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Motivations

Motivations

Using graph Laplacian eigenvectors as “cosines” or Fourier modes on
graphs with eigenvalues as (the square of) their “frequencies” has been
quite popular.
However, the notion of frequency is ill-defined on general graphs and
the Fourier transform is not properly defined on graphs
Graph Laplacian eigenvectors may also exhibit peculiar behaviors
depending on topology and structure of given graphs!
Spectral Graph Wavelet Transform (SGWT) of Hammond et al.
derived wavelets on a graph based on the Littlewood-Paley theory that
organized the graph Laplacian eigenvectors corresponding to dyadic
partitions of eigenvalues by viewing the eigenvalues as “frequencies”
Unfortunately, this view is wrong other than very simple graphs, e.g.,
undirected unweighted paths and cycles.
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Motivations

A Simple Yet Important Example: A Path Graph
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The eigenvectors of this matrix are exactly the DCT Type II basis vectors (used
for the JPEG standard) while those of the symmetrically-normalized Graph
Laplacian matrix Lsym = D− 1

2 LD− 1
2 are the DCT Type I basis! (See G. Strang,

“The discrete cosine transform,” SIAM Review, vol. 41, pp. 135–147, 1999).

λk = 2−2cos(πk/n) = 4sin2(πk/2n), k = 0 : n −1.

φk (`) = ak;n cos
(
πk

(
`+ 1

2

)
/n

)
, k,`= 0 : n −1; ak;n is a const. s.t. ‖φk‖2 = 1.

In this simple case, λ (eigenvalue) is a monotonic function w.r.t. the
frequency, which is the eigenvalue index k. For a general graph, however,
the notion of frequency is not well defined.
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Motivations

Problem with 2D Lattice Graph

As soon as the domain becomes even slightly more complicated than
unweighted and undirected paths/cylces, the situation completely
changes: we cannot view the eigenvalues as a simple monotonic
function of frequency anymore.
For example, consider a thin strip in R2, and suppose that the domain
is discretized as Pm ×Pn (m > n), whose Laplacian eigenpairs are:

λk = 4

[
sin2

(
πkx

2m

)
+ sin2

(
πky

2n

)]
,

φk (x, y) = akx ;m aky ;n cos

(
πkx

m

(
x + 1

2

))
cos

(
πky

n

(
y + 1

2

))
,

where k = 0 : mn −1; kx = 0 : m −1; ky = 0 : n −1; x = 0 : m −1; and
y = 0 : n −1.
As always, let {λk }k=0:mn−1 be ordered in the nondecreasing manner.
In this case, the smallest eigenvalue is still λ0 =λ(0,0) = 0, and the
corresponding eigenvector is constant.
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Motivations
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The second smallest eigenvalue λ1 is λ(1,0) = 4sin2(π/2m), since
π/2m <π/2n, and its eigenvector has half oscillation in the x-direction.

But, how about λ2? Even for such a simple situation there are two
possibilities: If m > 2n, then λ2 =λ(2,0) <λ(0,1). On the other hand, if
n < m < 2n, then λ2 =λ(0,1) <λ(2,0).

More generally, if K n < m < (K +1)n for some K ∈N, then
λk =λ(k,0) = 4sin2(kπ/2m) for k = 0, . . . ,K . Yet we have
λK+1 =λ(0,1) = 4sin2(π/2n) and λK+2 is equal to either
λ(K+1,0) = 4sin2((K +1)π/2m) or λ(1,1) = 4[sin2(π/2m)+ sin2(π/2n)]
depending on m and n.
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Motivations

As one can see from this, the mapping between k and (kx ,ky ) is quite
nontrivial. Notice that φ(k,0) has k/2 oscillations in the x-direction
whereas φ(0,1) has only half oscillation in the y-direction.
In other words, all of a sudden the eigenvalue of a completely different
type of oscillation sneaks into the eigenvalue sequence.
Hence, on a general domain or a general graph, by simply looking at
the Laplacian eigenvalue sequence {λk }k=0,1,..., it is almost impossible
to organize the eigenpairs into physically meaningful dyadic blocks and
apply the Littlewood-Paley approach unless the underlying domain is
of very simple nature, e.g., Pn or Cn .
For complicated domains, the notion of frequency is not well-defined
anymore, and thus wavelet construction methods that rely on the
Littlewood-Paley theory by viewing eigenvalues as the square of
frequencies, such as the spectral graph wavelet transform (SGWT) of
Hammond et al. may lead to unexpected problems on general graphs.
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Motivations

What we want to do is to organize those eigenvectors as

0, 0 1, 0 2, 0 3, 0 4, 0 5, 0 6, 0

0, 1 1, 1 2, 1 3, 1 4, 1 5, 1 6, 1

0, 2 1, 2 2, 2 3, 2 4, 2 5, 2 6, 2

instead of

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs II 11/21/19 10 / 33



Measuring Differences between Eigenvectors

Outline

1 Motivations

2 Measuring Differences between Eigenvectors

3 Numerical Experiments

4 Organizing Laplacian Eigenvectors of Dendritic Trees

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs II 11/21/19 11 / 33



Measuring Differences between Eigenvectors

Plan

How can we quantify the difference between the eigenvectors?

The usual `2-distance doesn’t work since
∥∥∥φi −φ j

∥∥∥
2
=p

2δi 6= j .

Consider the optimal transport theory!
Convert each φi to a probability mass function (pmf) p i over a graph
G (e.g., via squaring each component of φi )
Compute the cost to transport p i to p j optimally (a.k.a. Earth
Mover’s Distance or 1st Wasserstein Distance), for all i , j = 0 : n −1,
which results in a “distance” matrix D ∈Rn×n

≥0
Embed the eigenvectors into a lower dimensional Euclidean space, say,
Rm , m ¿ n (typically m = 2 or m = 3) so that the distances among
those embedded points match with those given in D (can use, e.g.,
Multidimensional Scaling (MDS))
Organize and group those points to generate wavelet-like vectors on G

Can we get the “dual geometry” of G in that embedded space?
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Measuring Differences between Eigenvectors

Ramified Optimal Transportation (ROT) by Q. Xia

is the study of transporting “mass” from one Radon measure (or
simply a probability measure) µ+ to another µ− along ramified
transport paths with some specific transport cost functional.

is the study of branching structures, e.g., trees; veins on a leaf;
cardiovascular systems; river channel networks; electrical grids;
communication networks, etc.
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Measuring Differences between Eigenvectors

ROT: Discrete Version

Definitions: Two discrete mass distributions (a.k.a. atomic measures)

in Rd : a :=
k∑

i=1
miδx i ; b :=

l∑
j=1

n jδy j
; {x i }i , {y j } j ⊂Rd ;

k∑
i=1

mi =
l∑

j=1
n j .

Let Path(a,b) be all possible transport paths from a to b without
cycles (Xia could manage to remove cycles), i.e., each G ∈ Path(a,b) is
a weighted acyclic directed graph with {x i }i ∪ {y j } j ⊂V (G), whose
edge weights (> 0) satisfy the Kirchhoff law at each interior node
v ∈V (G) \ {x i , y j }i , j :

∑
e∈E(G);e−=v

w(e) = ∑
e∈E(G);e+=v

w(e)+


mi if v = x i for some i ∈ 1 : k

−n j if v = y j for some j ∈ 1 : l

0 otherwise.

Define the cost of a transport path G ∈ Path(a,b):

Mα(G) := ∑
e∈E(G)

w(e)α length(e), α ∈ [0,1].
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Measuring Differences between Eigenvectors

ROT: Discrete Version . . .

Xia further derived:
Number of branching nodes in Path(a,b) can be bounded from above
by k + l −2.
The uniform lower bounds of minimum angle between any two edges
in any α-optimal path in Path(a,b).
The minimum transportation cost dα(a,b) := min

G∈Path(a,b)
Mα(G) is a

metric on the space of atomic measures of equal mass and is of
homogeneous of degree α, i.e., dα(λa,λb) =λαdα(a,b), ∀λ> 0.
Numerical algorithms to compute the α-optimal path for a given pair
(a,b).
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Measuring Differences between Eigenvectors

ROT: Numerical Examples
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Measuring Differences between Eigenvectors

Our Method to Compute Transportation Costs

Unlike the general ROT setting, a graph G is fixed and given.
In general, we want to deal with undirected graphs.
The ROT only deals with directed graphs.
Hence, we turn an undirected graph G into the bidirected graph ˜̃G.
To do so, we first compute the incidence matrix
Q = [

q 1| · · · |q m

] ∈Rn×m of the undirected graph G =G(V ,E) with
n = |V |, m = |E |. Here, q k represents the endpoints of ek : if ek joins
nodes i and j , then q k [l ] = 1 if l = i or l = j ; otherwise q k [l ] = 0.
Then orient the edges in E(G) in an arbitrary manner to form a
directed graph G̃ whose incidence matrix Q̃ is, e.g.,

q̃ k [l ] =


−1 if l = i ;

1 if l = j ;

0 otherwise.

Finally, form the bidirected graph ˜̃G with ˜̃Q := [
Q̃ | −Q̃

] ∈Rn×2m .
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Measuring Differences between Eigenvectors

Our Method to Compute Transportation Costs . . .

Given ˜̃Q, we solve the balance equation that forces the Kirchhoff law:

˜̃Qw i j = p j −p i , w i j ∈R2m
≥0 . (∗)

The weight vector w i j describes the transportation plan of mass from
p i to p j , i.e., let

˜̃Gi j be the bidirected graph ˜̃G with these edge
weights; then ˜̃Gi j ∈ Path(p i , p j ).
Eqn. (∗) may have multiple solutions.
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Measuring Differences between Eigenvectors

Our Method to Compute Transportation Costs . . .

Currently, we use the following Linear Programming (LP):

min
w i j∈R2m

‖w i j‖1 subject to: ˜̃Qw i j = p j −p i ; w i j [l ] ≥ 0, l = 0 : (2m −1)

to obtain one of the sparse solutions of Eqn. (∗), which turned out to
be better than using nonnegative least squares (NNLS) solver.
Finally fill the distance matrix entries D = (Di j ):

Di j = Mα( ˜̃Gi j ) = ∑
e∈E( ˜̃Gi j )

wi j (e)α length(e), α ∈ [0,1].

Note that currently we are not examining all possible solutions of Eqn.
(∗) to search arg min

˜̃Gi j∈Path(p i ,p j )
Mα( ˜̃Gi j ).
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Numerical Experiments
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Numerical Experiments

2D Regular Lattice: An LP Solution to (∗)

Consolidated w 0,1: mass transport from p0 =φ2
0 to p1 =φ2
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Numerical Experiments

2D Regular Lattice: An NNLS Solution to (∗)

Consolidated w 0,1: mass transport from p0 =φ2
0 to p1 =φ2
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Numerical Experiments

2D Regular Lattice: Embedding into R2; α= 1
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Numerical Experiments

2D Regular Lattice: Embedding into R2; α= 0.5

Some symmetry could be explained because of the symmetry of DCT vectors:
φ2

k;n[x]+φ2
n−k;n[x] ≡ a2

k;n = 2/n, k = 1 : n −1, x = 0 : n −1.
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Numerical Experiments

Other Ways to Turn φi into p i

Generating φ2
i is not the only way to turn φi into a pmf p i .

Other examples include:
Normalized `1: φ1

i := (∣∣φi [0]
∣∣ , . . . ,

∣∣φi [n −1]
∣∣)T /‖φi‖1 ;

A constant addition followed by normalization:

φ̃i :=
{
φ1

0 if i = 0;
φi−cmin·1n

‖φi−cmin·1n‖1
if i 6= 0,

where cmin := min
0<i<n;0≤l<n

φi [l ] < 0;

Normalized exponentiation: φe
i := exp(φi )/‖exp(φi )‖1.
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Generating φ2
i is not the only way to turn φi into a pmf p i .

Other examples include:
Normalized `1: φ1

i := (∣∣φi [0]
∣∣ , . . . ,

∣∣φi [n −1]
∣∣)T /‖φi‖1 ;

A constant addition followed by normalization:

φ̃i :=
{
φ1

0 if i = 0;
φi−cmin·1n
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if i 6= 0,
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i := exp(φi )/‖exp(φi )‖1.

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs II 11/21/19 25 / 33



Numerical Experiments

2D Regular Lattice; via
{
φe

i

}
i , α= 0.25
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Organizing Laplacian Eigenvectors of Dendritic Trees

A Peculiar Phase Transition Phenomenon

We observed an interesting phase transition phenomenon on the behavior
of the eigenvalues of graph Laplacians defined on dendritic trees.

(a) RGC #100

(b) Eigenvalues of RGC #100
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Organizing Laplacian Eigenvectors of Dendritic Trees

A Peculiar Phase Transition Phenomenon . . .

We have observed that this value 4 is critical since:
the eigenfunctions corresponding to the eigenvalues below 4 are
semi-global oscillations (like Fourier cosines/sines) over the entire
dendrites or one of the dendrite arbors;
those corresponding to the eigenvalues above 4 are much more
localized (like wavelets) around junctions/bifurcation vertices.
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(a) RGC #100; λ1141 = 3.9994
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(b) RGC #100; λ1142 = 4.3829
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Organizing Laplacian Eigenvectors of Dendritic Trees

We know why such localization/phase transition occurs =⇒ See our
article for the detail: Y. Nakatsukasa, N. Saito, & E. Woei: “Mysteries
around graph Laplacian eigenvalue 4,” Linear Algebra & Its Applications,
vol. 438, no. 8, pp. 3231–3246, 2013. The key was the discriminant of a
quadratic equation.
Any physiological consequence? Importance of branching vertices?
Many such eigenvector localization phenomena have been reported:
Anderson localization, scars in quantum chaos, . . .
See also an interesting related work for more general setting and for
application in numerical linear algebra: I. Krishtal, T. Strohmer, & T.
Wertz: “Localization of matrix factorizations,” Foundations of Comp. Math.,
vol. 15, no. 4, pp. 931–951, 2015.
Our point is that eigenvectors, especially those corresponding to high
eigenvalues, are quite sensitive to topology and geometry of the
underlying domain and cannot really be viewed as high frequency
oscillations unless the underlying graph is a simple unweighted path or
cycle.
Hence, one must be very careful to develop an analog of the
Littlewood-Paley theory for general graphs!
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Organizing Laplacian Eigenvectors of Dendritic Trees

Embedding of Eigenvectors on the Dendritic Tree into R3

Figure: The magenta circle = the DC vector; the cyan circle = the Fiedler vector;
the red circles = the localized eigenvectors; the larger colored circles = the
eigenvectors supported on the upper-left branch
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Organizing Laplacian Eigenvectors of Dendritic Trees

Figure: The magenta circle = the DC vector; the cyan circle = the Fiedler vector;
the red circles = the localized eigenvectors; the larger colored circles = the 10
eigenvectors nearest from the DC vector
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