MAT 280: Harmonic Analysis on Graphs \& Networks
Lecture 17: Wavelets on Graphs II Organizing 'Dual' Domains of Graphs (Part 1)

Naoki Saito

Department of Mathematics
University of California, Davis

November 21, 2019

Outline

(1) Motivations
(2) Measuring Differences between Eigenvectors
(3) Numerical Experiments

4 Organizing Laplacian Eigenvectors of Dendritic Trees

Acknowledgment

- Qinglan Xia (UC Davis)
- NSF Grants: DMS-1418779, IIS-1631329, DMS-1912747, CCF-1934568
- ONR Grants: N00014-16-1-2255

Outline

(1) Motivations

(2) Measuring Differences between Eigenvectors
(3) Numerical Experiments

4 Organizing Laplacian Eigenvectors of Dendritic Trees

Motivations

- Using graph Laplacian eigenvectors as "cosines" or Fourier modes on graphs with eigenvalues as (the square of) their "frequencies" has been quite popular.

Motivations

- Using graph Laplacian eigenvectors as "cosines" or Fourier modes on graphs with eigenvalues as (the square of) their "frequencies" has been quite popular.
- However, the notion of frequency is ill-defined on general graphs and the Fourier transform is not properly defined on graphs

Motivations

- Using graph Laplacian eigenvectors as "cosines" or Fourier modes on graphs with eigenvalues as (the square of) their "frequencies" has been quite popular.
- However, the notion of frequency is ill-defined on general graphs and the Fourier transform is not properly defined on graphs
- Graph Laplacian eigenvectors may also exhibit peculiar behaviors depending on topology and structure of given graphs!

Motivations

- Using graph Laplacian eigenvectors as "cosines" or Fourier modes on graphs with eigenvalues as (the square of) their "frequencies" has been quite popular.
- However, the notion of frequency is ill-defined on general graphs and the Fourier transform is not properly defined on graphs
- Graph Laplacian eigenvectors may also exhibit peculiar behaviors depending on topology and structure of given graphs!
- Spectral Graph Wavelet Transform (SGWT) of Hammond et al. derived wavelets on a graph based on the Littlewood-Paley theory that organized the graph Laplacian eigenvectors corresponding to dyadic partitions of eigenvalues by viewing the eigenvalues as "frequencies"

Motivations

- Using graph Laplacian eigenvectors as "cosines" or Fourier modes on graphs with eigenvalues as (the square of) their "frequencies" has been quite popular.
- However, the notion of frequency is ill-defined on general graphs and the Fourier transform is not properly defined on graphs
- Graph Laplacian eigenvectors may also exhibit peculiar behaviors depending on topology and structure of given graphs!
- Spectral Graph Wavelet Transform (SGWT) of Hammond et al. derived wavelets on a graph based on the Littlewood-Paley theory that organized the graph Laplacian eigenvectors corresponding to dyadic partitions of eigenvalues by viewing the eigenvalues as "frequencies"
- Unfortunately, this view is wrong other than very simple graphs, e.g., undirected unweighted paths and cycles.

A Simple Yet Important Example: A Path Graph

The eigenvectors of this matrix are exactly the DCT Type // basis vectors (used for the JPEG standard) while those of the symmetrically-normalized Graph Laplacian matrix $L_{\mathrm{sym}}=D^{-\frac{1}{2}} L D^{-\frac{1}{2}}$ are the $D C T$ Type I basis! (See G. Strang, "The discrete cosine transform," SIAM Review, vol. 41, pp. 135-147, 1999).

- $\lambda_{k}=2-2 \cos (\pi k / n)=4 \sin ^{2}(\pi k / 2 n), k=0: n-1$.
- $\boldsymbol{\phi}_{k}(\ell)=a_{k ; n} \cos \left(\pi k\left(\ell+\frac{1}{2}\right) / n\right), k, \ell=0: n-1 ; a_{k ; n}$ is a const. s.t. $\left\|\boldsymbol{\phi}_{k}\right\|_{2}=1$.
- In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the frequency, which is the eigenvalue index k. For a general graph, however, the notion of frequency is not well defined.

Problem with 2D Lattice Graph

- As soon as the domain becomes even slightly more complicated than unweighted and undirected paths/cylces, the situation completely changes: we cannot view the eigenvalues as a simple monotonic function of frequency anymore.

Problem with 2D Lattice Graph

- As soon as the domain becomes even slightly more complicated than unweighted and undirected paths/cylces, the situation completely changes: we cannot view the eigenvalues as a simple monotonic function of frequency anymore.
- For example, consider a thin strip in \mathbb{R}^{2}, and suppose that the domain is discretized as $P_{m} \times P_{n}(m>n)$, whose Laplacian eigenpairs are:

$$
\begin{aligned}
\lambda_{k} & =4\left[\sin ^{2}\left(\frac{\pi k_{x}}{2 m}\right)+\sin ^{2}\left(\frac{\pi k_{y}}{2 n}\right)\right], \\
\phi_{k}(x, y) & =a_{k_{x} ; m} a_{k_{y} ; n} \cos \left(\frac{\pi k_{x}}{m}\left(x+\frac{1}{2}\right)\right) \cos \left(\frac{\pi k_{y}}{n}\left(y+\frac{1}{2}\right)\right),
\end{aligned}
$$

where $k=0: m n-1 ; k_{x}=0: m-1 ; k_{y}=0: n-1 ; x=0: m-1$; and $y=0: n-1$.

Problem with 2D Lattice Graph

- As soon as the domain becomes even slightly more complicated than unweighted and undirected paths/cylces, the situation completely changes: we cannot view the eigenvalues as a simple monotonic function of frequency anymore.
- For example, consider a thin strip in \mathbb{R}^{2}, and suppose that the domain is discretized as $P_{m} \times P_{n}(m>n)$, whose Laplacian eigenpairs are:

$$
\begin{aligned}
\lambda_{k} & =4\left[\sin ^{2}\left(\frac{\pi k_{x}}{2 m}\right)+\sin ^{2}\left(\frac{\pi k_{y}}{2 n}\right)\right], \\
\phi_{k}(x, y) & =a_{k_{x} ; m} a_{k_{y} ; n} \cos \left(\frac{\pi k_{x}}{m}\left(x+\frac{1}{2}\right)\right) \cos \left(\frac{\pi k_{y}}{n}\left(y+\frac{1}{2}\right)\right),
\end{aligned}
$$

where $k=0: m n-1 ; k_{x}=0: m-1 ; k_{y}=0: n-1 ; x=0: m-1$; and $y=0: n-1$.

- As always, let $\left\{\lambda_{k}\right\}_{k=0: m n-1}$ be ordered in the nondecreasing manner. In this case, the smallest eigenvalue is still $\lambda_{0}=\lambda_{(0,0)}=0$, and the corresponding eigenvector is constant.

- The second smallest eigenvalue λ_{1} is $\lambda_{(1,0)}=4 \sin ^{2}(\pi / 2 m)$, since $\pi / 2 m<\pi / 2 n$, and its eigenvector has half oscillation in the x-direction.

- The second smallest eigenvalue λ_{1} is $\lambda_{(1,0)}=4 \sin ^{2}(\pi / 2 m)$, since $\pi / 2 m<\pi / 2 n$, and its eigenvector has half oscillation in the x-direction.
- But, how about λ_{2} ? Even for such a simple situation there are two possibilities: If $m>2 n$, then $\lambda_{2}=\lambda_{(2,0)}<\lambda_{(0,1)}$. On the other hand, if $n<m<2 n$, then $\lambda_{2}=\lambda_{(0,1)}<\lambda_{(2,0)}$.

- The second smallest eigenvalue λ_{1} is $\lambda_{(1,0)}=4 \sin ^{2}(\pi / 2 m)$, since $\pi / 2 m<\pi / 2 n$, and its eigenvector has half oscillation in the x-direction.
- But, how about λ_{2} ? Even for such a simple situation there are two possibilities: If $m>2 n$, then $\lambda_{2}=\lambda_{(2,0)}<\lambda_{(0,1)}$. On the other hand, if $n<m<2 n$, then $\lambda_{2}=\lambda_{(0,1)}<\lambda_{(2,0)}$.
- More generally, if $K n<m<(K+1) n$ for some $K \in \mathbb{N}$, then $\lambda_{k}=\lambda_{(k, 0)}=4 \sin ^{2}(k \pi / 2 m)$ for $k=0, \ldots, K$. Yet we have $\lambda_{K+1}=\lambda_{(0,1)}=4 \sin ^{2}(\pi / 2 n)$ and λ_{K+2} is equal to either $\lambda_{(K+1,0)}=4 \sin ^{2}((K+1) \pi / 2 m)$ or $\lambda_{(1,1)}=4\left[\sin ^{2}(\pi / 2 m)+\sin ^{2}(\pi / 2 n)\right]$ depending on m and n.
- As one can see from this, the mapping between k and (k_{x}, k_{y}) is quite nontrivial. Notice that $\phi_{(k, 0)}$ has $k / 2$ oscillations in the x-direction whereas $\phi_{(0,1)}$ has only half oscillation in the y-direction.
- As one can see from this, the mapping between k and (k_{x}, k_{y}) is quite nontrivial. Notice that $\phi_{(k, 0)}$ has $k / 2$ oscillations in the x-direction whereas $\phi_{(0,1)}$ has only half oscillation in the y-direction.
- In other words, all of a sudden the eigenvalue of a completely different type of oscillation sneaks into the eigenvalue sequence.
- As one can see from this, the mapping between k and (k_{x}, k_{y}) is quite nontrivial. Notice that $\phi_{(k, 0)}$ has $k / 2$ oscillations in the x-direction whereas $\phi_{(0,1)}$ has only half oscillation in the y-direction.
- In other words, all of a sudden the eigenvalue of a completely different type of oscillation sneaks into the eigenvalue sequence.
- Hence, on a general domain or a general graph, by simply looking at the Laplacian eigenvalue sequence $\left\{\lambda_{k}\right\}_{k=0,1, \ldots,}$, it is almost impossible to organize the eigenpairs into physically meaningful dyadic blocks and apply the Littlewood-Paley approach unless the underlying domain is of very simple nature, e.g., P_{n} or C_{n}.
- As one can see from this, the mapping between k and (k_{x}, k_{y}) is quite nontrivial. Notice that $\phi_{(k, 0)}$ has $k / 2$ oscillations in the x-direction whereas $\phi_{(0,1)}$ has only half oscillation in the y-direction.
- In other words, all of a sudden the eigenvalue of a completely different type of oscillation sneaks into the eigenvalue sequence.
- Hence, on a general domain or a general graph, by simply looking at the Laplacian eigenvalue sequence $\left\{\lambda_{k}\right\}_{k=0,1, \ldots,}$, it is almost impossible to organize the eigenpairs into physically meaningful dyadic blocks and apply the Littlewood-Paley approach unless the underlying domain is of very simple nature, e.g., P_{n} or C_{n}.
- For complicated domains, the notion of frequency is not well-defined anymore, and thus wavelet construction methods that rely on the Littlewood-Paley theory by viewing eigenvalues as the square of frequencies, such as the spectral graph wavelet transform (SGWT) of Hammond et al. may lead to unexpected problems on general graphs.

What we want to do is to organize those eigenvectors as
$\varphi_{\mathrm{o}}, \mathbf{0}$
$\varphi_{1}, 0$
$\varphi_{2}, 0$
$\varphi_{3}, 0$
φ_{4}, 0
$\varphi_{5}, 0$

instead of

Outline

(1) Motivations

(2) Measuring Differences between Eigenvectors

(3) Numerical Experiments

4 Organizing Laplacian Eigenvectors of Dendritic Trees

Plan

- How can we quantify the difference between the eigenvectors?
- The usual ℓ^{2}-distance doesn't work since $\left\|\phi_{i}-\phi_{j}\right\|_{2}=\sqrt{2} \delta_{i \neq j}$
- Consider the optimal transport theory!
- Can we get the "dual geometry" of G in that embedded space?

Plan

- How can we quantify the difference between the eigenvectors?
- The usual ℓ^{2}-distance doesn't work since $\left\|\boldsymbol{\phi}_{i}-\boldsymbol{\phi}_{j}\right\|_{2}=\sqrt{2} \delta_{i \neq j}$.

Plan

- How can we quantify the difference between the eigenvectors?
- The usual ℓ^{2}-distance doesn't work since $\left\|\boldsymbol{\phi}_{i}-\boldsymbol{\phi}_{j}\right\|_{2}=\sqrt{2} \delta_{i \neq j}$.
- Consider the optimal transport theory!

Plan

- How can we quantify the difference between the eigenvectors?
- The usual ℓ^{2}-distance doesn't work since $\left\|\boldsymbol{\phi}_{i}-\boldsymbol{\phi}_{j}\right\|_{2}=\sqrt{2} \delta_{i \neq j}$.
- Consider the optimal transport theory!
- Convert each $\boldsymbol{\phi}_{i}$ to a probability mass function (pmf) \boldsymbol{p}_{i} over a graph G (e.g., via squaring each component of $\boldsymbol{\phi}_{i}$)

Plan

- How can we quantify the difference between the eigenvectors?
- The usual ℓ^{2}-distance doesn't work since $\left\|\boldsymbol{\phi}_{i}-\boldsymbol{\phi}_{j}\right\|_{2}=\sqrt{2} \delta_{i \neq j}$.
- Consider the optimal transport theory!
- Convert each $\boldsymbol{\phi}_{i}$ to a probability mass function (pmf) \boldsymbol{p}_{i} over a graph G (e.g., via squaring each component of $\boldsymbol{\phi}_{i}$)
- Compute the cost to transport \boldsymbol{p}_{i} to \boldsymbol{p}_{j} optimally (a.k.a. Earth Mover's Distance or 1st Wasserstein Distance), for all $i, j=0: n-1$, which results in a "distance" matrix $D \in \mathbb{R}_{\geq 0}^{n \times n}$

Plan

- How can we quantify the difference between the eigenvectors?
- The usual ℓ^{2}-distance doesn't work since $\left\|\boldsymbol{\phi}_{i}-\boldsymbol{\phi}_{j}\right\|_{2}=\sqrt{2} \delta_{i \neq j}$.
- Consider the optimal transport theory!
- Convert each $\boldsymbol{\phi}_{i}$ to a probability mass function (pmf) \boldsymbol{p}_{i} over a graph G (e.g., via squaring each component of $\boldsymbol{\phi}_{i}$)
- Compute the cost to transport \boldsymbol{p}_{i} to \boldsymbol{p}_{j} optimally (a.k.a. Earth Mover's Distance or 1st Wasserstein Distance), for all $i, j=0: n-1$, which results in a "distance" matrix $D \in \mathbb{R}_{\geq 0}^{n \times n}$
- Embed the eigenvectors into a lower dimensional Euclidean space, say, $\mathbb{R}^{m}, m \ll n$ (typically $m=2$ or $m=3$) so that the distances among those embedded points match with those given in D (can use, e.g., Multidimensional Scaling (MDS))

Plan

- How can we quantify the difference between the eigenvectors?
- The usual ℓ^{2}-distance doesn't work since $\left\|\boldsymbol{\phi}_{i}-\boldsymbol{\phi}_{j}\right\|_{2}=\sqrt{2} \delta_{i \neq j}$.
- Consider the optimal transport theory!
- Convert each $\boldsymbol{\phi}_{i}$ to a probability mass function (pmf) \boldsymbol{p}_{i} over a graph G (e.g., via squaring each component of $\boldsymbol{\phi}_{i}$)
- Compute the cost to transport \boldsymbol{p}_{i} to \boldsymbol{p}_{j} optimally (a.k.a. Earth Mover's Distance or 1st Wasserstein Distance), for all $i, j=0: n-1$, which results in a "distance" matrix $D \in \mathbb{R}_{\geq 0}^{n \times n}$
- Embed the eigenvectors into a lower dimensional Euclidean space, say, $\mathbb{R}^{m}, m \ll n$ (typically $m=2$ or $m=3$) so that the distances among those embedded points match with those given in D (can use, e.g., Multidimensional Scaling (MDS))
- Organize and group those points to generate wavelet-like vectors on G

Plan

- How can we quantify the difference between the eigenvectors?
- The usual ℓ^{2}-distance doesn't work since $\left\|\boldsymbol{\phi}_{i}-\boldsymbol{\phi}_{j}\right\|_{2}=\sqrt{2} \delta_{i \neq j}$.
- Consider the optimal transport theory!
- Convert each $\boldsymbol{\phi}_{i}$ to a probability mass function (pmf) \boldsymbol{p}_{i} over a graph G (e.g., via squaring each component of $\boldsymbol{\phi}_{i}$)
- Compute the cost to transport \boldsymbol{p}_{i} to \boldsymbol{p}_{j} optimally (a.k.a. Earth Mover's Distance or 1st Wasserstein Distance), for all $i, j=0: n-1$, which results in a "distance" matrix $D \in \mathbb{R}_{\geq 0}^{n \times n}$
- Embed the eigenvectors into a lower dimensional Euclidean space, say, $\mathbb{R}^{m}, m \ll n$ (typically $m=2$ or $m=3$) so that the distances among those embedded points match with those given in D (can use, e.g., Multidimensional Scaling (MDS))
- Organize and group those points to generate wavelet-like vectors on G
- Can we get the "dual geometry" of G in that embedded space?

Ramified Optimal Transportation (ROT) by Q. Xia

- is the study of transporting "mass" from one Radon measure (or simply a probability measure) μ^{+}to another μ^{-}along ramified transport paths with some specific transport cost functional.

Ramified Optimal Transportation (ROT) by Q. Xia

- is the study of transporting "mass" from one Radon measure (or simply a probability measure) μ^{+}to another μ^{-}along ramified transport paths with some specific transport cost functional.

- is the study of branching structures, e.g., trees; veins on a leaf; cardiovascular systems; river channel networks; electrical grids; communication networks, etc.

ROT: Discrete Version

- Definitions: Two discrete mass distributions (a.k.a. atomic measures)

$$
\text { in } \mathbb{R}^{d}: \boldsymbol{a}:=\sum_{i=1}^{k} m_{i} \delta_{\boldsymbol{x}_{i}} ; \boldsymbol{b}:=\sum_{j=1}^{l} n_{j} \delta_{\boldsymbol{y}_{j}} ;\left\{\boldsymbol{x}_{i}\right\}_{i},\left\{\boldsymbol{y}_{j}\right\}_{j} \subset \mathbb{R}^{d} ; \sum_{i=1}^{k} m_{i}=\sum_{j=1}^{l} n_{j} .
$$

ROT: Discrete Version

- Definitions: Two discrete mass distributions (a.k.a. atomic measures) in $\mathbb{R}^{d}: \boldsymbol{a}:=\sum_{i=1}^{k} m_{i} \delta_{\boldsymbol{x}_{i}} ; \boldsymbol{b}:=\sum_{j=1}^{l} n_{j} \delta_{\boldsymbol{y}_{j}} ;\left\{\boldsymbol{x}_{i}\right\}_{i},\left\{\boldsymbol{y}_{j}\right\}_{j} \subset \mathbb{R}^{d} ; \sum_{i=1}^{k} m_{i}=\sum_{j=1}^{l} n_{j}$.
- Let $\operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})$ be all possible transport paths from \boldsymbol{a} to \boldsymbol{b} without cycles (Xia could manage to remove cycles), i.e., each $G \in \operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})$ is a weighted acyclic directed graph with $\left\{\boldsymbol{x}_{i}\right\}_{i} \cup\left\{\boldsymbol{y}_{j}\right\}_{j} \subset V(G)$, whose edge weights (>0) satisfy the Kirchhoff law at each interior node $v \in V(G) \backslash\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right\}_{i, j}:$

$$
\sum_{e \in E(G) ; e^{-}=v} w(e)=\sum_{e \in E(G) ; e^{+}=v} w(e)+ \begin{cases}m_{i} & \text { if } v=\boldsymbol{x}_{i} \text { for some } i \in 1: k \\ -n_{j} & \text { if } v=\boldsymbol{y}_{j} \text { for some } j \in 1: l \\ 0 & \text { otherwise } .\end{cases}
$$

ROT: Discrete Version

- Definitions: Two discrete mass distributions (a.k.a. atomic measures)
in $\mathbb{R}^{d}: \boldsymbol{a}:=\sum_{i=1}^{k} m_{i} \delta_{\boldsymbol{x}_{i}} ; \boldsymbol{b}:=\sum_{j=1}^{l} n_{j} \delta_{\boldsymbol{y}_{j}} ;\left\{\boldsymbol{x}_{i}\right\}_{i},\left\{\boldsymbol{y}_{j}\right\}_{j} \subset \mathbb{R}^{d} ; \sum_{i=1}^{k} m_{i}=\sum_{j=1}^{l} n_{j}$.
- Let $\operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})$ be all possible transport paths from \boldsymbol{a} to \boldsymbol{b} without cycles (Xia could manage to remove cycles), i.e., each $G \in \operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})$ is a weighted acyclic directed graph with $\left\{\boldsymbol{x}_{i}\right\}_{i} \cup\left\{\boldsymbol{y}_{j}\right\}_{j} \subset V(G)$, whose edge weights (>0) satisfy the Kirchhoff law at each interior node $v \in V(G) \backslash\left\{\boldsymbol{x}_{i}, \boldsymbol{y}_{j}\right\}_{i, j}:$

$$
\sum_{e \in E(G) ; e^{-}=v} w(e)=\sum_{e \in E(G) ; e^{+}=v} w(e)+ \begin{cases}m_{i} & \text { if } v=\boldsymbol{x}_{i} \text { for some } i \in 1: k \\ -n_{j} & \text { if } v=\boldsymbol{y}_{j} \text { for some } j \in 1: l \\ 0 & \text { otherwise }\end{cases}
$$

- Define the cost of a transport path $G \in \operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})$:

$$
\boldsymbol{M}_{\alpha}(G):=\sum_{e \in E(G)} w(e)^{\alpha} \operatorname{length}(e), \quad \alpha \in[0,1] .
$$

ROT: Discrete Version ...

Xia further derived:

- Number of branching nodes in $\operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})$ can be bounded from above by $k+l-2$.

ROT: Discrete Version ...

Xia further derived:

- Number of branching nodes in $\operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})$ can be bounded from above by $k+l-2$.
- The uniform lower bounds of minimum angle between any two edges in any α-optimal path in $\operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})$.

ROT: Discrete Version ...

Xia further derived:

- Number of branching nodes in $\operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})$ can be bounded from above by $k+l-2$.
- The uniform lower bounds of minimum angle between any two edges in any α-optimal path in $\operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})$.
- The minimum transportation cost $d_{\alpha}(\boldsymbol{a}, \boldsymbol{b}):=\min _{G \in \operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})} \boldsymbol{M}_{\alpha}(G)$ is a metric on the space of atomic measures of equal mass and is of homogeneous of degree α, i.e., $d_{\alpha}(\lambda \boldsymbol{a}, \lambda \boldsymbol{b})=\lambda^{\alpha} d_{\alpha}(\boldsymbol{a}, \boldsymbol{b}), \forall \lambda>0$.

ROT: Discrete Version ...

Xia further derived:

- Number of branching nodes in $\operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})$ can be bounded from above by $k+l-2$.
- The uniform lower bounds of minimum angle between any two edges in any α-optimal path in $\operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})$.
- The minimum transportation cost $d_{\alpha}(\boldsymbol{a}, \boldsymbol{b}):=\min _{G \in \operatorname{Path}(\boldsymbol{a}, \boldsymbol{b})} \boldsymbol{M}_{\alpha}(G)$ is a metric on the space of atomic measures of equal mass and is of homogeneous of degree α, i.e., $d_{\alpha}(\lambda \boldsymbol{a}, \lambda \boldsymbol{b})=\lambda^{\alpha} d_{\alpha}(\boldsymbol{a}, \boldsymbol{b}), \forall \lambda>0$.
- Numerical algorithms to compute the α-optimal path for a given pair $(\boldsymbol{a}, \boldsymbol{b})$.

ROT: Numerical Examples

Our Method to Compute Transportation Costs

- Unlike the general ROT setting, a graph G is fixed and given.

Our Method to Compute Transportation Costs

- Unlike the general ROT setting, a graph G is fixed and given.
- In general, we want to deal with undirected graphs.
directed graph \tilde{G} whose incidence matrix \tilde{Q} is, e.g.

Our Method to Compute Transportation Costs

- Unlike the general ROT setting, a graph G is fixed and given.
- In general, we want to deal with undirected graphs.
- The ROT only deals with directed graphs.

Our Method to Compute Transportation Costs

- Unlike the general ROT setting, a graph G is fixed and given.
- In general, we want to deal with undirected graphs.
- The ROT only deals with directed graphs.
- Hence, we turn an undirected graph G into the bidirected graph $\tilde{\tilde{G}}$.

Our Method to Compute Transportation Costs

- Unlike the general ROT setting, a graph G is fixed and given.
- In general, we want to deal with undirected graphs.
- The ROT only deals with directed graphs.
- Hence, we turn an undirected graph G into the bidirected graph $\tilde{\tilde{G}}$.
- To do so, we first compute the incidence matrix
$Q=\left[\boldsymbol{q}_{1}|\cdots| \boldsymbol{q}_{m}\right] \in \mathbb{R}^{n \times m}$ of the undirected graph $G=G(V, E)$ with $n=|V|, m=|E|$. Here, \boldsymbol{q}_{k} represents the endpoints of e_{k} : if e_{k} joins nodes i and j, then $\boldsymbol{q}_{k}[l]=1$ if $l=i$ or $l=j$; otherwise $\boldsymbol{q}_{k}[l]=0$.

Our Method to Compute Transportation Costs

- Unlike the general ROT setting, a graph G is fixed and given.
- In general, we want to deal with undirected graphs.
- The ROT only deals with directed graphs.
- Hence, we turn an undirected graph G into the bidirected graph $\tilde{\tilde{G}}$.
- To do so, we first compute the incidence matrix $Q=\left[\boldsymbol{q}_{1}|\cdots| \boldsymbol{q}_{m}\right] \in \mathbb{R}^{n \times m}$ of the undirected graph $G=G(V, E)$ with $n=|V|, m=|E|$. Here, \boldsymbol{q}_{k} represents the endpoints of e_{k} : if e_{k} joins nodes i and j, then $\boldsymbol{q}_{k}[l]=1$ if $l=i$ or $l=j$; otherwise $\boldsymbol{q}_{k}[l]=0$.
- Then orient the edges in $E(G)$ in an arbitrary manner to form a directed graph \tilde{G} whose incidence matrix \tilde{Q} is, e.g.,

$$
\tilde{\boldsymbol{q}}_{k}[l]= \begin{cases}-1 & \text { if } l=i \\ 1 & \text { if } l=j ; \\ 0 & \text { otherwise }\end{cases}
$$

Our Method to Compute Transportation Costs

- Unlike the general ROT setting, a graph G is fixed and given.
- In general, we want to deal with undirected graphs.
- The ROT only deals with directed graphs.
- Hence, we turn an undirected graph G into the bidirected graph $\tilde{\tilde{G}}$.
- To do so, we first compute the incidence matrix $Q=\left[\boldsymbol{q}_{1}|\cdots| \boldsymbol{q}_{m}\right] \in \mathbb{R}^{n \times m}$ of the undirected graph $G=G(V, E)$ with $n=|V|, m=|E|$. Here, \boldsymbol{q}_{k} represents the endpoints of e_{k} : if e_{k} joins nodes i and j, then $\boldsymbol{q}_{k}[l]=1$ if $l=i$ or $l=j$; otherwise $\boldsymbol{q}_{k}[l]=0$.
- Then orient the edges in $E(G)$ in an arbitrary manner to form a directed graph \tilde{G} whose incidence matrix \tilde{Q} is, e.g.,

$$
\widetilde{\boldsymbol{q}}_{k}[l]= \begin{cases}-1 & \text { if } l=i \\ 1 & \text { if } l=j \\ 0 & \text { otherwise }\end{cases}
$$

- Finally, form the bidirected graph $\tilde{\tilde{G}}$ with $\tilde{\tilde{Q}}:=[\tilde{Q} \mid-\tilde{Q}] \in \mathbb{R}^{n \times 2 m}$.

Our Method to Compute Transportation Costs ...

- Given $\tilde{\tilde{Q}}$, we solve the balance equation that forces the Kirchhoff law:

$$
\begin{equation*}
\tilde{\tilde{Q}} \boldsymbol{w}_{i j}=\boldsymbol{p}_{j}-\boldsymbol{p}_{i}, \quad \boldsymbol{w}_{i j} \in \mathbb{R}_{\geq 0}^{2 m} \tag{*}
\end{equation*}
$$

- The weight vector $w_{i j}$ describes
\boldsymbol{p}_{i} to \boldsymbol{p}_{j}, i.e., let $\tilde{\tilde{G}}_{i j}$ be the bidi
weights; then $\tilde{\tilde{G}}_{i j} \in \operatorname{Path}\left(\boldsymbol{p}_{i}, \boldsymbol{p}_{j}\right)$.
- Eqn. (*) may have multiple solutions.

Our Method to Compute Transportation Costs ...

- Given $\tilde{\tilde{Q}}$, we solve the balance equation that forces the Kirchhoff law:

$$
\begin{equation*}
\tilde{Q} \boldsymbol{w}_{i j}=\boldsymbol{p}_{j}-\boldsymbol{p}_{i}, \quad \boldsymbol{w}_{i j} \in \mathbb{R}_{\geq 0}^{2 m} . \tag{*}
\end{equation*}
$$

- The weight vector $\boldsymbol{w}_{i j}$ describes the transportation plan of mass from \boldsymbol{p}_{i} to \boldsymbol{p}_{j}, i.e., let $\tilde{\tilde{G}}_{i j}$ be the bidirected graph $\tilde{\tilde{G}}$ with these edge weights; then $\tilde{\tilde{G}}_{i j} \in \operatorname{Path}\left(\boldsymbol{p}_{i}, \boldsymbol{p}_{j}\right)$.

Our Method to Compute Transportation Costs ...

- Given $\tilde{\tilde{Q}}$, we solve the balance equation that forces the Kirchhoff law:

$$
\begin{equation*}
\tilde{Q} \boldsymbol{w}_{i j}=\boldsymbol{p}_{j}-\boldsymbol{p}_{i}, \quad \boldsymbol{w}_{i j} \in \mathbb{R}_{\geq 0}^{2 m} . \tag{*}
\end{equation*}
$$

- The weight vector $\boldsymbol{w}_{i j}$ describes the transportation plan of mass from \boldsymbol{p}_{i} to \boldsymbol{p}_{j}, i.e., let $\tilde{\tilde{G}}_{i j}$ be the bidirected graph $\tilde{\tilde{G}}$ with these edge weights; then $\tilde{\tilde{G}}_{i j} \in \operatorname{Path}\left(\boldsymbol{p}_{i}, \boldsymbol{p}_{j}\right)$.
- Eqn. (*) may have multiple solutions.

Our Method to Compute Transportation Costs

- Currently, we use the following Linear Programming (LP):

$$
\min _{\boldsymbol{w}_{i j} \in \mathbb{R}^{2 m}}\left\|\boldsymbol{w}_{i j}\right\|_{1} \quad \text { subject to: } \tilde{Q} \boldsymbol{w}_{i j}=\boldsymbol{p}_{j}-\boldsymbol{p}_{i} ; \boldsymbol{w}_{i j}[l] \geq 0, l=0:(2 m-1)
$$

to obtain one of the sparse solutions of Eqn. (*), which turned out to be better than using nonnegative least squares (NNLS) solver.

Our Method to Compute Transportation Costs

- Currently, we use the following Linear Programming (LP):

$$
\min _{\boldsymbol{w}_{i j} \in \mathbb{R}^{2 m}}\left\|\boldsymbol{w}_{i j}\right\|_{1} \quad \text { subject to: } \tilde{\hat{Q}} \boldsymbol{w}_{i j}=\boldsymbol{p}_{j}-\boldsymbol{p}_{i} ; \boldsymbol{w}_{i j}[l] \geq 0, l=0:(2 m-1)
$$

to obtain one of the sparse solutions of Eqn. (*), which turned out to be better than using nonnegative least squares (NNLS) solver.

- Finally fill the distance matrix entries $D=\left(D_{i j}\right)$:

$$
D_{i j}=\boldsymbol{M}_{\alpha}\left(\tilde{\tilde{G}}_{i j}\right)=\sum_{e \in E\left(\tilde{\tilde{G}}_{i j}\right)} w_{i j}(e)^{\alpha} \text { length }(e), \quad \alpha \in[0,1] .
$$

Our Method to Compute Transportation Costs

- Currently, we use the following Linear Programming (LP):

$$
\min _{\boldsymbol{w}_{i j} \in \mathbb{R}^{2 m}}\left\|\boldsymbol{w}_{i j}\right\|_{1} \quad \text { subject to: } \tilde{Q} \boldsymbol{w}_{i j}=\boldsymbol{p}_{j}-\boldsymbol{p}_{i} ; \boldsymbol{w}_{i j}[l] \geq 0, l=0:(2 m-1)
$$

to obtain one of the sparse solutions of Eqn. (*), which turned out to be better than using nonnegative least squares (NNLS) solver.

- Finally fill the distance matrix entries $D=\left(D_{i j}\right)$:

$$
D_{i j}=\boldsymbol{M}_{\alpha}\left(\tilde{\tilde{G}}_{i j}\right)=\sum_{e \in E\left(\tilde{\tilde{G}}_{i j}\right)} w_{i j}(e)^{\alpha} \text { length }(e), \quad \alpha \in[0,1] .
$$

- Note that currently we are not examining all possible solutions of Eqn. (*) to search arg $\min _{\tilde{G}_{i j} \in \operatorname{Path}\left(\boldsymbol{p}_{i}, \boldsymbol{p}_{j}\right)} \boldsymbol{M}_{\alpha}\left(\tilde{\tilde{G}}_{i j}\right)$.

Outline

(1) Motivations
(2) Measuring Differences between Eigenvectors
(3) Numerical Experiments

44 Organizing Laplacian Eigenvectors of Dendritic Trees

2D Regular Lattice: An LP Solution to (*)

Consolidated $\boldsymbol{w}_{0,1}$: mass transport from $\boldsymbol{p}_{0}=\boldsymbol{\phi}_{0}^{2}$ to $\boldsymbol{p}_{1}=\boldsymbol{\phi}_{1}^{2}$

2D Regular Lattice: An NNLS Solution to (*)

Consolidated $\boldsymbol{w}_{0,1}:$ mass transport from $\boldsymbol{p}_{0}=\boldsymbol{\phi}_{0}^{2}$ to $\boldsymbol{p}_{1}=\boldsymbol{\phi}_{1}^{2}$

2D Regular Lattice: Embedding into $\mathbb{R}^{2} ; \alpha=1$

2D Regular Lattice: Embedding into $\mathbb{R}^{2} ; \alpha=0.5$

Some symmetry could be explained because of the symmetry of DCT vectors:

$$
\phi_{k ; n}^{2}[x]+\phi_{n-k ; n}^{2}[x] \equiv a_{k ; n}^{2}=2 / n, k=1: n-1, x=0: n-1
$$

Other Ways to Turn $\boldsymbol{\phi}_{i}$ into \boldsymbol{p}_{i}

- Generating $\boldsymbol{\phi}_{i}^{2}$ is not the only way to turn $\boldsymbol{\phi}_{i}$ into a pmf \boldsymbol{p}_{i}.

Other Ways to Turn $\boldsymbol{\phi}_{i}$ into \boldsymbol{p}_{i}

- Generating $\boldsymbol{\phi}_{i}^{2}$ is not the only way to turn $\boldsymbol{\phi}_{i}$ into a pmf \boldsymbol{p}_{i}.
- Other examples include:

Other Ways to Turn $\boldsymbol{\phi}_{i}$ into \boldsymbol{p}_{i}

- Generating $\boldsymbol{\phi}_{i}^{2}$ is not the only way to turn $\boldsymbol{\phi}_{i}$ into a pmf \boldsymbol{p}_{i}.
- Other examples include:
- Normalized $\ell^{1}: \boldsymbol{\phi}_{i}^{1}:=\left(\left|\phi_{i}[0]\right|, \ldots,\left|\phi_{i}[n-1]\right|\right)^{\top} /\left\|\boldsymbol{\phi}_{i}\right\|_{1} ;$

Other Ways to Turn $\boldsymbol{\phi}_{i}$ into \boldsymbol{p}_{i}

- Generating $\boldsymbol{\phi}_{i}^{2}$ is not the only way to turn $\boldsymbol{\phi}_{i}$ into a pmf \boldsymbol{p}_{i}.
- Other examples include:
- Normalized $\ell^{1}: \boldsymbol{\phi}_{i}^{1}:=\left(\left|\phi_{i}[0]\right|, \ldots,\left|\phi_{i}[n-1]\right|\right)^{\top} /\left\|\boldsymbol{\phi}_{i}\right\|_{1}$;
- A constant addition followed by normalization:

$$
\tilde{\boldsymbol{\phi}}_{i}:= \begin{cases}\boldsymbol{\phi}_{0}^{1} & \text { if } i=0 ; \\ \frac{\boldsymbol{\phi}_{i}-c_{\min } \cdot \mathbf{1}_{n}}{\left\|\boldsymbol{\phi}_{i}-c_{\min } \cdot \mathbf{l}_{n}\right\|_{1}} & \text { if } i \neq 0,\end{cases}
$$

where $c_{\text {min }}:=\min _{0<i<n ; 0 \leq l<n} \phi_{i}[l]<0$;

Other Ways to Turn $\boldsymbol{\phi}_{i}$ into \boldsymbol{p}_{i}

- Generating $\boldsymbol{\phi}_{i}^{2}$ is not the only way to turn $\boldsymbol{\phi}_{i}$ into a pmf \boldsymbol{p}_{i}.
- Other examples include:
- Normalized $\ell^{1}: \boldsymbol{\phi}_{i}^{1}:=\left(\left|\phi_{i}[0]\right|, \ldots,\left|\phi_{i}[n-1]\right|\right)^{\top} /\left\|\boldsymbol{\phi}_{i}\right\|_{1}$;
- A constant addition followed by normalization:

$$
\tilde{\boldsymbol{\phi}}_{i}:= \begin{cases}\boldsymbol{\phi}_{0}^{1} & \text { if } i=0 ; \\ \frac{\phi_{i}-c_{\min } \cdot \mathbf{1}_{n}}{\left\|\boldsymbol{\phi}_{i}-c_{\min } \cdot \mathbf{l}_{n}\right\|_{1}} & \text { if } i \neq 0,\end{cases}
$$

where $c_{\text {min }}:=\min _{0<i<n ; 0 \leq l<n} \phi_{i}[l]<0$;

- Normalized exponentiation: $\boldsymbol{\phi}_{i}^{\mathrm{e}}:=\exp \left(\boldsymbol{\phi}_{i}\right) /\left\|\exp \left(\boldsymbol{\phi}_{i}\right)\right\|_{1}$.

2D Regular Lattice; via $\left\{\boldsymbol{\phi}_{i}^{\mathrm{e}}\right\}_{i}, \alpha=0.25$

Outline

(1) Motivations

(2) Measuring Differences between Eigenvectors
(3) Numerical Experiments
(4) Organizing Laplacian Eigenvectors of Dendritic Trees

A Peculiar Phase Transition Phenomenon

We observed an interesting phase transition phenomenon on the behavior of the eigenvalues of graph Laplacians defined on dendritic trees.

(a) RGC \#100

A Peculiar Phase Transition Phenomenon

We observed an interesting phase transition phenomenon on the behavior of the eigenvalues of graph Laplacians defined on dendritic trees.

A Peculiar Phase Transition Phenomenon ...

We have observed that this value 4 is critical since:

A Peculiar Phase Transition Phenomenon ...

We have observed that this value 4 is critical since:

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;

A Peculiar Phase Transition Phenomenon ...

We have observed that this value 4 is critical since:

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;

(a) RGC \#100; $\lambda_{1141}=3.9994$

A Peculiar Phase Transition Phenomenon ...

We have observed that this value 4 is critical since:

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;
- those corresponding to the eigenvalues above 4 are much more localized (like wavelets) around junctions/bifurcation vertices.

(a) RGC \#100; $\lambda_{1141}=3.9994$

A Peculiar Phase Transition Phenomenon ...

We have observed that this value 4 is critical since:

- the eigenfunctions corresponding to the eigenvalues below 4 are semi-global oscillations (like Fourier cosines/sines) over the entire dendrites or one of the dendrite arbors;
- those corresponding to the eigenvalues above 4 are much more localized (like wavelets) around junctions/bifurcation vertices.

(a) RGC \#100; $\lambda_{1141}=3.9994$

(b) RGC \#100; $\lambda_{1142}=4.3829$
- We know why such localization/phase transition occurs \Rightarrow See our article for the detail: Y. Nakatsukasa, N. Saito, \& E. Woei: "Mysteries around graph Laplacian eigenvalue 4," Linear Algebra \& Its Applications, vol. 438, no. 8, pp. 3231-3246, 2013. The key was the discriminant of a quadratic equation.
- We know why such localization/phase transition occurs \Rightarrow See our article for the detail: Y. Nakatsukasa, N. Saito, \& E. Woei: "Mysteries around graph Laplacian eigenvalue 4," Linear Algebra \& Its Applications, vol. 438, no. 8, pp. 3231-3246, 2013. The key was the discriminant of a quadratic equation.
- Any physiological consequence? Importance of branching vertices?
- We know why such localization/phase transition occurs \Rightarrow See our article for the detail: Y. Nakatsukasa, N. Saito, \& E. Woei: "Mysteries around graph Laplacian eigenvalue 4," Linear Algebra \& Its Applications, vol. 438, no. 8, pp. 3231-3246, 2013. The key was the discriminant of a quadratic equation.
- Any physiological consequence? Importance of branching vertices?
- Many such eigenvector localization phenomena have been reported: Anderson localization, scars in quantum chaos, ...
- We know why such localization/phase transition occurs \Rightarrow See our article for the detail: Y. Nakatsukasa, N. Saito, \& E. Woei: "Mysteries around graph Laplacian eigenvalue 4," Linear Algebra \& Its Applications, vol. 438, no. 8, pp. 3231-3246, 2013. The key was the discriminant of a quadratic equation.
- Any physiological consequence? Importance of branching vertices?
- Many such eigenvector localization phenomena have been reported: Anderson localization, scars in quantum chaos, ...
- See also an interesting related work for more general setting and for application in numerical linear algebra: I. Krishtal, T. Strohmer, \& T. Wertz: "Localization of matrix factorizations," Foundations of Comp. Math., vol. 15, no. 4, pp. 931-951, 2015.
- We know why such localization/phase transition occurs \Rightarrow See our article for the detail: Y. Nakatsukasa, N. Saito, \& E. Woei: "Mysteries around graph Laplacian eigenvalue 4," Linear Algebra \& Its Applications, vol. 438, no. 8, pp. 3231-3246, 2013. The key was the discriminant of a quadratic equation.
- Any physiological consequence? Importance of branching vertices?
- Many such eigenvector localization phenomena have been reported: Anderson localization, scars in quantum chaos, ...
- See also an interesting related work for more general setting and for application in numerical linear algebra: I. Krishtal, T. Strohmer, \& T. Wertz: "Localization of matrix factorizations," Foundations of Comp. Math., vol. 15, no. 4, pp. 931-951, 2015.
- Our point is that eigenvectors, especially those corresponding to high eigenvalues, are quite sensitive to topology and geometry of the underlying domain and cannot really be viewed as high frequency oscillations unless the underlying graph is a simple unweighted path or cycle.
- We know why such localization/phase transition occurs \Rightarrow See our article for the detail: Y. Nakatsukasa, N. Saito, \& E. Woei: "Mysteries around graph Laplacian eigenvalue 4," Linear Algebra \& Its Applications, vol. 438, no. 8, pp. 3231-3246, 2013. The key was the discriminant of a quadratic equation.
- Any physiological consequence? Importance of branching vertices?
- Many such eigenvector localization phenomena have been reported: Anderson localization, scars in quantum chaos, ...
- See also an interesting related work for more general setting and for application in numerical linear algebra: I. Krishtal, T. Strohmer, \& T. Wertz: "Localization of matrix factorizations," Foundations of Comp. Math., vol. 15, no. 4, pp. 931-951, 2015.
- Our point is that eigenvectors, especially those corresponding to high eigenvalues, are quite sensitive to topology and geometry of the underlying domain and cannot really be viewed as high frequency oscillations unless the underlying graph is a simple unweighted path or cycle.
- Hence, one must be very careful to develop an analog of the Littlewood-Paley theory for general graphs!

Embedding of Eigenvectors on the Dendritic Tree into \mathbb{R}^{3}

Figure: The magenta circle $=$ the DC vector; the cyan circle $=$ the Fiedler vector; the red circles $=$ the localized eigenvectors; the larger colored circles $=$ the eigenvectors supported on the upper-left branch

Figure: The magenta circle $=$ the DC vector; the cyan circle $=$ the Fiedler vector; the red circles $=$ the localized eigenvectors; the larger colored circles $=$ the 10 eigenvectors nearest from the DC vector

Outline

(1) Motivations

(2) Measuring Differences between Eigenvectors
(3) Numerical Experiments

4 Organizing Laplacian Eigenvectors of Dendritic Trees

References

- N. Saito \& E. Woei: "Analysis of neuronal dendrite patterns using eigenvalues of graph Laplacians," Japan SIAM Letters, vol. 1, pp. 13-16, 2009.
- N. Saito \& E. Woei: "On the phase transition phenomenon of graph Laplacian eigenfunctions on trees," RIMS Kôkyûroku, vol. 1743, pp. 77-90, 2011.
- Y. Nakatsukasa, N. Saito, \& E. Woei: "Mysteries around graph Laplacian eigenvalue 4," Linear Algebra Appl., vol. 438, no. 8, pp. 3231-3246, 2013.
- N. Saito: "How can we naturally order and organize graph Laplacian eigenvectors?" in Proc. 2018 IEEE Workshop on Statistical Signal Processing, pp. 483-487, 2018. Also arXiv: 1801.06782 [math.SP].

