
MAT 280: Harmonic Analysis on Graphs & Networks
Lecture 15: Applications of Dimension Reduction
Techniques to Signal Ensemble Classification

Naoki Saito

Department of Mathematics
University of California, Davis

November 14, 2019

saito@math.ucdavis.edu (UC Davis) Signal Ensemble Classification 11/14/19 1 / 25



Outline

1 Acknowledgment

2 Problem Formulation

3 Our Proposed Algorithm

4 Earth Mover’s Distance (EMD)

5 Numerical Experiments
Underwater Object Classification
Video Clip Classification

6 Conclusions and Future Plan

7 References

saito@math.ucdavis.edu (UC Davis) Signal Ensemble Classification 11/14/19 2 / 25



Acknowledgment

Outline

1 Acknowledgment

2 Problem Formulation

3 Our Proposed Algorithm

4 Earth Mover’s Distance (EMD)

5 Numerical Experiments
Underwater Object Classification
Video Clip Classification

6 Conclusions and Future Plan

7 References

saito@math.ucdavis.edu (UC Davis) Signal Ensemble Classification 11/14/19 3 / 25



Acknowledgment

Acknowledgment

Raphy Coifman (Yale)
Quyen Hyunh (formerly Naval Surface Warfare Center)
Yosi Keller (Bar-Ilan Univ., Israel)
Linh Lieu (formerly UC Davis)
Stéphane Lafon (Google)
Bradley Marchand (UC Davis =⇒ NSWC, Panama City, FL)
NSF
ONR

saito@math.ucdavis.edu (UC Davis) Signal Ensemble Classification 11/14/19 4 / 25



Problem Formulation

Outline

1 Acknowledgment

2 Problem Formulation

3 Our Proposed Algorithm

4 Earth Mover’s Distance (EMD)

5 Numerical Experiments
Underwater Object Classification
Video Clip Classification

6 Conclusions and Future Plan

7 References

saito@math.ucdavis.edu (UC Davis) Signal Ensemble Classification 11/14/19 5 / 25



Problem Formulation

Signal Ensemble Classification Problems

We want to classify ensembles of signals, not individual signals.
Examples include: Underwater object classification using sonar
waveforms; Classification of video clips, . . .

(a) Sonar Waveforms
(b) Video Clips of Digit Speaking Lips

Let X := ⋃N
i=1 X i ⊂Rd be a collection of N training ensembles. Each

X i consists of ni individual signals, i.e., X i := {x i
1, . . . , x i

ni
}, and has a

unique label among C possible labels. Let n? := ∑N
i=1 ni . Let

Y := ⋃M
j=1 Y j ⊂Rd be a collection of test (i.e., unlabeled) ensembles

where Y j := {y j
1, · · · , y j

m j
}. Our goal is to classify each Y j to one of

the possible C classes given the training ensembles X . This task is
different from classifying each signal y j

k ∈ Y individually.
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Our Proposed Algorithm

Our Proposed Algorithm

Training Stage (X is given)
1 Preset a large enough initial dimension 1 ≤ s0 ¿ min(d ,n?) .
2 Construct a low-dimensional embedding map Ψ :Rd →Rs0 .
3 For i = 1 : N , construct a signature P i using Ψ(X i ) .
4 Determine the appropriate dimension 1 ≤ s ≤ s0 and re-adjust each

signature P i in Step 3.
Test Stage (Now Y is fed)

1 Extend the learned map Ψ to the test ensembles Y to embed them in
Rs .

2 Construct a signature Q j for each Y j , j = 1 : M .
3 For j = 1 : M , measure the distance d(P i ,Q j ), and find

i j := arg min
1≤i≤N

d(P i ,Q j ) . Assign the label of X i j to Y j . In other

words, apply 1-nearest neighbor classifier with the base distance d(·, ·)
in the reduced embedding space Rs .
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Our Proposed Algorithm

Sonar Waveform Signatures Embedded in R3
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Earth Mover’s Distance (EMD)

Earth Mover’s Distance (EMD)

Originated from the Monge-Kantorovich optimal transport problems
Used successfully in image retrieval from large databases, image
registration and warping, etc.
Y. Rubner, C. Tomasi, and L. J. Guibas, “The Earth Mover’s Distance
as a metric for image retrieval,” Intern. J. Comput. Vision, vol.40,
no.2, pp.99–121, 2000.
S. Kolouri, S. R. Park, M. Thorpe, D. Slepcev, and G. K. Rohde:
"Optimal Mass Transport: Signal processing and machine learning
applications," IEEE Signal Processing Magazine, vol.34, no.4,
pp.43-59, 2017.
More robust (for our classification problems) than the Hausdorff
distance dH (Ψ(X i ),Ψ(Y j )), which was used by Lafon-Keller-Coifman:

dH (Ψ(X i ),Ψ(Y j )) := max

(
max

y∈Ψ(Y j )
min

x∈Ψ(X i )
‖x − y‖, max

x∈Ψ(X i )
min

y∈Ψ(Y j )
‖x − y‖

)
.
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Earth Mover’s Distance (EMD)

Let P = {(x1, p1), . . . , (xn , pn)} and Q = {(y 1, q1), . . . , (y m , qm)} be two
signatures characterizing two classes or objects of interest. x i , y j ∈Rs

are cluster centers and pi , q j are populations (or mass) of the
corresponding clusters.
Then, the Earth Mover’s Distance (EMD) is defined by

EMD(P,Q) :=
∑n

i=1

∑m
j=1 fi j ci j∑n

i=1

∑m
j=1 fi j

.

ci j is the cost of moving one unit mass from the i th cluster in P to
the j th cluster in Q. A typical example: ci j = 1

2‖x i − y j‖2.

fi j ≥ 0: the optimal flow between two distributions that minimizes the
total cost

∑n
i=1

∑m
j=1 fi j ci j , subject to the following constraints:∑n

i=1 fi j ≤ q j , j = 1, . . . ,m;∑m
j=1 fi j ≤ pi , i = 1, . . . ,n;∑n
i=1

∑m
j=1 fi j = min{

∑n
i=1 pi ,

∑m
j=1 q j }.

Linear programming (the simplex method) is used to compute EMDs.
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Numerical Experiments Underwater Object Classification

Underwater Object Classification

Sonar waveforms in the acoustic scattering experiments were collected
in a fresh water pond at Naval Surface Warfare Center (NSWC),
Panama City, FL.
Three experiments on different days were performed. Each time, there
were two objects in the pond.

1 C1: Buried Al cylinder; S1: Fe Sphere filled with air
2 C2: Proud Al cylinder; S2: Fe Sphere filled with silicone oil
3 C3: Shorter proud Al cylinder; S3 = S2

Source: frequency 20kHz; sinusoidal shape; 0.2msec duration
Received waveforms were sampled at rate 500kHz

(a) Buried (b) Proud (c) Short Proud
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Numerical Experiments Underwater Object Classification

Underwater Object Classification . . .
Our objective is to classify objects according to their material compositions
independent of shapes, sizes, buried or proud.

Each data point is in R17×600; The number of data points in C1, C2, C3, S1,
S2, S3 are 8, 8, 16, 32, 32, 32, respectively.

Pick one of these 6 ensembles as a test ensemble Y = Y 1 whereas the other
5 ensembles are used as training ensembles X =⋃5

i=1 X i . Then classify Y .

Repeat this process 5 more times.

(a) C3 waveforms (b) S3 waveforms
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Numerical Experiments Underwater Object Classification

Underwater Object Classification: Results

Object C 1 C 2 C 3 S1 S2 S3

True Label Al Al Al IA IS IS

EMD Al Al Al IS IS IA
PCA

HD Al Al Al IS IS IA

EMD Al Al Al Al IS IS
LErw HD Al Al Al Al Al IS

EMD Al Al Al Al IS IS
LEsym HD Al Al Al Al IS IS

EMD Al Al Al Al IS IS
DM

HD Al Al Al Al IS IS

Al = Aluminum; IA = Iron-Air; IS = Iron-Silicone Oil
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Numerical Experiments Underwater Object Classification

Underwater Object Classification: EMD vs HD

EMD and HD values in the LErw coordinates between S2 and all other
objects

Object C 1 C 2 C 3 S1 S3

EMD 0.0070 0.0064 0.0057 0.0085 0.0053
HD 0.1917 0.2374 0.1237 0.1500 0.1684
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Numerical Experiments Video Clip Classification

Video Clip Classification: Lip Reading

Lips speaking five digits, ’one’, . . . , ’five’ were captured by a
camcorder with the rate 60 frames/second.
Each video frame is cropped to have 55×70 pixels.
A single speaker spoke each digit 10 times (i.e., totally 50 video clips).
Each video clip consists of 30 ∼ 63 video frames.
Split the whole data randomly into the training and test ensembles as
X =⋃25

i=1 X i , Y =⋃25
j=1 Y j . Then, do the classification.

Repeat this process 99 times more.

Lip-Reading total recognition errors (averaged over 100 trials)

PCA PCA LErw LErw LEsym LEsym DM DM
EMD HD EMD HD EMD HD EMD HD

5.3% 9.4% 36.1% 36.1% 26.0% 27.6% 24.1% 25.2%
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Conclusions and Future Plan

Conclusions & Future Plan

The key for the signal ensemble classification was to use the
appropriate dimensionality reduction techniques with the robust
distance measure like EMD;
The best choice of the dimensionality reduction depends on the data;
this is particularly so for the real data.
Global (PCA) vs Local (LE/DM): Lip-reading video clips involve more
global trajectories while sonar waveforms involve more localized
clusters.
Robustness of EMD was important compared to HD.
Comparison with the other ideas of ours: node connectivity matching
that do not require the eigenvalue/eigenvector computations;
Comparison with explicit feature extraction techniques such as Local
Discriminant Basis of Saito-Coifman
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