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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances

@ This part is based on the work by U. von Luxburg, A. Radl, and M.
Hein (JMLR, 2014) who cautioned the use of commute-time distances
for large graphs.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances

@ This part is based on the work by U. von Luxburg, A. Radl, and M.
Hein (JMLR, 2014) who cautioned the use of commute-time distances
for large graphs.

@ Recall the average first passage time (a.k.a. expected hitting time)
m(j|i), i.e., the average number of steps that a random walker,
starting at v;, will take to reach v; for the first time.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances

@ This part is based on the work by U. von Luxburg, A. Radl, and M.
Hein (JMLR, 2014) who cautioned the use of commute-time distances
for large graphs.

@ Recall the average first passage time (a.k.a. expected hitting time)
m(j|i), i.e., the average number of steps that a random walker,
starting at v;, will take to reach v; for the first time.

o The commute-time distance c(i, j) between v; and v; was defined as
c(i,j)=m(jli)+m(i|j). Recall also that the resistance distance
r(i, j) = c(i, j)/ vol(G).
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances

@ This part is based on the work by U. von Luxburg, A. Radl, and M.
Hein (JMLR, 2014) who cautioned the use of commute-time distances
for large graphs.

@ Recall the average first passage time (a.k.a. expected hitting time)
m(j|i), i.e., the average number of steps that a random walker,
starting at v;, will take to reach v; for the first time.

o The commute-time distance c(i, j) between v; and v; was defined as
c(i,j)=m(jli)+m(i|j). Recall also that the resistance distance
r(i, j) =c(i, j)/ vol(G).

@ Von Luxburg et al. proved that under mild assumptions, Vi # j,
m(jli) —vol(G)/dj, r(i, j) = c(i, j)/vol(G) — 1/d; +1/dj, as n — oo,
i.e., these do not reflect connectivity of the graph, just simply reflect
the local degree information only.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances:
Electrical Network Intuition

@ The effective resistance ry» between two vertices connected by two
resistors r1 and ry in series is r1» = r; + rp while that connected by two
resistors in parallelis 1/rip =1/r1 +1/15.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances:
Electrical Network Intuition

@ The effective resistance ry» between two vertices connected by two
resistors r1 and ry in series is r1» = r; + rp while that connected by two
resistors in parallelis 1/rip =1/r1 +1/15.

dy many outgoing d, many outgoing
edges, each with s g——€ -=----=mcmu-- t edges, each with
resistance 1 resistance 1

very many paths

Figure 1: Electrical network intuition: The effective resistance between s and t is dominated by the
edges adjacent to s and t.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances:
Electrical Network Intuition

@ The effective resistance ry» between two vertices connected by two
resistors r1 and ry in series is r1» = r; + rp while that connected by two
resistors in parallelis 1/rip =1/r1 +1/15.

dy many outgoing d, many outgoing
edges, each with s g——€ -=----=mcmu-- t edges, each with
resistance 1 resistance 1

very many paths

Figure 1: Electrical network intuition: The effective resistance between s and t is dominated by the
edges adjacent to s and t.

@ Hence, the overall effective resistance between i and j is dominated by
the edges adjacent to i and j with contribution 1/d; +1/d;.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs IlI 11/07/19 5/20



Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances:
Random Walk Intuition

@ Regardless of which vertex i the random walk starts from, the time to
hit vertex j just depends on d; if G gets large. By the time the
random walk is close to j, it has forgotten where it came from:
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances:
Random Walk Intuition

@ Regardless of which vertex i the random walk starts from, the time to
hit vertex j just depends on d; if G gets large. By the time the
random walk is close to j, it has forgotten where it came from:

Figure 2: Random walk intuition: Between its start and target vertex (black crosses), the random
walk wanders around so long that by the time it finally arrives at its target it has already “forgotten”
where it started from.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances:
Random Walk Intuition

@ Regardless of which vertex i the random walk starts from, the time to
hit vertex j just depends on d; if G gets large. By the time the
random walk is close to j, it has forgotten where it came from:

Figure 2: Random walk intuition: Between its start and target vertex (black crosses), the random
walk wanders around so long that by the time it finally arrives at its target it has already “forgotten”
where it started from.

@ How fast the random walk hits j is inversely proportional to the
density of G close to j, i.e., = 1/d;.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances: Setup

@ Recall the properties of the transition matrix P := D™!A, and the
symmetrically-normalized graph Laplacian matrix
Lsym = D—l/ZLD—I/Z — In—D_lleD_Uz:
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances: Setup
@ Recall the properties of the transition matrix P := D™!A, and the
symmetrically-normalized graph Laplacian matrix
Lsym = D—l/ZLD—I/Z — In_D—I/ZAD—I/Z:
@ A is an eigenvalue of Lgyy, iff 1- 1 is an eigenvalue of P.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances: Setup

@ Recall the properties of the transition matrix P := D™!A, and the
symmetrically-normalized graph Laplacian matrix
Lsym = D_1/2LD_1/2 — In_D—I/ZAD—I/Z:

@ A is an eigenvalue of Lgyy, iff 1- 1 is an eigenvalue of P.

@ Let 1=pog=pu; =---=pu,—1 >-1 be the eigenvalues of P, i.e.,

sym _
/1]. —1—/Jj.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances: Setup

@ Recall the properties of the transition matrix P := D™!A, and the
symmetrically-normalized graph Laplacian matrix
Lsym = D_1/2LD_1/2 — In_D—I/ZAD—l/Z:

@ A is an eigenvalue of Lgyy, iff 1- 1 is an eigenvalue of P.

@ Let 1=pog=pu; =---=pu,—1 >-1 be the eigenvalues of P, i.e.,

sym _ )

/1]. =1-pu;.

@ The spectral gap of P is defined as 1 —max{uy, |tn-1l}.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances: Setup

@ Recall the properties of the transition matrix P := D™!A, and the
symmetrically-normalized graph Laplacian matrix
Lsym = D—l/ZLD—l/Z — In_D_I/ZAD_1/2:

@ A is an eigenvalue of Lgyy, iff 1 -7 is an eigenvalue of P.
@ Let 1=pog=pu; =---=pu,—1 >-1 be the eigenvalues of P, i.e.,
Ajym =1-pj.

The spectral gap of P is defined as 1 —max{u, |un-11}.
Using the definition of Lgym, m(jli), rij, and c;j can be written as:

m(j|i) :VOI(G)<

f Fom \f \/_ >

1 1 1 1 1
_ _ T
rij= Cl'j—< e;— ej,L e;— ej >
vol(G) NZA [d; Yo\ /d; d;
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances: Setup

@ Von Luxberg et al. deal with the so-called random geometric graphs.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances: Setup

@ Von Luxberg et al. deal with the so-called random geometric graphs.
o ‘Random’ implies that the underlying data vectors {x1,...,%,} c R are
n i.i.d. realizations of a stochastic process with some pdf on R%.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances: Setup

@ Von Luxberg et al. deal with the so-called random geometric graphs.

o ‘Random’ implies that the underlying data vectors {x1,...,%,} c R are
n i.i.d. realizations of a stochastic process with some pdf on R%.

@ ‘Geometric' implies that graphs under consideration are either: 1)
k-NN graphs with | -[l2; 2) e-neighborhood graphs with | -[l2; or 3)
complete graphs with the weights exp (~Ilx; — x;ll5/h?).
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances: Setup

@ Von Luxberg et al. deal with the so-called random geometric graphs.

o ‘Random’ implies that the underlying data vectors {x1,...,%,} c R are
n i.i.d. realizations of a stochastic process with some pdf on R%.

@ ‘Geometric' implies that graphs under consideration are either: 1)
k-NN graphs with | -[l2; 2) e-neighborhood graphs with | -[l2; or 3)
complete graphs with the weights exp (~Ilx; — x;ll5/h?).

Definition (Valid Region)

Let p be any pdf on R?. We call a connected subset 2 cR% a valid region
if the following properties are satisfied:
(i) pon & is bounded away from 0: Vx €%, Ipmin, s.t., p(X) = pmin > 0.
(i) & has “bottleneck” larger than some value h > 0; the set
{x € & | dist(x,0%) > h/2} is connected.
(i) 0 is regular: 3a>0,e9 >0 s.t. if € <gg, then Vx€dZ,
vol(Bg(x) N &) = avol(B:(x)). In other words, 0% cannot contain
arbitrarily thin spikes.
/o7 8)%0




Cautions on Resistance/Commute-Time Distances

General Limitations of Theorems of Von Luxburg et al.

@ Their approximation results only hold if the graph is “reasonably
strongly” connected and does not have too extreme bottlenecks. In
other words, no single edge dominates the commute time behavior.
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Cautions on Resistance/Commute-Time Distances

General Limitations of Theorems of Von Luxburg et al.

@ Their approximation results only hold if the graph is “reasonably
strongly” connected and does not have too extreme bottlenecks. In
other words, no single edge dominates the commute time behavior.

@ Their results only hold if dpyin(G) (the minimum degree of G) is
“reasonably large” compared to n=|V(G)|, e.g., dmin(G) =logn. In
other words, no single vertex dominates the commute time behavior.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs IlI 11/07/19 9/20


https://en.wikipedia.org/wiki/Scale-free_network
https://en.wikipedia.org/wiki/Scale-free_network

Cautions on Resistance/Commute-Time Distances

General Limitations of Theorems of Von Luxburg et al.

@ Their approximation results only hold if the graph is “reasonably
strongly” connected and does not have too extreme bottlenecks. In
other words, no single edge dominates the commute time behavior.

@ Their results only hold if dpyin(G) (the minimum degree of G) is
“reasonably large” compared to n=|V(G)|, e.g., dmin(G) =logn. In
other words, no single vertex dominates the commute time behavior.

@ Hence, their results do not hold for power-law graphs/scale-free
networks where dnin (G) is constant.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs IlI 11/07/19 9/20


https://en.wikipedia.org/wiki/Scale-free_network
https://en.wikipedia.org/wiki/Scale-free_network

Main Results of Von Luxburg, Radl, & Hein

Theorem (Commute-distance on unweighted e-neighborhood graphs)

Let & be a valid region with bottleneck h and minimal density value pmin. For
€ < h, consider an unweighted e-neighborhood graph built from {x,...,x,} that
have been drawn i.i.d. from the pdf p. Fix i and j. Assume that dist(x,,0%) = h,
¢=1i,j and that | x; — x|l = 8e. Then, there exist constants ¢, >0, {=1,...,7
(depending on the dimension and geometry of & ) such that with probability at

least 1 - cynexp (—cane?) — czexp (—cyne?) /e the commute-time distance on the
e-neighborhood graph satisfies:

d d d cs/ned ifd>3;

ne ne® ne
99 = +— || =< cslogd 3 ifd=3;
vol(G) €1 ( d; d; ) CG/Og(s EUG le 2
c7/ne ifd=2.

The probability converges to 1 if n— co and ne®/log(n) — co. Under these
conditions, if p is continuous and if € — 0, then
né‘d a.s. 1 1 Zﬂdlz

LA , wh = vol(B = —.
ol @ 4~ Jap | napey e Ma = velB )= ara

v
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Main Results of Von Luxburg, Radl, & Hein ...

Theorem (Commute-distance on unweighted k-NN graphs)

Let & be a valid region with bottleneck h and density bounds pmin and pmax-
Consider an unweighted k-NN graph (either symmetric or mutual) such that
(kIm)Y? 12pmax < h, built from {x1,...,x,} that have been drawn i.i.d. from the
pdf p. Fix i and j. Assume that dist(x,,0%) = h, ¢ =1i,j and that
lx; —xjll2= 4(k/n)”d/pmax. Then, there exist constants cy >0, ¢ =1,...,6 such
that with probability at least 1— cinexp(—c2k) the commute-time distance on the
k-NN graph satisfies:

. " clk ifd>3;

Cij— (—. + —) <{ cslog(n/k)/k ifd=3;

vol(@ S cent’2/k32  ifd=2.
The probability converges to 1 if n— oo and k/log(n) — oco. Under these
conditions, if p is continuous and if k/n— 0, then

k )
vol(G) ’
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Cautions on Resistance/Commute-Time Distances

Main Results of Von Luxburg, Radl, & Hein ...

Theorem (Commute-distance on fully connected weighted graphs)

Consider a fixed, fully connected weighted graph with weight matrix A (not
necessarily Gaussian weights). Assume that 0 < amin < @;j < amax for all i, j.
Then, uniformly for all i,je N=A{1,...,n}, i #j,

2
n R /] @max Amax _ , @max 1
m(jli)——|<4n 7 <A —
VOI(G) d] Amin d-. q
min min y

11/07/19 12/20




Main Results of Von Luxburg, Radl, & Hein ...

Theorem (Commute-distance on fully connected weighted graphs)

Consider a fixed, fully connected weighted graph with weight matrix A (not
necessarily Gaussian weights). Assume that 0 < amin < a;j < Gmax for all i, j.
Then, uniformly for all i,j€ N = {1 oy i#],

2

n Amax Amax max 1
——|<a <4 =
vol(G) m(j1D d] " min 42 a

min min

Theorem (Gaussian graphs with adapted bandwidth)

Let  cR% be a compact set and p a continuous, strictly positive pdf on & .
Consider a fully connected, weighted similarity graph built from {x1,...,x,} drawn
i.i.d. from p. Let the weight function be
kp(xi, %) == Wexp( lx; —x;l5/2h?). If n—oco, h—0, and
nh*2/log(n) — oo, then
n i as. 1 o 1
vol(G) 7 pxi)  pxj)’

<
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Diffusion Maps

@ Consider the transition matrix P = D7'A of a weighted graph G.
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Diffusion Maps

@ Consider the transition matrix P = D7'A of a weighted graph G.

@ Due to the nonsymmetry of P, it has the left and right eigenvectors, i.e.,
P=0OMYT where M := diag(to,..., tn-1), ¥; P=pjy;", PO, =ujd,,
j=0,...,n—1. Note DT¥ =T =1, ie, {0} and {y} are biorthogonal
bases of R".
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Diffusion Maps

@ Consider the transition matrix P = D7'A of a weighted graph G.

@ Due to the nonsymmetry of P, it has the left and right eigenvectors, i.e.,
P=0OMYT where M := diag(to,..., tn-1), ¥; P=pjy;", PO, =ujd,,
j=0,...,n—1. Note DT¥ =T =1, ie, {0} and {y} are biorthogonal
bases of R".

@ Recall /lj.ym: 1—pu;. Hence, for a connected graph,
l=pozpr == pp1>-1L
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Diffusion Maps

@ Consider the transition matrix P = D7'A of a weighted graph G.

@ Due to the nonsymmetry of P, it has the left and right eigenvectors, i.e.,
P=0OMYT where M := diag(to,..., tn-1), ¥; P=pjy;", PO, =ujd,,
j=0,...,n—1. Note DT¥ =T =1, ie, {0} and {y} are biorthogonal
bases of R".

@ Recall /lj.ym =1-p;. Hence, for a connected graph,
l=pozpr == pp1>-1L

@ The diffusion map ®;:V = X — R" is defined as

O (1) = (o (D), iy (D), P (DIT £ 0.
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Diffusion Maps

@ Consider the transition matrix P = D™' A of a weighted graph G.

@ Due to the nonsymmetry of P, it has the left and right eigenvectors, i.e.,
P=0OMYT where M := diag(to,..., tn-1), ¥; P=pjy;", PO, =ujd,,
j=0,...,n—1. Note ©TW =WTD =1, ie, {¢;} and {y;} are biorthogonal
bases of R".

@ Recall /lj.ym =1-u;. Hence, for a connected graph,
=z =z 2pup1>-1.

@ The diffusion map ®;:V = X — R" is defined as

O () = (oDl (i), il (DIT 10,

@ Often the first coordinate ¢y (i) is neglected since its common for all i's
(o =1, ¢, is a constant vector), and not providing useful information.
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Diffusion Maps

@ Consider the transition matrix P = D™' A of a weighted graph G.

@ Due to the nonsymmetry of P, it has the left and right eigenvectors, i.e.,
P=0OMYT where M := diag(to,..., tn-1), ¥; P=pjy;", PO, =ujd,,
j=0,...,n—1. Note DT¥ =T =1, ie, {0} and {y} are biorthogonal
bases of R".

@ Recall /lj.ym =1-u;. Hence, for a connected graph,
l=pozpr == pp1>-1L
@ The diffusion map ®;:V = X — R" is defined as
DO (x;) := [y (D), uip, (@), ..., 1, (DT £>0.

@ Often the first coordinate ¢y (i) is neglected since its common for all i's
(o =1, ¢, is a constant vector), and not providing useful information.

A truncated version @‘f :V—-R™ 0<6<1, is defined by

0 (x;) := [l (D)., by, (D17 £>0,

where m <« n is chosen by |um|" > 6, |um+1lf <6.
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Diffusion Distances

Diffusion Distances

o Now define the diffusion distance between x; and x; as

Di(xj,x)) = 1P (%) = Pr(x)]l2.
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Diffusion Distances

Diffusion Distances

o Now define the diffusion distance between x; and x; as
Dy(xi,x7) := | (x7) — Py (x)l2.

o D(x;,x;) is a weighted ¢2-distance between the probability clouds
after ¢ time steps of random walks starting at x; and x;.
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Diffusion Distances

Diffusion Distances

o Now define the diffusion distance between x; and x; as
Di(xi,x7) := 1@ (x7) — (%) 2.

® D(x;,xj) is a weighted ¢%_distance between the probability clouds
after ¢ time steps of random walks starting at x; and x;.
@ From the Markov chain/random walk interpretation, we have

(P)ij=pij=Pr(s(t+1) =x;|s(t) =x;) for any teNU{0}.
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Diffusion Distances

o Now define the diffusion distance between x; and x; as
Dy(xi,xj) := 1D (x7) — D (x) [l

® D(x;,xj) is a weighted ¢%_distance between the probability clouds
after t time steps of random walks starting at x; and x;.
@ From the Markov chain/random walk interpretation, we have

(P)ij=pij=Pr(s(t+1) =x;|s(t) = x;) for any re Nu {0}

@ Hence,
(P")ij =: p;; = Pr(s(t) = x;15(0) = xy),

i.e., the entries of P! give us the probability to get from one state to
another in t time steps. t can be viewed as a scale parameter.
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Diffusion Distances

Diffusion Distances

o Now define the diffusion distance between x; and x; as
Dy(xi,x5) 1= [|[Pe(x;) — Dr(x) 2.

® D(x;,xj) is a weighted ¢%_distance between the probability clouds
after t time steps of random walks starting at x; and x;.
@ From the Markov chain/random walk interpretation, we have

(P)ij=pij=Pr(s(t+1) =x;|s(t) = x;) for any re Nu {0}

@ Hence,
(P")ij =: p;; = Pr(s(t) = x;15(0) = xy),

i.e., the entries of P! give us the probability to get from one state to
another in t time steps. t can be viewed as a scale parameter.
@ Thanks to the biorthogonality, we have

n—1
Pl =0oM'Y", Pfj =) 1Dy,
k=0
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Diffusion Distances

Diffusion Distances . ..

Fiéure:ﬂéoutjtesyi:“R. R. Coifman & S. Lafon
@ Diffusions between A and B have to go through the bottleneck while
C is easily reachable from B.
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Diffusion Distances

Diffusion Distances . ..

Figiure:ﬂéoutjtesyi:“R. R. Coifman & S. Lafon

@ Diffusions between A and B have to go through the bottleneck while
C is easily reachable from B.

@ The Markov matrix defining a diffusion could be given by a kernel or
by inference between neighboring nodes.
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Diffusion Distances

Diffusion Distances . ..

Figiure:ﬂéoutjtesyi:“R. R. Coifman & S. Lafon

@ Diffusions between A and B have to go through the bottleneck while
C is easily reachable from B.

@ The Markov matrix defining a diffusion could be given by a kernel or
by inference between neighboring nodes.

@ The diffusion distance accounts for preponderance of inference links.
The shortest path (i.e., the geodesic distance) between A and C is
roughly the same as that between B and C.
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Diffusion Distances

Diffusion Distances . ..

Figiure:ﬂéoutjtesyi:“R. R. Coifman & S. Lafon

@ Diffusions between A and B have to go through the bottleneck while
C is easily reachable from B.

@ The Markov matrix defining a diffusion could be given by a kernel or
by inference between neighboring nodes.

@ The diffusion distance accounts for preponderance of inference links.
The shortest path (i.e., the geodesic distance) between A and C is
roughly the same as that between B and C.

@ The diffusion distance between A and B, however, is larger than that
between B and C since diffusion occurs through a bottleneck.
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@ Now let's compute the weighted ¢?-distance between the probability clouds
P'(i,:) and P!(j,2), i.e., the probability distribution of the random walks
after t steps starting at x; and x;, respectively.

saito@math.ucdavis.edu (UC Davis) Distances on Graphs IlI 11/07/19 17 /20
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Diffusion Distances . ..

@ Now let's compute the weighted ¢?-distance between the probability clouds
P'(i,:) and P!(j,2), i.e., the probability distribution of the random walks
after t steps starting at x; and x;, respectively.

@ Let's choose the weights as D1= diag(1/d;,...,1/dy) in the £2-distance
(i.e., the higher the degree of a node, the smaller its influence on the
distance).
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Diffusion Distances . .

@ Now let's compute the weighted ¢?-distance between the probability clouds

P'(i,:) and P!(j,2), i.e., the probability distribution of the random walks

after t steps starting at x; and x;, respectively.

@ Let's choose the weights as D! = diag(1/d;,...,1/dy) in the £2-distance

(i.e., the higher the degree of a node, the smaller its influence on the

distance).

1P, = PY ()5 oo

where (%) is true since D~Y/2W is unitary (recall the properties of Ly in

Lecture 7).

= ((e] -epom¥T) D (€] - e})cDMt\PT)T

= (ej—e) OM'Y D'YM'D (e; - e))
= (ej—e)TOM* D (e;-e))

n—1
= Y @) - (j)?

k=0

= Di(x;,x)).
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In practice, we use the truncated version @ instead of @;.
Proposition (A. Singer (20117))

, 262
[Ps(x:) —Dr (x5 — 5—

dmin

(1-8)) < 192 (x;) = D2 (x) 13 < 1D, (%) — D, (x )13,

where 6;j is Kronecker's delta.
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Diffusion Distances . ..

In practice, we use the truncated version @ instead of @;.
Proposition (A. Singer (20117))

1D (%) — D (x )13~ (1 i) = 100 (x;) — @2 (x))115 < 1@ () — D (x) 113,

dmln

where 6;j is Kronecker's delta.

Proof. Recall D™1/2® is unitary. Hence,
1D, — @, )5 (e;i—e))TOD" (e; —e))
= (e;—e))'D'(e;i—e))

1 1 2

= —+—-——0;j
d, daj d; "

< 1-8i)).
dmln l]
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Diffusion Distances

Finally,
1D2x) - D2 xPIE = 1D x) P xNIZ— Y 12 (D) — Ppr())?
k:lplt<o
= D) - D xPIZ-0% Y. () —r()’
k:lpglt <6
n—1
> (D) — Pe(x)I5 6% Y (i) — Pr()?
k=0
= [ De(x;) — De(x )5 - 6% 1D (0,2 — @, )15
2
> ||<I>t(x,~)—<1>t(x,~)||§—62d 1-6;).
min
On the other hand, the inequality of the other direction is obvious. O
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Is the Diffusion Distance a Metric?

Unfortunately, the answer is NO:
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e Symmetry: D;(x,y) = D¢(y,x) v
@ Nonnegativity: D;(x,y)=0v
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Is the Diffusion Distance a Metric?

Unfortunately, the answer is NO:
e Symmetry: Di(x,y) = D:(y,x) v
@ Nonnegativity: D;(x,y)=0v
@ Triangle inequality: D¢(x,y) < D(x,y)+ D¢(x,2) vV
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Is the Diffusion Distance a Metric?

Unfortunately, the answer is NO:

e Symmetry: Di(x,y) = D:(y,x) v

@ Nonnegativity: D;(x,y)=0v

@ Triangle inequality: D¢(x,y) < D(x,y)+ D¢(x,2) vV
Identity of indiscernibles: D(x,y)=0 ﬁ x=y.
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Is the Diffusion Distance a Metric?

Unfortunately, the answer is NO:
e Symmetry: Di(x,y) = D:(y,x) v
@ Nonnegativity: D;(x,y)=0v
@ Triangle inequality: D¢(x,y) < D(x,y)+ D¢(x,2) vV
@ Identity of indiscernibles: D;(x,y) =0 Zx= ¥y

Consider the case when A(i,:) = @ A(j,:), 3a >0, e.g., a path with 3
vertices, vy, V2, v3 with the uniform edge weights 1. Then, D,(v1,v3) =0
although vy # vs. #
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