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Dimensionality Reduction

Dimensionality Reduction/Low-Dimensional Embedding

Dimensionality reduction, if properly done, is quite useful and effective
for many data analysis tasks.
Many techniques, proposals, algorithms exist.
In this lecture, we only discuss:

Classical Multidimensional Scaling (given data vectors) ≡ PCA
Laplacian Eigenmap
Diffusion Map

CMDS/PCA is a linear technique whereas LE/DM are nonlinear.
Notation

Let X be the training data matrix, X := (
x1, . . . , x Ntr

) ∈Rd×Ntr .
Let X̃ := X (I −11T/Ntr), i.e., the centered data matrix (the mean of
the column vectors x is subtracted from each column vector).
Let Ψ :Rd →Rs be a low-dimensional embedding map.
Let Ψ(X ) := (

Ψ(x1), . . . ,Ψ(x Ntr )
) ∈Rs×Ntr .
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Dimensionality Reduction MDS/PCA

Classical (Multidimensional) Scaling and PCA (Review)

Define the similarity between x i and x j by the centered correlation

α(x i , x j ) := (x i −x)T(x j −x).

Then, the classical scaling seeks the low-dimensional representation
that preserves the pairwise similarities in X as well as possible by
minimizing

JCS(Ψ) := ∑
i , j

(α(x i , x j )−α(Ψ(x i ),Ψ(x j )))2 = ∥∥X̃ TX̃ −Ψ(X̃ )TΨ(X̃ )
∥∥2

F .

We can find this map using the SVD of X̃ =UΣV T as

Ψ(X̃ ) =UT
s X̃ =ΣsV T

s ,

which is exactly the same as using the first s components of PCA!
A drawback: too global and not incorporating local geometry
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Dimensionality Reduction Laplacian Eigenmaps

Laplacian Eigenmaps (Belkin & Niyogi, 2001–3)

Incorporating local geometric information in Rd for the embedding
Define the proximity weight w(x i , x j ), e.g., wε(x i , x j ) := e−‖x i−x j ‖2/ε2

.
Now, seek Ψ :Rd →Rs that minimizes the following

JLE(Ψ) := ∑
i , j

‖Ψ(x i )−Ψ(x j )‖2wε(x i , x j ).

This leads to the following optimization problem:

min
Ψ(X )∈Rs×Ntr

tr
(
Ψ(X )LΨ(X )T

)
subject toΨ(X )DΨ(X )T = I ,

where the matrices are defined as

A := (
ai j = wε(x i , x j )

)
, D := diag

(∑
j

a1 j , . . . ,
∑

j
aNtr j

)
.

The matrix L := D − A is the (unnormalized) graph Laplacian, of
course.

saito@math.ucdavis.edu (UC Davis) Dimension Reduction 11/12/19 8 / 22



Dimensionality Reduction Laplacian Eigenmaps

Laplacian Eigenmaps (Belkin & Niyogi, 2001–3)

Incorporating local geometric information in Rd for the embedding
Define the proximity weight w(x i , x j ), e.g., wε(x i , x j ) := e−‖x i−x j ‖2/ε2

.
Now, seek Ψ :Rd →Rs that minimizes the following

JLE(Ψ) := ∑
i , j

‖Ψ(x i )−Ψ(x j )‖2wε(x i , x j ).

This leads to the following optimization problem:

min
Ψ(X )∈Rs×Ntr

tr
(
Ψ(X )LΨ(X )T

)
subject toΨ(X )DΨ(X )T = I ,

where the matrices are defined as

A := (
ai j = wε(x i , x j )

)
, D := diag

(∑
j

a1 j , . . . ,
∑

j
aNtr j

)
.

The matrix L := D − A is the (unnormalized) graph Laplacian, of
course.

saito@math.ucdavis.edu (UC Davis) Dimension Reduction 11/12/19 8 / 22



Dimensionality Reduction Laplacian Eigenmaps

Laplacian Eigenmaps (Belkin & Niyogi, 2001–3)

Incorporating local geometric information in Rd for the embedding
Define the proximity weight w(x i , x j ), e.g., wε(x i , x j ) := e−‖x i−x j ‖2/ε2

.
Now, seek Ψ :Rd →Rs that minimizes the following

JLE(Ψ) := ∑
i , j

‖Ψ(x i )−Ψ(x j )‖2wε(x i , x j ).

This leads to the following optimization problem:

min
Ψ(X )∈Rs×Ntr

tr
(
Ψ(X )LΨ(X )T

)
subject toΨ(X )DΨ(X )T = I ,

where the matrices are defined as

A := (
ai j = wε(x i , x j )

)
, D := diag

(∑
j

a1 j , . . . ,
∑

j
aNtr j

)
.

The matrix L := D − A is the (unnormalized) graph Laplacian, of
course.

saito@math.ucdavis.edu (UC Davis) Dimension Reduction 11/12/19 8 / 22



Dimensionality Reduction Laplacian Eigenmaps

Laplacian Eigenmaps (Belkin & Niyogi, 2001–3)

Incorporating local geometric information in Rd for the embedding
Define the proximity weight w(x i , x j ), e.g., wε(x i , x j ) := e−‖x i−x j ‖2/ε2

.
Now, seek Ψ :Rd →Rs that minimizes the following

JLE(Ψ) := ∑
i , j

‖Ψ(x i )−Ψ(x j )‖2wε(x i , x j ).

This leads to the following optimization problem:

min
Ψ(X )∈Rs×Ntr

tr
(
Ψ(X )LΨ(X )T

)
subject toΨ(X )DΨ(X )T = I ,

where the matrices are defined as

A := (
ai j = wε(x i , x j )

)
, D := diag

(∑
j

a1 j , . . . ,
∑

j
aNtr j

)
.

The matrix L := D − A is the (unnormalized) graph Laplacian, of
course.

saito@math.ucdavis.edu (UC Davis) Dimension Reduction 11/12/19 8 / 22



Dimensionality Reduction Laplacian Eigenmaps

Laplacian Eigenmaps . . .

This leads to the following generalized eigenvalue problem:

LΨ(X )T = DΨ(X )TΛ; L ∈RNtr×Ntr ,Λ ∈Rs×s ,

m
LrwΨrw(X )T =Ψrw(X )TΛrw; Lrw := D−1L = I −D−1 A.

Ψrw(X ) ∈Rs×Ntr is the Laplacian Eigenmap of X .
Another possibility is:

LsymΨsym(X )T =Ψ(X )TsymΛsym; Lsym := D− 1
2 LD− 1

2 = I −D− 1
2 AD− 1

2 .

Both Lrw and Lsym are called the normalized graph Laplacians (rw =
‘random walk’; sym = ‘symmetric’).

Ψrw(X ) =Ψsym(X )D− 1
2 , Λrw =Λsym.

Eigenvalues are sorted in nondecreasing order; Lrw1 = 0.
A drawback: sensitive to sampling density on a manifold.
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Dimensionality Reduction Diffusion Maps

Diffusion Maps (Coifman & Lafon 2004–6)

Focus on the normalized weighted adjacency matrix P := D−1 A.
Interpret P as the transition matrix of a random walk on X or the
diffusion operator on X . P t = running the random walk t steps.
Perform density invariant normalization on A, i.e., Ã := D−1 AD−1

first. Then, do the row-stochastic normalization, i.e., P̃ := D̃−1 Ã
where D̃ is the degree matrix (diagonal) of Ã.
Finally perform the eigenanalysis:

P̃ΨDM(X )T =ΨDM(X )TΛDM,

where the eigenvalues are sorted in nonincreasing order; P̃1 = 1.
Diffusion map is defined as:

Ψt
DM(X ) := Λt

DMΨDM(X ).

Relationship with the Laplacian eigenmap (if Lrw = I − P̃ is used
instead of usual Lrw = I −P):

Ψ1
DM(X ) =Ψrw(X ); ΛDM = I −Λrw.
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Perform density invariant normalization on A, i.e., Ã := D−1 AD−1

first. Then, do the row-stochastic normalization, i.e., P̃ := D̃−1 Ã
where D̃ is the degree matrix (diagonal) of Ã.
Finally perform the eigenanalysis:

P̃ΨDM(X )T =ΨDM(X )TΛDM,

where the eigenvalues are sorted in nonincreasing order; P̃1 = 1.
Diffusion map is defined as:

Ψt
DM(X ) := Λt

DMΨDM(X ).

Relationship with the Laplacian eigenmap (if Lrw = I − P̃ is used
instead of usual Lrw = I −P):

Ψ1
DM(X ) =Ψrw(X ); ΛDM = I −Λrw.
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Dimensionality Reduction Diffusion Maps

Density Invariant Normalization

is important for the mapping to be less dependent on the sampling density
on a manifold in Rd .

Figure: Courtesy: R. R. Coifman & S. Lafon. From left to right: 3D curves to be
embedded into 2D; Sampling densities along curves; Embeddings by LE;
Embeddings by DM.
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Dimensionality Reduction Diffusion Maps

Remarks

The rows of ΨDM(X ) (when they are transposed) are the right eigenvectors
of P̃ .

Can use SVD or symmetric eigenvalue solver for computing these embedding
maps.

Choosing a good scale parameter ε for both LE and DM is not easy:

ε= the mean of the k-nearest neighbor distances.
But how to choose k?

=⇒ Cross validation, etc.

For DM, choosing t or when to stop the diffusion is another subtle question,
which is quite dependent on ε and the decay of the eigenvalues.

Choosing an appropriate value of s is yet another problem =⇒ Elongated
K -means algorithm:
G. Sanguinetti, J. Laidler, and N. D. Lawrence, “Automatic determination of
the number of clusters using spectral algorithms,” Proc. 15th IEEE
Workshop on Machine Learning for Signal Processing, pp. 55–60, 2005.
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Extension of Maps for Test Data

Outline

1 Dimensionality Reduction
Multidimensional Scaling/Principal Component Analysis (Review)
Laplacian Eigenmaps
Diffusion Maps

2 Extension of Maps for Test Data
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Extension of Maps for Test Data

Extension of Maps for Test Data

Need such extensions because all the maps and embeddings are
computed only based on the training dataset X ; no one wants to
recompute those maps from scratch using both the training dataset
X ∈Rd×Ntr and the test dataset Y ∈Rd×Nte .
For PCA, it is quite easy; simply the multiplication of UT

s to Y .
For LE/DM, it is more involved and one needs to use an extension
algorithm something similar to the following geometric harmonics
multiscale extension algorithm:
S. Lafon, Y. Keller, R. R. Coifman, “Data fusion and multicue data
matching by diffusion maps,” IEEE Trans. Pattern Anal. Machine
Intell., vol.28, no.11, pp.1784–1797, 2006.
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Extension of Maps for Test Data

Geometric Harmonics Multiscale Extension (GHME)

Is an improvement of the Nyström extension method proposed by
Fowlkes et al. (2004), and Bengio et al. (2004).
First consider the Gaussian kernel matrix defined on X with the scale
parameter σ> 0, which is different from ε used in the weight function
in for constructing LE/DM, as follows:

Wσ(X ) := (
wσ(x i , x j )

)= (
e−‖x i−x j ‖2/σ2

)
∈RNtr×Ntr .

Wσ(X ) is positive semi-definite and its eigendecomposition is:

Wσ(X ) =ΦTMΦ,ΦT := [
φ1, . . . ,φNtr

] ∈RNtr×Ntr , M := diag(µ1, . . . ,µNtr ).

where µ1 ≥ ·· · ≥µNtr ≥ 0, φi := (φi (x1), . . . ,φi (x Ntr ))T, i = 1, . . . , Ntr.
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Extension of Maps for Test Data

Geometric Harmonics Multiscale Extension (GHME) . . .

Now, consider the kth eigenpair (µk ,φk ), i.e., Wσ(X )φk =µkφk . The
i th row of this equality gives us

φk (x i ) = 1

µk

Ntr∑
j=1

wσ(x i , x j )φk (x j ).

The Nyström extension of φk from X to y ∈ Y is defined as

φk (y) := 1

µk

Ntr∑
j=1

wσ(y , x j )φk (x j ).

Since the eigenvectors {φk } form an orthonormal basis for RNtr , any
function f := ( f (x1), . . . , f (x Ntr ))T ∈RNtr can be expanded as

f =
Ntr∑

k=1

〈
f ,φk

〉
φk , i.e., f (x j ) =

Ntr∑
k=1

〈
f ,φk

〉
φk (x j ), j = 1, . . . , Ntr.
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Extension of Maps for Test Data

Geometric Harmonics Multiscale Extension (GHME) . . .

Thus the Nyström extension of f from X to y ∈ Y can be defined as

f (y) :=
Ntr∑

k=1

〈
f ,φk

〉
φk (y).

In order to understand what we have done here, let us plug the
Nyström extension formula of φk ’s in the righthand side of the above
equation.

f (y) =
Ntr∑

k=1

〈
f ,φk

〉
µk

Ntr∑
j=1

wσ(y , x j )φk (x j )

=
Ntr∑

k=1

φT

k f

µk
wσ(y , :)φk

= wσ(y , :)ΦTM−1Φ f ,

where wσ(y , :) := [wσ(y , x1), . . . , wσ(y , x Ntr )] ∈R1×Ntr .
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Extension of Maps for Test Data

Geometric Harmonics Multiscale Extension (GHME) . . .
Observe that the range of the above extension is proportional to σ. If the
ratio ‖y −x j ‖/σ is large for all x j ∈ X , then φk (y) will be numerically small
and hence may not be meaningful. Hence the extension scale σ should be as
large as possible.

On the other hand, for large enough σ, Wσ(X ) becomes ill-conditioned, i.e.,
µk tends to 0 more quickly compared to the case of small σ. Thus the
above Nyström extension will blow up.

Furthermore, it is well known that the extension range depends on the
smoothness of the function to be extended: If f is fairly smooth, it can be
extended far away from the training set while it has limited extension range
if f varies wildly on X .

In fact, if we can compute M−1 without blowing up, i.e., µNtr 	 0, then
ΦTM−1Φ=Wσ(X )−1.

Moreover, by setting y = x j ∈ X in the Nyström extension formula, we can
recover f (x j ):

wσ(x j , :)ΦTM−1Φ f = wσ(x j , :)Wσ(X )−1 f = eT
j f = f (x j ).
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On the other hand, for large enough σ, Wσ(X ) becomes ill-conditioned, i.e.,
µk tends to 0 more quickly compared to the case of small σ. Thus the
above Nyström extension will blow up.

Furthermore, it is well known that the extension range depends on the
smoothness of the function to be extended: If f is fairly smooth, it can be
extended far away from the training set while it has limited extension range
if f varies wildly on X .

In fact, if we can compute M−1 without blowing up, i.e., µNtr 	 0, then
ΦTM−1Φ=Wσ(X )−1.

Moreover, by setting y = x j ∈ X in the Nyström extension formula, we can
recover f (x j ):

wσ(x j , :)ΦTM−1Φ f = wσ(x j , :)Wσ(X )−1 f = eT
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Extension of Maps for Test Data

Geometric Harmonics Multiscale Extension (GHME) . . .
In practice, however, Wσ(X ) is ill-conditioned, and we need to truncate M−1

to the first p ×p submatrix and Φ to the first p rows where p, 1 ≤ p < Ntr,
must be appropriately chosen.

Let M−1
p , Φp be these truncated matrices. Then, the Nyström extension of

f can be approximated without blowup:

f (y) ≈ wσ(y , :)ΦT
p M−1

p Φp f = wσ(y , :)Wσ,p (X )† f ,

where Wσ,p (X )† := ΦT
p M−1

p Φp is the pseudoinverse of Wσ(X ) using the top p
singular values and vectors of Wσ(X ).

Hence, if we want to extend a low-dimensional embedding map
Ψ(X ) = [

ψ1 | · · · |ψs

]T, we have

Ψ(y) = [
ψ1(y) | · · · |ψs (y)

]T ≈
[

wσ(y , :)ΦT
p M−1

p Φp [ψ1 | · · · |ψs ]
]T

=
[

wσ(y , :)ΦT
p M−1

p ΦpΨ(X )T
]T

= Ψ(X )ΦT
p M−1

p Φp wσ(:, y)

= Ψ(X )Wσ,p (X )†wσ(:, y).
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Extension of Maps for Test Data

Geometric Harmonics Multiscale Extension (GHME) . . .
One idea to determine this rank p of the pseudoinverse:

p = argmax
1≤k≤Ntr

{
µ1

µk
≤ η

}
.

where η> 0 is some fixed condition number. In other words, p is the
largest possible stable rank of Wσ(X ) such that the condition number
after truncation is bounded from above by η.
Choice of η hence p is quite subtle and intertwined with the choice of
σ: large η may lead to p = Ntr, but f on X does not approximate f on
X well unless σ is set so small that Wσ(X ) has a stable inverse.
Such a case, however, is not of our interest because setting σ too
small practically disconnects data points in X . In fact, Wσ(X ) → I as
σ ↓ 0 (as long as x i 6= x j for all i 6= j in X ).
Yet observe that if σ decreases, µk ↓ 0 more slowly. This allows us to
use larger p making f a better approximation of f on X .
Hence the GHME iteratively searches for f that approximates f on X
with an preset error tolerance %> 0 by slowly decreasing σ.
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Extension of Maps for Test Data

Algorithm (The GHME of Lafon, Keller, and Coifman (2006))

Suppose f is a function defined on the training set X and to be extended
to a test set Y .

1 Fix a condition number η> 0 and an error tolerance %> 0. Set the
extension scale σ=σ0 for some large value σ0.

2 Compute the eigendecomposition of Wσ(X ) and expand f (on the
training set X ) in this eigenbasis.

3 On the training set X , approximate f by f using the Nyström
extension by finding p = argmax1≤k≤Ntr

{µ1/µk ≤ η}. Then compute the
approximation error Er r := (∑

k>p |
〈

f ,φk

〉 |2)1/2. If Er r > %, set
σ← 1

2σ and return to Step 2. Otherwise, continue.
4 Using the value of p obtained in Step 3, compute the final

approximate extension for each y ∈ Y :

f (y) ≈ wσ(y , :)ΦT
p M−1

p Φp f = wσ(y , :)Wσ,p (X )† f .
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