC

Local PCA and Computational Complexity

Local PCA: PCA on the dataset comprised of the n nearest neighbors of x (l )
i .

We use the technique of Singer and Wu (2012), which differs from standard local
PCA in two ways:

Samples are shifted by x (l )
i instead of their mean.

The resulting local data matrix is weighted in such a way that samples closer
to x (l )

i contribute more.

Computational complexity of LPCA-SRC: with HOMOTOPY (Donoho and
Tsaig, 2008) as an `1 solver, it costs

O
(NN-search︷ ︸︸ ︷

m
L∑

l=1
N 2

l +
SVD (local PCA)︷ ︸︸ ︷

Ntrmn +

Build dictionary︷ ︸︸ ︷
Ny

d
log

( Ny

d

)
+

HOMOTOPY︷ ︸︸ ︷
Ny mκ+mκ2

)
,

Nl := # training samples in the lth class;
Ny := # columns in the pruned dictionary D y ;
κ := # HOMOTOPY iterations.

saito@math.ucdavis.edu (UC Davis) Sparse Graph Applications 11/05/19 15 / 26



Our Proposed Algorithm: LPCA-SRC

Local PCA and Computational Complexity

Local PCA: PCA on the dataset comprised of the n nearest neighbors of x (l )
i .

We use the technique of Singer and Wu (2012), which differs from standard local
PCA in two ways:

Samples are shifted by x (l )
i instead of their mean.

The resulting local data matrix is weighted in such a way that samples closer
to x (l )

i contribute more.

Computational complexity of LPCA-SRC: with HOMOTOPY (Donoho and
Tsaig, 2008) as an `1 solver, it costs

O
(NN-search︷ ︸︸ ︷

m
L∑

l=1
N 2

l +
SVD (local PCA)︷ ︸︸ ︷

Ntrmn +

Build dictionary︷ ︸︸ ︷
Ny

d
log

( Ny

d

)
+

HOMOTOPY︷ ︸︸ ︷
Ny mκ+mκ2

)
,

Nl := # training samples in the lth class;
Ny := # columns in the pruned dictionary D y ;
κ := # HOMOTOPY iterations.
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Our Proposed Algorithm: LPCA-SRC

Setting the Parameters d , n, and r

We estimate the intrinsic dimension d using cross-validation. It can
alternatively be estimated using DANCo (Ceruti, et al., 2014) or Multiscale
SVD (Little, et al., 2017), or simply set to d = 1.

We set the number-of-neighbors parameter n using cross-validation. Note
that its value must satisfy

d ≤ n < min
1≤l≤L

Nl .

Estimated neighborhood radius r :
- Recall r is used to check if a training sample is “close enough” to the
test sample y to include in D y .

- The local PCA only uses the local class neighborhood of each training
sample, i.e., its n-nearest neighbors in the same class.

- Motivated by preserving this definition of “local class neighborhood,”
we set

r := med
{

r (l )
i

∣∣1 ≤ i ≤ Nl ;1 ≤ l ≤ L
}

where r (l )
i is the distance between x (l )

i and its (n +1)st nearest class
neighbor.
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Experimental Results

Experiments: Methods Compared
SRC: Wright, et al. 2009

SRCpruned: LPCA-SRC without the the addition of the tangent vectors; equivalently, SRC with the

estimated neighborhood radius r

Tangent distance classification (TDC1 and TDC2)
- Similar to Yang et al.’s local TDC algorithm (2012)
- The test sample is classified to the class with the nearest tangent plane

Collaborative representation-based classification with regularized least square
(CRC-RLS)

- Zhang, et al. 2011
- Essentially SRC with the `1-norm replaced with the `2-norm

Collaborative neighbor representation classification (CNRC)
- Waqas, et al. 2012
- Essentially CRC-RLS with an additional locality constraint

Locality sensitive dictionary learning SRC (LSDL-SRC)
- Wei, et al. 2013
- Similar to CNRC, but with an additional dictionary learning phase

k-nearest neighbor classification (kNN):
- Test samples are classified to the most-represented class from among their nearest k training samples.

k-nearest neighbor over extended dictionary (kNN-Ext):
- Test samples are classified to the most-represented class from among their nearest k neighbors from

the set including the original training samples and the shifted and scaled tangent vectors.
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Experimental Results

Experiments: AR Database

AR face database (Martinez and Benavente, 1998):
AR-1: Contains facial images photographed under varying lighting
conditions with varying expression

- L = 100, Nl = 7, m ∈ {30,56} (via PCA on 165×120 pixel images)
AR-2: Additionally contains images with two natural occlusions
(sunglasses and scarf)

- L = 100, Nl = 10, m ∈ {30,56} (via PCA on 165×120 pixel images)

(a) Neutral (b) Smile (c) Anger (d) Scream (e) Sunglasses (f) Scarf

Example images (before PCA pre-processing) from the AR database.

saito@math.ucdavis.edu (UC Davis) Sparse Graph Applications 11/05/19 19 / 26



Experimental Results

Experiments: Extended Yale B Database

Extended Yale B face database (Georghiades, et al. 2001): Contains
facial images photographed under varying lighting conditions

L = 38, Nl = 32, m ∈ {30,56} (via PCA on 192×168 pixel images)

Example images (before PCA pre-processing) from Extended Yale B

All training data chosen randomly.
Classification averages over 10 trials.
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Experimental Results

Classification Results: AR

m = 30 m = 56
AR-1 AR-2 AR-1 AR-2

Algorithm Acc SE Time Acc SE Time Acc SE Time Acc SE Time
LPCA-SRC 0.866 4.1 7.25 0.733 6.0 12.50 0.954 2.3 10.53 0.884 3.6 35.27

SRC 0.827 4.2 6.11 0.695 4.3 8.87 0.936 2.6 11.39 0.871 2.0 17.67
SRCpruned 0.828 4.8 3.76 0.709 4.0 5.10 0.935 3.8 11.12 0.878 2.7 16.63
TDC1 0.805 6.5 11.82 0.690 4.1 20.56 0.843 5.1 14.24 0.760 3.7 27.51
TDC2 0.755 19.4 8.89 0.642 16.1 20.93 0.814 11.9 16.79 0.739 3.3 47.57

CRC-RLS 0.753 4.3 0.67 0.597 4.2 0.70 0.922 4.2 1.17 0.824 3.3 1.20
CNRC 0.790 3.9 12.07 0.622 2.5 12.16 0.923 4.1 40.34 0.827 2.8 40.72

LSDL-SRC 0.818 4.0 7.78 0.659 5.6 8.55 0.942 2.0 22.70 0.861 2.2 16.34
kNN 0.525 4.6 0.01 0.410 3.0 0.01 0.630 8.0 0.02 0.430 5.0 0.02

kNN-Ext 0.604 4.5 0.80 0.431 3.7 0.08 0.649 8.2 0.13 0.453 2.9 0.15

Average classification accuracy, standard error (×10−3), and computation time (in
seconds) on AR.
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Experimental Results

Example: Efficacy of Tangent Vectors

(a) Orig. (b) Recov. (c) TV (d) Orig. (e) Recov. (f) TV

Examples of tangent vectors containing discriminating information that is lost in
the PCA transform. (a), (d): Original images from AR-1 and AR-2; (b), (e):
Recovered images from their PCA approximations with m = 30; (c), (f):
Recovered (shifted and scaled) tangent vectors.
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Experimental Results

Classification Results: Extended Yale B

m = 30 m = 56
Algorithm Acc SE Time Acc SE Time
LPCA-SRC 0.905 2.9 29.20 0.953 1.7 72.12

SRC 0.880 2.6 15.58 0.937 2.8 24.70
SRCpruned 0.880 2.7 15.92 0.937 2.6 23.81
TDC1 0.857 1.0 8.10 0.929 2.0 27.62
TDC2 0.883 3.9 11.68 0.909 2.8 23.51

CRC-RLS 0.732 3.3 0.69 0.882 2.8 0.73
CNRC 0.733 3.3 80.47 0.883 2.9 79.51

LSDL-SRC 0.750 4.8 67.30 0.877 2.5 53.03
kNN 0.430 3.5 0.02 0.535 2.6 0.03

kNN-Ext 0.546 6.9 0.17 0.632 5.6 0.25

Average classification accuracy, standard error (×10−3), and computation time (in
seconds) on Extended Yale B.
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Summary

Summary

Proposed a classification algorithm LPCA-SRC, which computes basis
vectors of approximate tangent hyperplanes at the training samples in
each class and adds them as newly-generated training samples into the
training dictionary.
Each test sample is sparsely decomposed over a dictionary that
includes nearby training samples and their corresponding (shifted and
scaled) tangent plane basis vectors.
Its class label is assigned to the class that contributes the most to this
decomposition.
LPCA-SRC regularly achieves higher classification accuracy than SRC
and similar methods in cases of sparse sampling, low noise, small PCA
feature dimension, and/or when the class manifolds are
close/intersecting.
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