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Brief Introduction to Wavelets

What are Wavelets?
For usual signals and images, wavelet transforms have a proven track record
of success: an excellent tool to analyze complicated signals; the backbone of
the JPEG 2000 Image Compression Standard; . . .

A wavelet transform decomposes a given signal into a multiresolution
representation (i.e., analysis) whereas the inverse wavelet transform
reconstructs the original signal from such a representation (i.e., synthesis).

The key idea of wavelet transform is to use translations and dilations of a
single function, say, ψ(x) ∈ L2(R) in the case of 1D signals.

Definition (Mother Wavelet Function)

A mother wavelet function is a function ψ ∈ L2(R) with∫ ∞

−∞
ψ(x)dx = 0;

‖ψ‖2 = 1;∫ ∞

−∞
|ψ̂(ξ)|2
|ξ| dξ<∞ (admissibility condition).
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Brief Introduction to Wavelets

An Example of Mother Wavelet Function
The Laplacian of Gaussian (a.k.a. Mexican hat) function:

ψ(x) = 2
4pπp3σ

(
1− x2

σ2

)
exp

(−x2/(2σ2)
)

;

ψ̂(ξ) =Fψ(ξ) =
∫ ∞

−∞
f (x)e−2πixξdx = 8

√
2
3π

9/4σ5/2ξ2 exp
(−2π2σ2ξ2

)
.

ψ̂(0) = 0; ψ̂(ξ) ∼ ξ2 near x = 0, i.e., it approximates d2

d x2 , so it’s a pseudo
differential operator!

Note: ∃ many different mother wavelet functions!
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Brief Introduction to Wavelets

The Continuous Wavelet Transform

Given a mother wavelet function, let’s generate its family via

ψa,b(x) := 1p
a
ψ

(
x −b

a

)
,

where a > 0, b ∈R are the dilation (or scale) and translation (or shift)
parameters, respectively. Note ‖ψa,b‖2 = 1.
Then, the continuous wavelet transform of an input function f ∈ L2(R)
is defined as:

W f (a,b) =Wψ f (a,b) :=
∫ ∞

−∞
f (x)ψa,b(x)dx = 〈

f ,ψa,b
〉

.

This can be viewed as a linear filtering: W f (a,b) = f ∗ ψ̃a(b) where

ψ̃a(x) := 1p
a
ψ(−x/a)

F−→ ̂̃ψa(ξ) =p
aψ̂(aξ)
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Brief Introduction to Wavelets

Figure: The continuous wavelet transform W f (a,b) computed with the Mexican hat
mother wavelet. The vertical axis is in the logarithmic scale log a.

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs I 11/19/19 7 / 17



Brief Introduction to Wavelets

Motivation of Lifting Wavelets to Graphs

Classical harmonic analysis tools such as Fourier and wavelet transforms
have been the ‘crown jewels’ for analyzing regularly-sampled data or
functions defined on simple Euclidean domains (e.g., a rectangle).

They have a proven track record of success in a variety of applications, e.g.,
data compression, image analysis, and statistical signal processing, . . .

However, these classical harmonic analysis tools cannot directly handle
datasets recorded on general graphs and networks.

Hence, the community of applied and computational harmonic analysts
including my group, has recognized the importance of transferring these tools
to the graph setting, and in fact, efforts have been made to extend classical
wavelets and their relatives to the ever-expanding realm of data on graphs.

This is not an easy endeavor mainly because of the lack of the notion of
proper “frequency” or the “dual” domain for graphs unlike the Euclidean
domains.
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Wavelets using Graph Laplacians

Work of Hammond-Vandergheynst-Gribonval
By now, there are many different methods to construct wavelet-like
transforms on graphs. Today, we’ll focus on the spectral graph wavelet
transform (SGWT) of D. K. Hammond, P. Vandergheynst, R. Gribonval:
“Wavelets on graphs via spectral graph theory,” Applied and Computational
Harmonic Analysis, vol. 30, no. 2, pp. 129-150, 2011.

Conceptually, it is an adaptation of the continuous wavelet transform for
graphs.

Let G(V ,E) be a weighted graph with |V | = n.

The graph Fourier transform of f ∈L 2(V ) is defined as

f̂ (`) = 〈
f ,φ`

〉= n∑
k=1

f (k)φ∗
`(k), `= 0,1, . . . ,n −1

where φ` := (φ`(1), . . . ,φ`(n))T ∈Rn is the `th graph Laplacian eigenvector
corresponding to the eigenvalue λ`, and φ∗

`
is its hermitian transpose. The

original vector f can be reconstructed by

f (k) =
n−1∑
`=0

f̂ (`)φ`(k), k = 1,2, . . . ,n.
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Wavelets using Graph Laplacians

Work of Hammond-Vandergheynst-Gribonval . . .

Let Tg = g (L) : L 2(V ) →L 2(V ) be defined as a Fourier multiplier as

T̂g f (`) = g (λ`) f̂ (`),

where g is a wavelet generating kernel, also called the spectral graph
wavelet kernel (SGWT kernel). We now have:

(Tg f )(k) =
n−1∑
`=0

g (λ`) f̂ (`)φ`(k).

The spectral graph wavelet operator at scale s > 0 is defined by
T s

g = g (sL). Hence, the spectral wavelet function at scale s and vertex
vm is realized as ψs,m(k) := T s

gδm(k) where δm is an impulse located
at vm . Because δ̂m(`) =φ∗

`
(m), we have

ψs,m(k) =
n−1∑
`=0

g (sλ`)φ∗
`(m)φ`(k).

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs I 11/19/19 11 / 17



Wavelets using Graph Laplacians

Work of Hammond-Vandergheynst-Gribonval . . .

The wavelet coefficient of a given function f ∈L 2(V ) is computed by

W f (s,m) := 〈
f ,ψs,m

〉= (
T s

g f
)

(m) =
n−1∑
`=0

g (sλ`) f̂ (`)φ`(m).

Lemma (H-V-G)

If the SGWT kernel g satisfies the admissibility condition:∫ ∞

0

g 2(x)

x
dx =: Cg <∞, and g (0) = 0, then

1

Cg

n∑
m=1

∫ ∞

0
W f (s,m)ψs,m(k)

ds

s
=: f ](k)

where f ] = f −〈
f ,φ0

〉
φ0. In other words, f can be reconstructed from the

information {W f (s,m)} and the DC component.
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Wavelets using Graph Laplacians

Work of Hammond-Vandergheynst-Gribonval . . .

An example of g (x):

g (x) =


(x/x1)α for 0 ≤ x < x1;
s(x) for x1 ≤ x ≤ x2;
(x2/x)β for x > x2.

H-V-G used x1 = 1; x2 = 2; α=β= 2; and s(x) =−5+11x −6x2 +x3.
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Wavelets using Graph Laplacians

Work of Hammond-Vandergheynst-Gribonval . . .

The scaling (a.k.a. father wavelet) function ϕ can be defined as:

ϕm =ϕ1,m := Thδm = h(L)δm ,

where h :R+ →R+ acts as a low pass filter with h(0) > 0 and h(x) → 0
as x →∞. An example is: h(x) = γexp

(−(x/0.6λmin)4
)
where γ is set

such that h(0) = maxx≥0 g (x).
The scaling coefficient of a given function f ∈L 2(V ) is computed by

S f (m) := 〈
f ,ϕm

〉
.
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Wavelets using Graph Laplacians

Work of Hammond-Vandergheynst-Gribonval . . .
For a discrete transform, sample the scale parameter s in a
logarithmically equispaced manner between s J = x2/λmax and
s1 = x2/λmin where λmax ≥λn−1, λmin =λmax/K for some K > 0.

Theorem (H-V-G)

Given a set of scales {s j }1≤ j≤J , the set F := {ϕm}1≤m≤n ∪ {ψs j ,m}1≤ j≤J ;1≤m≤n

constitutes a frame with bounds A, B given by

A = min
λ∈[0,λn−1]

G(λ); B = max
λ∈[0,λn−1]

G(λ)

where G(λ) := h2(λ)+∑J
j=1 g 2(s jλ).

Hence, for any f ∈L 2(V ), we have:

A‖ f ‖2
2 ≤

n∑
m=1

(
|S f (m)|2 +

J∑
j=1

|W f (s j ,m)|2
)
≤ B‖ f ‖2

2.
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Wavelets using Graph Laplacians

Work of Hammond-Vandergheynst-Gribonval . . .

H-V-G proposed a fast transform instead of computing all of the graph
Laplacian eigenvalues and eigenvectors that would require O(n3)
operations.
The fast algorithm requires O(C · |E |+C ′ · Jn), where C ,C ′ > 0 are some
constants.
The fast algorithm is based on the Chebyshev polynomial
approximation p(s j x) to the function g (s j x) and fully utilizes the
Chebyshev recurrence relation.
Hence W f (s j ,m) ≈ δ∗m p(s j L) f , i.e., done by matrix-vector products.
It is especially effective if the graph (hence L) is sparse.
As for the inverse transform, a stable algorithm exists because F forms
a frame. As the frame theory indicates, it involves the pseudo inverse.
Hence, it is not super fast even if one uses the conjugate gradient
method.
Software demo now!
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Wavelets using Graph Laplacians

My Reaction to SGWT

The eigenvalue axis is not the same as the frequency axes particularly
if a given graph comes from data from a topologically skewed shape or
a narrow strip. In those cases, the eigenvalue orders are not intuitive.
=⇒ See later lectures as well as Lecture 3.
The inverse transform is still slow even if one uses the Conjugate
Gradient (CG) method.
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