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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances

This part is based on the work by U. von Luxburg, A. Radl, and M.
Hein (JMLR, 2014) who cautioned the use of commute-time distances
for large graphs.
Recall the average first passage time (a.k.a. expected hitting time)
m( j | i ), i.e., the average number of steps that a random walker,
starting at vi , will take to reach v j for the first time.
The commute-time distance c(i , j ) between vi and v j was defined as
c(i , j ) = m( j | i )+m(i | j ). Recall also that the resistance distance
r (i , j ) = c(i , j )/vol(G).
Von Luxburg et al. proved that under mild assumptions, ∀i 6= j ,
m( j | i ) → vol(G)/d j , r (i , j ) = c(i , j )/vol(G) → 1/di +1/d j , as n →∞,
i.e., these do not reflect connectivity of the graph, just simply reflect
the local degree information only.
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances:
Electrical Network Intuition

The effective resistance r12 between two vertices connected by two
resistors r1 and r2 in series is r12 = r1 + r2 while that connected by two
resistors in parallel is 1/r12 = 1/r1 +1/r2.

very many paths

resistance 1
edges, each with

many outgoingd tmany outgoing
edges, each with
resistance 1

ds

s t

Figure 1: Electrical network intuition: The effective resistance between s and t is dominated by the
edges adjacent to s and t.

prohibitive in large graphs. To circumvent the matrix inversion, several approximations of the
commute distance have been suggested in the literature (Spielman and Srivastava, 2008, Sarkar
and Moore, 2007, Brand, 2005). Our results lead to a much simpler and well-justified way of ap-
proximating the commute distance on large random geometric graphs.

We start our paper with Section 2 that tries to convey our main results and techniques on a very
high level. Then, after introducing general definitions and notation (Section 3), we present our
main results in Section 4. This section is divided into two parts (flow based part and spectral
part). All proofs are presented in Sections 5 and 6. A final discussion can be found in Section 7.
For the convenience of the reader, some basic facts on random geometric graphs are presented in
the appendix. Parts of this work is built on our conference paper von Luxburg et al. (2010).

2 Intuition about our results and proofs

Before diving into technicalities, we would like to present our results in an intuitive, non-technical
way. Readers interested in crisp theorems are encouraged to skip this section right away.

Informally the main result of our paper is the following:

Main result: Consider a “large” graph that is “reasonably strongly’ connected. In such a graph,
the hitting times and commute distances between any two vertices u and v can be approximated by
the simple expressions

1

vol(G)
Huv ≈

1

dv
and

1

vol(G)
Cuv ≈

1

du
+

1

dv
.

In this section we want to present some intuitive arguments to understand why this makes sense.
In order to show a broad picture and to make our results accessible to a general audience, we are
going to present two completely different approaches in our paper.

2.1 Electrical network intuition

Consider an unweighted graph as an electrical network where each edge has resistance 1. We want
to compute the effective resistance between two fixed vertices s and t by exploiting the electrical
laws. Resistances in series add up, that is for two resistances R1 and R2 in series we get the overall
resistance R = R1 + R2. Resistances in parallel lines satisfy 1/R = 1/R1 + 1/R2. Now consult
the unweighted electrical network in Figure 1. Consider the vertex s and all edges from s to its ds
neighbors. The resistance “spanned” by these ds parallel edges satisfies 1/R =

∑ds
i=1 1 = ds, that

is R = 1/ds. Similarly for t. Between the neighbors of s and the ones of t there are very many
paths. It turns out that the contribution of these paths to the resistance is negligible (essentially,
we have so many wires between the two neighborhoods that electricity can flow nearly freely). So
the overall effective resistance between s and t is dominated by the edges adjacent to i and j with
contributions 1/ds + 1/dt.

The main theorems derived from the electrical network approach are Theorems 3 and 4. In order
to prove them, we bound the electrical resistance between two vertices using flow arguments. The

3

Hence, the overall effective resistance between i and j is dominated by
the edges adjacent to i and j with contribution 1/di +1/d j .
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances:
Random Walk Intuition

Regardless of which vertex i the random walk starts from, the time to
hit vertex j just depends on d j if G gets large. By the time the
random walk is close to j , it has forgotten where it came from:

x

x

Figure 2: Random walk intuition: Between its start and target vertex (black crosses), the random
walk wanders around so long that by the time it finally arrives at its target it has already “forgotten”
where it started from.

overall idea is that we construct a unit flow between s and t that uses as many paths as possible.
From the technical side, this approach has the advantage that we can throw away irrelevant parts
of the graph — we can concentrate on a “valid region” that contains s, t, and many paths between
s and t. For this reason, we need less assumptions on the geometry of the underlying space “close
to its boundary”. We explicitly construct such flows for random geometric graphs. The idea is to
place a grid on the underlying space and control the flow between different cells of the grid.

As far as we can see, this technique can only be used to bound the resistance distance Rij , it does
not work for the individual hitting times Hij or Hji.

2.2 Random walk intuition

Another approach to understand our convergence results is based on random walks. Essentially,
our results for the hitting times Huv say that regardless at which vertex u we start, the time to
hit vertex v just depends on the degree of v. What happens is that as the graph gets large, the
random walk can explore so many paths that by the time it is close to v it “has forgotten” where
it came from (cf. Figure 2). This is why the hitting time does not depend on u. Once the random
walk is in the vicinity of v, the question is just whether it exactly hits v or whether it passes close
to v without hitting it. Intuitively, the likelihood to hit v is inversely proportional to the density
of the graph close to v: if there are many edges in the neighborhood of v, then it is easier to hit v
than if there are only few edges. This is how the inverse degree comes into play.

Stated slightly differently, the random walk has already mixed before it hits v. For this reason, the
hitting time does not depend on u. All that is left is some component depending on v. Notably,
this component exactly coincides with the mean return time of v (the expected time it takes a
random walk that starts at v to return to v), which is given as vol(G)/dv.

In the light of our explanation it is reasonable to expect that the quality of our approximation
depends on the mixing time of the random walk, and the latter is known to be governed by the
size of the spectral gap, in particular the quantity 1− λ2 (see below for exact definitions). Indeed,
we will see in our Key Proposition 5 that 1− λ2 is exactly the quantity that governs the deviation
bound for the hitting and commute times. If 1− λ2 is small, then the graph is too well-clustered,
has a large mixing time, and our approximation guarantee gets worse.

The spectral approach leads to the main theorems in Section 4.2. We first have to express the
commute time in terms of a spectral representation of the graph (Proposition 5). To make use of
this proposition we need a lower bound on the spectral gap 1− λ2 of the graph.
To bound the spectral gap in random geometric graphs we use path-based arguments as well,
namely we use the canonical path technique of Diaconis and Stroock (1991). Here one has to
construct a set of “canonical paths” between each pair of vertices in the graph. The goal is to
distribute these paths “as well as possible” over the graph. As in the case above we use a grid
to control the paths between different cells of this grid. This is very reminiscent of the technique
described above. However, an important difference is that we now need to consider paths between
all pairs of points (we have to bound the spectral gap of the whole graph) instead of just paths
between s and t. In the language of flows, instead of looking at a unit flow from s to t we would
have to use multi-commodity flows between all pairs of vertices instead of a single flow from s to t

4

How fast the random walk hits j is inversely proportional to the
density of G close to j , i.e., ≈ 1/d j .
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances: Setup

Recall the properties of the transition matrix P := D−1 A, and the
symmetrically-normalized graph Laplacian matrix
Lsym := D−1/2LD−1/2 = In −D−1/2 AD−1/2:
λ is an eigenvalue of Lsym iff 1−λ is an eigenvalue of P .
Let 1 =µ0 ≥µ1 ≥ ·· · ≥µn−1 >−1 be the eigenvalues of P , i.e.,
λ

sym
j = 1−µ j .

The spectral gap of P is defined as 1−max{µ1, |µn−1|}.
Using the definition of Lsym, m( j | i ), ri j , and ci j can be written as:

m( j | i ) = vol(G)

〈
1√
d j

e j ,L†
sym

 1√
d j

e j − 1√
di

e i

〉

ri j = 1

vol(G)
ci j =

〈
1√
di

e i − 1√
d j

e j ,L†
sym

 1√
di

e i − 1√
d j

e j

〉
.
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di

e i − 1√
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Cautions on Resistance/Commute-Time Distances

Problems of Resistance/Commute-Time Distances: Setup
Von Luxberg et al. deal with the so-called random geometric graphs.
‘Random’ implies that the underlying data vectors {x1, . . . , xn} ⊂Rd are
n i.i.d. realizations of a stochastic process with some pdf on Rd .
‘Geometric ’ implies that graphs under consideration are either: 1)
k-NN graphs with ‖ ·‖2; 2) ε-neighborhood graphs with ‖ ·‖2; or 3)
complete graphs with the weights exp

(−‖x i −x j‖2
2/h2

)
.

Definition (Valid Region)

Let p be any pdf on Rd . We call a connected subset X ⊂Rd a valid region
if the following properties are satisfied:
(i) p on X is bounded away from 0: ∀x ∈X , ∃pmin, s.t., p(x) ≥ pmin > 0.
(ii) X has “bottleneck” larger than some value h > 0; the set

{x ∈X | dist(x ,∂X ) > h/2} is connected.
(iii) ∂X is regular: ∃α> 0,ε0 > 0 s.t. if ε< ε0, then ∀x ∈ ∂X ,

vol(Bε(x)∩X ) ≥αvol(Bε(x)). In other words, ∂X cannot contain
arbitrarily thin spikes.
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Cautions on Resistance/Commute-Time Distances

General Limitations of Theorems of Von Luxburg et al.

Their approximation results only hold if the graph is “reasonably
strongly” connected and does not have too extreme bottlenecks. In
other words, no single edge dominates the commute time behavior.
Their results only hold if dmin(G) (the minimum degree of G) is
“reasonably large” compared to n = |V (G)|, e.g., dmin(G) ≈ logn. In
other words, no single vertex dominates the commute time behavior.
Hence, their results do not hold for power-law graphs/scale-free
networks where dmin(G) is constant.
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Cautions on Resistance/Commute-Time Distances

Main Results of Von Luxburg, Radl, & Hein

Theorem (Commute-distance on unweighted ε-neighborhood graphs)

Let X be a valid region with bottleneck h and minimal density value pmin. For
ε≤ h, consider an unweighted ε-neighborhood graph built from {x1, . . . , xn} that
have been drawn i.i.d. from the pdf p. Fix i and j . Assume that dist(x`,∂X ) ≥ h,
`= i , j and that ‖x i −x j ‖2 ≥ 8ε. Then, there exist constants c` > 0, `= 1, . . . ,7
(depending on the dimension and geometry of X ) such that with probability at
least 1− c1n exp

(−c2nεd
)− c3 exp

(−c4nεd
)

/εd the commute-time distance on the
ε-neighborhood graph satisfies:∣∣∣∣∣ nεd

vol(G)
ci j −

(
nεd

di
+ nεd

d j

)∣∣∣∣∣≤


c5/nεd if d > 3;
c6 log(1/ε)/nε3 if d = 3;
c7/nε3 if d = 2.

The probability converges to 1 if n →∞ and nεd /log(n) →∞. Under these
conditions, if p is continuous and if ε→ 0, then

nεd

vol(G)
ci j

a.s.→ 1

ηd p(x i )
+ 1

ηd p(x j )
, where ηd := vol(B1(0)) = 2πd/2

dΓ(d/2)
.
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Cautions on Resistance/Commute-Time Distances

Main Results of Von Luxburg, Radl, & Hein . . .

Theorem (Commute-distance on unweighted k-NN graphs)

Let X be a valid region with bottleneck h and density bounds pmin and pmax.
Consider an unweighted k-NN graph (either symmetric or mutual) such that
(k/n)1/d /2pmax ≤ h, built from {x1, . . . , xn} that have been drawn i.i.d. from the
pdf p. Fix i and j . Assume that dist(x`,∂X ) ≥ h, `= i , j and that
‖x i −x j ‖2 ≥ 4(k/n)1/d /pmax. Then, there exist constants c` > 0, `= 1, . . . ,6 such
that with probability at least 1− c1n exp(−c2k) the commute-time distance on the
k-NN graph satisfies:∣∣∣∣ k

vol(G)
ci j −

(
k

di
+ k

d j

)∣∣∣∣≤


c4/k if d > 3;
c5 log(n/k)/k if d = 3;
c6n1/2/k3/2 if d = 2.

The probability converges to 1 if n →∞ and k/log(n) →∞. Under these
conditions, if p is continuous and if k/n → 0, then

k

vol(G)
ci j

a.s.→ 2.
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Cautions on Resistance/Commute-Time Distances

Main Results of Von Luxburg, Radl, & Hein . . .

Theorem (Commute-distance on fully connected weighted graphs)

Consider a fixed, fully connected weighted graph with weight matrix A (not
necessarily Gaussian weights). Assume that 0 < amin ≤ ai j ≤ amax for all i , j .
Then, uniformly for all i , j ∈ N = {1, . . . ,n}, i 6= j ,∣∣∣∣ n

vol(G)
m( j | i )− n

d j

∣∣∣∣≤ 4n
amax

amin

amax

d 2
min

≤ 4
a2

max

a3
min

1

n
.

Theorem (Gaussian graphs with adapted bandwidth)

Let X ⊂Rd be a compact set and p a continuous, strictly positive pdf on X .
Consider a fully connected, weighted similarity graph built from {x1, . . . , xn} drawn
i.i.d. from p. Let the weight function be
kh(x i , x j ) := 1

(2πh2)d/2 exp(−‖x i −x j ‖2
2/2h2). If n →∞, h → 0, and

nhd+2/log(n) →∞, then
n

vol(G)
ci j

a.s.→ 1

p(x i )
+ 1

p(x j )
.
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Diffusion Distances

Diffusion Maps

Consider the transition matrix P = D−1 A of a weighted graph G.

Due to the nonsymmetry of P , it has the left and right eigenvectors, i.e.,
P =ΦMΨT where M := diag(µ0, . . . ,µn−1), ψ j

TP =µ jψ j
T, Pφ j =µ jφ j ,

j = 0, . . . ,n −1. Note ΦTΨ=ΨTΦ= In , i.e., {φ j } and {ψ j } are biorthogonal
bases of Rn .

Recall λsym
j = 1−µ j . Hence, for a connected graph,

1 =µ0 ≥µ1 ≥ ·· · ≥µn−1 >−1.

The diffusion map Φt : V = X →Rn is defined as

Φt (x i ) := [µt
0φ0(i ),µt

1φ1(i ), . . . ,µt
n−1φn−1(i )]T t > 0.

Often the first coordinate µt
0φ0(i ) is neglected since its common for all i ’s

(µ0 = 1, φ0 is a constant vector), and not providing useful information.

A truncated version Φδt : V →Rm , 0 < δ< 1, is defined by

Φδt (x i ) := [µt
1φ1(i ), . . . ,µt

mφm(i )]T t > 0,

where m ¿ n is chosen by |µm |t > δ, |µm+1|t ≤ δ.
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Diffusion Distances

Diffusion Distances

Now define the diffusion distance between x i and x j as

D t (x i , x j ) := ‖Φt (x i )−Φt (x j )‖2.

D t (x i , x j ) is a weighted `2-distance between the probability clouds
after t time steps of random walks starting at x i and x j .
From the Markov chain/random walk interpretation, we have

(P )i j = pi j = Pr(s(t +1) = x j | s(t ) = x i ) for any t ∈N∪ {0}.

Hence,
(P t )i j =: p t

i j = Pr(s(t ) = x j | s(0) = x i ),

i.e., the entries of P t give us the probability to get from one state to
another in t time steps. t can be viewed as a scale parameter.
Thanks to the biorthogonality, we have

P t =ΦM tΨT, p t
i j =

n−1∑
k=0

µt
kφk (i )ψk ( j ).
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Diffusion Distances

Diffusion Distances . . .

Figure: Courtesy: R. R. Coifman & S. Lafon
Diffusions between A and B have to go through the bottleneck while
C is easily reachable from B .
The Markov matrix defining a diffusion could be given by a kernel or
by inference between neighboring nodes.
The diffusion distance accounts for preponderance of inference links.
The shortest path (i.e., the geodesic distance) between A and C is
roughly the same as that between B and C .
The diffusion distance between A and B , however, is larger than that
between B and C since diffusion occurs through a bottleneck.
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Diffusion Distances

Diffusion Distances . . .

Now let’s compute the weighted `2-distance between the probability clouds
P t (i , :) and P t ( j , :), i.e., the probability distribution of the random walks
after t steps starting at x i and x j , respectively.

Let’s choose the weights as D−1 = diag(1/d1, . . . ,1/dn) in the `2-distance
(i.e., the higher the degree of a node, the smaller its influence on the
distance).

‖P t (i , :)−P t ( j , :)‖2
2,D−1 =

(
(eT

i −eT
j )ΦM tΨT

)
D−1

(
(eT

i −eT
j )ΦM tΨT

)T
= (e i −e j )TΦM tΨTD−1ΨM tΦT(e i −e j )

(∗)= (e i −e j )TΦM 2tΦT(e i −e j )

=
n−1∑
k=0

µ2t
k (φk (i )−φk ( j ))2

= D2
t (x i , x j ).

where (∗) is true since D−1/2Ψ is unitary (recall the properties of Lrw in
Lecture 7).
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Diffusion Distances

Diffusion Distances . . .

In practice, we use the truncated version Φδt instead of Φt .

Proposition (A. Singer (2011?))

‖Φt (x i )−Φt (x j )‖2
2−

2δ2

dmin
(1−δi j ) ≤ ‖Φδt (x i )−Φδt (x j )‖2

2 ≤ ‖Φt (x i )−Φt (x j )‖2
2,

where δi j is Kronecker’s delta.

Proof. Recall D+1/2Φ is unitary. Hence,

‖Φ(i , :)−Φ( j , :)‖2
2 = (e i −e j )TΦΦT(e i −e j )

= (e i −e j )TD−1(e i −e j )

= 1

di
+ 1

d j
− 2

di
δi j

≤ 2

dmin
(1−δi j ).
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Diffusion Distances

Finally,

‖Φδt (x i )−Φδt (x j )‖2
2 = ‖Φt (x i )−Φt (x j )‖2

2 −
∑

k:|µk |t<δ
µ2t

k (φk (i )−φk ( j ))2

≥ ‖Φt (x i )−Φt (x j )‖2
2 −δ2

∑
k:|µk |t<δ

(φk (i )−φk ( j ))2

≥ ‖Φt (x i )−Φt (x j )‖2
2 −δ2

n−1∑
k=0

(φk (i )−φk ( j ))2

= ‖Φt (x i )−Φt (x j )‖2
2 −δ2‖Φ(i , :)−Φ( j , :)‖2

2

≥ ‖Φt (x i )−Φt (x j )‖2
2 −δ2 2

dmin
(1−δi j ).

On the other hand, the inequality of the other direction is obvious. ä
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Diffusion Distances

Is the Diffusion Distance a Metric?

Unfortunately, the answer is NO:
Symmetry: D t (x , y) = D t (y , x)X

Nonnegativity: D t (x , y) ≥ 0X

Triangle inequality: D t (x , y) ≤ D t (x , y)+D t (x , z)X

Identity of indiscernibles: D t (x , y) = 0
;⇐ x = y .

Consider the case when A(i , :) =αA( j , :), ∃α> 0, e.g., a path with 3
vertices, v1, v2, v3 with the uniform edge weights 1. Then, D t (v1, v3) = 0
although v1 6= v3. #
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