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Other Metrics for Comparing Eigenvectors

Various Metrics for Comparing Eigenvectors

A similarity measure based on the average of local correlations of
eigenvectors (A. Cloninger & S. Steinerberger, 2018)
The difference of absolute gradient (DAG) method (H. Li & N. Saito,
2019)
The time-stepping diffusion (TSD) method (H. Li & N. Saito, 2019)
Here, due to the time limitation, we will discuss only the TSD method.
For the details of the latter two, see our paper: H. Li and N. Saito:
“Metrics of graph Laplacian eigenvectors,” in Wavelets and Sparsity
XVIII (D. Van De Ville, M. Papadakis, and Y. M. Lu, eds.), Proc.
SPIE 11138, Paper #111381K, 2019.
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Other Metrics for Comparing Eigenvectors

Motivation of TSDM

Given any two mass distributions, one of them can be viewed as a
distribution of earth (or sand) and the other a distribution of holes; then
Earth Mover’s Distance (a.k.a. Wasserstein Distance) between them is the
minimum cost of rearranging the mass in one distribution to obtain the
other, where the cost = amount of earth moved × the distance by which it
is moved.

EMD cannot distinguish these two transport schemes.
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Other Metrics for Comparing Eigenvectors

The Time-Stepping Diffusion Method (TSDM)

The purpose of TSDM is to design an optimal transport-like method
that depends on time (or spatial scale and structure of the underlying
graph). In other words, at each given time, we want to measure a cost
or a distance between eigenvectors.
In order to measure the optimal transport cost between two vector
measures (with the same total mass) on graphs, we need to first take
the difference between two vector measures as the initial input, then
compute the minimum effort to flatten this initial input on the graph.
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Other Metrics for Comparing Eigenvectors

Given a time T , let us consider a diffusion process on the graph. We
want to measure the cost of “flatten” the initial graph signal via
diffusion process up to the time T .
We expect the graph signal will be flattened out by this process and
the final cost, as T →∞, would behave similarly with the optimal
transport cost.
Notation: Denote the graph Laplacian matrix as L whose factorization
is L =ΦΛΦT, where Φ= [φ0,φ1, · · · ,φn−1], Λ= diag(λ0,λ1, · · · ,λn−1),
0 =λ0 <λ1 ≤ ·· · ≤λn−1. Also, denote the directed incidence matrix of
the graph G as Q̃ ∈R|V |×|E |, and the graph gradient operator
∇G := Q̃T :R|V | →R|E |.
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Other Metrics for Comparing Eigenvectors

TSDM and the Heat Equation

Given initial f 0, the governing ODE system which describes the graph
signal u(t )’s (∈Rn) evolution is following:

d

dt
u(t )+L ·u(t ) = 0 u(0) = f 0 ∈Rn

Since {φ0, · · · ,φn−1} forms an ONB of Rn , we have u(t ) =
n−1∑
k=0

Ck (t ) ·φk .

Then, after plugging it into the above ODE system and solving for Ck (t ),
we get Ck (t ) = 〈 f 0,φk〉e−λk t . Now, we have the solution:

u(t ) =
n−1∑
k=0

〈 f 0,φk〉e−λk tφk

At a certain time T, let us define the cost of the TSDM, K ( f 0;T ), by:

K ( f 0;T ) :=
∫ T

0
‖∇G u(t )‖1 dt
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Other Metrics for Comparing Eigenvectors

Convergence of TSDM

Theorem (Convergence of TSDM)

Let G = (V ,E ,W ) be a connected undirected graph and f 0 as the initial
graph signal. K ( f 0;T ) converges as T →∞, i.e.,

lim
T→∞

K ( f 0;T ) = lim
T→∞

∫ T

0
‖∇G u(t )‖1 dt <∞

Furthermore, we can show that for any fixed T > 0 (including T =∞),
K ( · ;T ) is a norm on L2

0(V ) := { f ∈ L2(V ) :
∑

x∈V f (x) = 0}.
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Other Metrics for Comparing Eigenvectors

Comparative Results

Optimal transport cost:

TSDM cost:
time T = 0.1 T = 1 T = 10 T =∞

blue cost 2.79 16.66 38.30 40.32
orange cost 10.41 38.42 63.65 65.87
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Other Metrics for Comparing Eigenvectors

The Cost Conjecture

As time T →∞, one might expect the TSDM cost to be close to the
optimal transport cost (i.e., the 1st Wasserstein distance) between any
two vector measures defined on the graph.

Conjecture
Given any two probability distributions p, q on a connected graph
G = (V ,E ,W ) with graph geodesic distance metric d : V ×V →R≥0,

W1(p, q) ≤ K (p −q ;∞) ≤C ·W1(p, q)

in which W1(p, q) := infγ∈Γ(p,q)
∫

V ×V d(x, y)dγ(x, y), where Γ(p, q) denotes
the collection of all measures on V ×V with marginals p and q in the first
and second factors respectively and C is a constant dependent on G.

We manage to prove the first half of the conjecture, i.e.,
W1(p, q) ≤ K (p −q ;∞), but it is still a mystery about the explicit
formulation of the constant C in second half.
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Other Metrics for Comparing Eigenvectors

TSDM (T = 0.1) on the Dendritic Tree

Figure: The magenta circle = the DC vector; the cyan circle = the Fiedler vector;
the red circles = the localized eigenvectors; the larger colored circles = the
eigenvectors supported on the upper-left branch
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Building Natural Graph Wavelets

Natural Graph Wavelet Packet Dictionary

There may be a number of different ways to group and organize the graph
Laplacian eigenvectors once the mutual distances are computed. Below, we
discuss one of the simplest ones.

1 Given a graph G = {V ,E ,W } with |V | = n and the distance matrix
D = (Di j ) of its eigenvectors, construct a dual graph
G? = {V ?,E?,W ?} where the i th node in V ? represents φi , and the
edge weight W ?

i j reflects the affinity between φi and φ j , e.g.,
W ?

i j = 1/Di j or exp(−D2
i j /σ2) for some appropriate scale parameter σ.

2 Construct a hierarchical partition tree of G? using, e.g., the recursive
bi-partition method that was used to construct our other graph
wavelet packets such as the Hierarchical Graph Laplacian Eigen
Transform (HGLET) and the Generalized Haar-Walsh Transform
(GHWT). This corresponds to hierarchical partitioning of the
frequency domain in the conventional time-frequency analysis, which
generates classical wavelet packets.

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs III 11/26/19 15 / 22



Building Natural Graph Wavelets

G?0
0 =G?

G?1
0

G?2
0

G?3
0 G?3

1

G?2
1

G?3
2 G?3

3

G?1
1

G?2
2

G?3
4 G?3

5

G?2
3

G?3
6 G?3

7

Figure: A binary partition tree of the dual graph G?

3 The graph wavelet packet vectors in G? j
k can be generated as follows:

ψ
j
k,l =ΦF j

kΦ
Te l for j = 0 : jmax, k = 0 : 2 j −1, l = 0 : n −1

in which, the diagonal matrix F j
k ∈Rn×n with F j

k [l , l ] =χ
V ? j

k
(l ),

l = 0 : n −1, which selects the eigenvectors corresponding V ? j
k , Φ is

the eigenvector matrix, and e l is the canonical basis vector at the lth
vertex.
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Building Natural Graph Wavelets

An Ideal Case: Shannon Wavelets from DCT
We can generate Shannon wavelets from the graph Laplacian
eigenvectors of a 1D path (i.e., the DCT-II basis vectors) by simply
setting F j

0 = diag(1n/2 j ,0n−n/2 j ); F j
1 = diag(0n/2 j ,1n/2 j ,0n−n/2 j−1 ), and

computing φ j
l =ΦF j

0Φ
Te l (father); ψ j

l =ΦF j
1Φ

Te l (mother).

Figure: From DCT to Shannon wavelets ( j = 3)

Can generate smoother wavelets (e.g., Meyer wavelets) by using
smoother partition of unity in the diagonals of F j

∗’s
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Building Natural Graph Wavelets

Some wavelet packet vectors on the RGC dendritic tree

(a) ψ1
0,899 (b) ψ1

1,899

(c) ψ2
0,899 (d) ψ2

1,899 (e) ψ2
2,899 (f) ψ2

3,899
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Building Natural Graph Wavelets

Natural Graph Wavelet Basis
Obviously, the above natural graph wavelet packet dictionary are
hugely redundant, containing approximately n(2n −1) basis vectors.
Constructing a standard wavelet packet dictionary with n(1+ log2 n)
basis vectors, we only need a subset of {e l }l=0:n−1 so that the number
of basis vectors to generate on G? j

k is |V ? j
k | (if n = 2 jmax with the

perfectly balanced binary tree, |V ? j
k | = 2 jmax− j where jmax = log2 n).

One possibility is to pick the appropriate number (i.e., |V ? j
k |) of the

original nodes in V using the energy concentration of the eigenvectors
in G? j

k and use those nodes for {e l } (this is a promising new idea
proposed by Haotian Li).
Once this is done, one can apply the best-basis selection algorithm of
Coifman-Wickerhauser or its variants by the Saito group to choose the
most suitable basis for a given task (e.g., efficient approximation,
denoising, classification, regression, etc.). Note that the best-basis
algorithm searches the best one among more than (1.5)n possible
ONBs from the wavelet packet dictionary.
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Summary

Summary and Future Projects

Found a natural method to order graph Laplacian eigenvectors
{φi }i=0:n−1 using the transportation cost as their mutual distances
based on the ROT theory on a fixed graph
How to examine all possible solutions of

˜̃Qw i j = p j −p i , w i j ∈R2m
≥0 . (∗)

and find the true cost minimizing transportation plan?
How to find the sparsest nonnegative solution of Eqn.(*) ?
How to select the best α ∈ [0,1] for Mα(G) := ∑

e∈E(G) w(e)α length(e) ?
Which way should we turn φi into p i?
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