MAT 280: Harmonic Analysis on Graphs & Networks Lecture 18: Wavelets on Graphs III Organizing 'Dual' Domains of Graphs (Part 2)

Naoki Saito

Department of Mathematics University of California, Davis

November 26, 2019

Other Metrics for Comparing Eigenvectors

Building Natural Graph Wavelets 2

Acknowledgment

- Alex Cloninger (UC San Diego)
- Haotian Li (UC Davis)
- Qinglan Xia (UC Davis)
- NSF Grants: DMS-1418779, IIS-1631329, DMS-1912747, CCF-1934568
- ONR Grants: N00014-16-1-2255

Outline

1 Other Metrics for Comparing Eigenvectors

- A *similarity* measure based on the *average of local correlations* of eigenvectors (A. Cloninger & S. Steinerberger, 2018)
- The *difference of absolute gradient* (DAG) method (H. Li & N. Saito, 2019)
- The *time-stepping diffusion* (TSD) method (H. Li & N. Saito, 2019)
- Here, due to the time limitation, we will discuss only the TSD method.
- For the details of the latter two, see our paper: H. Li and N. Saito: "Metrics of graph Laplacian eigenvectors," in *Wavelets and Sparsity XVIII* (D. Van De Ville, M. Papadakis, and Y. M. Lu, eds.), Proc. SPIE 11138, Paper #111381K, 2019.

- A *similarity* measure based on the *average of local correlations* of eigenvectors (A. Cloninger & S. Steinerberger, 2018)
- The *difference of absolute gradient* (DAG) method (H. Li & N. Saito, 2019)
- The *time-stepping diffusion* (TSD) method (H. Li & N. Saito, 2019)
- Here, due to the time limitation, we will discuss only the TSD method.
- For the details of the latter two, see our paper: H. Li and N. Saito: "Metrics of graph Laplacian eigenvectors," in *Wavelets and Sparsity XVIII* (D. Van De Ville, M. Papadakis, and Y. M. Lu, eds.), Proc. SPIE 11138, Paper #111381K, 2019.

- A *similarity* measure based on the *average of local correlations* of eigenvectors (A. Cloninger & S. Steinerberger, 2018)
- The *difference of absolute gradient* (DAG) method (H. Li & N. Saito, 2019)
- The time-stepping diffusion (TSD) method (H. Li & N. Saito, 2019)
- Here, due to the time limitation, we will discuss only the TSD method.
- For the details of the latter two, see our paper: H. Li and N. Saito: "Metrics of graph Laplacian eigenvectors," in *Wavelets and Sparsity XVIII* (D. Van De Ville, M. Papadakis, and Y. M. Lu, eds.), Proc. SPIE 11138, Paper #111381K, 2019.

- A *similarity* measure based on the *average of local correlations* of eigenvectors (A. Cloninger & S. Steinerberger, 2018)
- The *difference of absolute gradient* (DAG) method (H. Li & N. Saito, 2019)
- The *time-stepping diffusion* (TSD) method (H. Li & N. Saito, 2019)
- Here, due to the time limitation, we will discuss only the TSD method.
- For the details of the latter two, see our paper: H. Li and N. Saito: "Metrics of graph Laplacian eigenvectors," in *Wavelets and Sparsity XVIII* (D. Van De Ville, M. Papadakis, and Y. M. Lu, eds.), Proc. SPIE 11138, Paper #111381K, 2019.

- A *similarity* measure based on the *average of local correlations* of eigenvectors (A. Cloninger & S. Steinerberger, 2018)
- The *difference of absolute gradient* (DAG) method (H. Li & N. Saito, 2019)
- The *time-stepping diffusion* (TSD) method (H. Li & N. Saito, 2019)
- Here, due to the time limitation, we will discuss only the TSD method.
- For the details of the latter two, see our paper: H. Li and N. Saito: "Metrics of graph Laplacian eigenvectors," in *Wavelets and Sparsity XVIII* (D. Van De Ville, M. Papadakis, and Y. M. Lu, eds.), Proc. SPIE 11138, Paper #111381K, 2019.

Motivation of TSDM

• Given any two mass distributions, one of them can be viewed as a distribution of earth (or sand) and the other a distribution of holes; then *Earth Mover's Distance* (a.k.a. *Wasserstein Distance*) between them is *the minimum cost of rearranging the mass in one distribution to obtain the other*, where the cost = amount of earth moved × the distance by which it is moved.

EMD cannot distinguish these two transport schemes.

Motivation of TSDM

• Given any two mass distributions, one of them can be viewed as a distribution of earth (or sand) and the other a distribution of holes; then *Earth Mover's Distance* (a.k.a. *Wasserstein Distance*) between them is *the minimum cost of rearranging the mass in one distribution to obtain the other*, where the cost = amount of earth moved × the distance by which it is moved.

• EMD cannot distinguish these two transport schemes.

The Time-Stepping Diffusion Method (TSDM)

- The purpose of TSDM is to design an optimal transport-like method that *depends on time* (or *spatial scale and structure* of the underlying graph). In other words, at each given time, we want to measure a cost or a distance between eigenvectors.
- In order to measure *the optimal transport cost* between two vector measures (with the same total mass) on graphs, we need to first take the *difference* between two vector measures as the initial input, then compute *the minimum effort to flatten this initial input* on the graph.

The Time-Stepping Diffusion Method (TSDM)

- The purpose of TSDM is to design an optimal transport-like method that *depends on time* (or *spatial scale and structure* of the underlying graph). In other words, at each given time, we want to measure a cost or a distance between eigenvectors.
- In order to measure *the optimal transport cost* between two vector measures (with the same total mass) on graphs, we need to first take the *difference* between two vector measures as the initial input, then compute *the minimum effort to flatten this initial input* on the graph.

- Given a time *T*, let us consider a *diffusion process* on the graph. We want to measure the cost of "flatten" the initial graph signal via diffusion process up to the time *T*.
- We expect the graph signal will be flattened out by this process and the final cost, as $T \rightarrow \infty$, would behave similarly with the optimal transport cost.
- Notation: Denote the graph Laplacian matrix as L whose factorization is L = ΦΛΦ^T, where Φ = [φ₀, φ₁, ..., φ_{n-1}], Λ = diag(λ₀, λ₁, ..., λ_{n-1}), 0 = λ₀ < λ₁ ≤ ··· ≤ λ_{n-1}. Also, denote the directed incidence matrix of the graph G as Q̃ ∈ ℝ^{|V|×|E|}, and the graph gradient operator ∇_G := Q̃^T : ℝ^{|V|} → ℝ^{|E|}.

- Given a time *T*, let us consider a *diffusion process* on the graph. We want to measure the cost of "flatten" the initial graph signal via diffusion process up to the time *T*.
- We expect the graph signal will be flattened out by this process and the final cost, as $T \rightarrow \infty$, would behave similarly with the optimal transport cost.
- Notation: Denote the graph Laplacian matrix as L whose factorization is L = ΦΛΦ^T, where Φ = [φ₀, φ₁, ..., φ_{n-1}], Λ = diag(λ₀, λ₁, ..., λ_{n-1}), 0 = λ₀ < λ₁ ≤ ··· ≤ λ_{n-1}. Also, denote the directed incidence matrix of the graph G as Q̃ ∈ ℝ^{|V|×|E|}, and the graph gradient operator ∇_G := Q̃^T : ℝ^{|V|} → ℝ^{|E|}.

- Given a time *T*, let us consider a *diffusion process* on the graph. We want to measure the cost of "flatten" the initial graph signal via diffusion process up to the time *T*.
- We expect the graph signal will be flattened out by this process and the final cost, as $T \rightarrow \infty$, would behave similarly with the optimal transport cost.
- Notation: Denote the graph Laplacian matrix as L whose factorization is L = ΦΛΦ^T, where Φ = [φ₀, φ₁, ..., φ_{n-1}], Λ = diag(λ₀, λ₁, ..., λ_{n-1}), 0 = λ₀ < λ₁ ≤ ... ≤ λ_{n-1}. Also, denote the directed incidence matrix of the graph G as Q̃ ∈ ℝ^{|V|×|E|}, and the graph gradient operator ∇_G := Q̃^T : ℝ^{|V|} → ℝ^{|E|}.

TSDM and the Heat Equation

Given initial f_0 , the governing ODE system which describes the graph signal u(t)'s ($\in \mathbb{R}^n$) evolution is following:

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{u}(t) + L \cdot \boldsymbol{u}(t) = \boldsymbol{0} \qquad \boldsymbol{u}(0) = \boldsymbol{f}_0 \in \mathbb{R}^n$$

Since $\{\phi_0, \dots, \phi_{n-1}\}$ forms an ONB of \mathbb{R}^n , we have $\boldsymbol{u}(t) = \sum_{k=0}^{n-1} C_k(t) \cdot \boldsymbol{\phi}_k$. Then, after plugging it into the above ODE system and solving for $C_k(t)$, we get $C_k(t) = \langle \boldsymbol{f}_0, \boldsymbol{\phi}_k \rangle e^{-\lambda_k t}$. Now, we have the solution:

$$\boldsymbol{u}(t) = \sum_{k=0}^{n-1} \langle \boldsymbol{f}_0, \boldsymbol{\phi}_k \rangle e^{-\lambda_k t} \boldsymbol{\phi}_k$$

At a certain time T, let us define the cost of the TSDM, $K(f_0; T)$, by:

$$K(\boldsymbol{f}_0; T) := \int_0^T \|\nabla_G \boldsymbol{u}(t)\|_1 \,\mathrm{d}t$$

Convergence of TSDM

Theorem (Convergence of TSDM)

Let G = (V, E, W) be a connected undirected graph and f_0 as the initial graph signal. $K(f_0; T)$ converges as $T \rightarrow \infty$, i.e.,

$$\lim_{T \to \infty} K(\boldsymbol{f}_0; T) = \lim_{T \to \infty} \int_0^T \|\nabla_G \boldsymbol{u}(t)\|_1 \, \mathrm{d}t < \infty$$

• Furthermore, we can show that for any fixed T > 0 (including $T = \infty$), $K(\cdot; T)$ is a *norm* on $L_0^2(V) := \{f \in L^2(V) : \sum_{x \in V} f(x) = 0\}.$

Comparative Results

• Optimal transport cost:

• TSDM cost:

Comparative Results

• Optimal transport cost:

Cost = 30 x 1 = 30

• TSDM cost:

time	<i>T</i> = 0.1	T = 1	T = 10	$T = \infty$
blue cost	2.79	16.66	38.30	40.32
orange cost	10.41	38.42	63.65	65.87

The Cost Conjecture

 As time T→∞, one might expect the TSDM cost to be close to the optimal transport cost (i.e., the 1st Wasserstein distance) between any two vector measures defined on the graph.

Conjecture

Given any two probability distributions p, q on a connected graph G = (V, E, W) with graph geodesic distance metric $d: V \times V \rightarrow \mathbb{R}_{\geq 0}$,

 $W_1(p,q) \le K(p-q;\infty) \le C \cdot W_1(p,q)$

in which $W_1(p,q) := \inf_{\gamma \in \Gamma(p,q)} \int_{V \times V} d(x, y) d\gamma(x, y)$, where $\Gamma(p,q)$ denotes the collection of all measures on $V \times V$ with marginals p and q in the first and second factors respectively and C is a constant dependent on G.

 We manage to prove the first half of the conjecture, i.e., W₁(p,q) ≤ K(p-q;∞), but it is still a mystery about the explicit formulation of the constant C in second half.

saito@math.ucdavis.edu (UC Davis)

The Cost Conjecture

 As time T→∞, one might expect the TSDM cost to be close to the optimal transport cost (i.e., the 1st Wasserstein distance) between any two vector measures defined on the graph.

Conjecture

Given any two probability distributions p, q on a connected graph G = (V, E, W) with graph geodesic distance metric $d: V \times V \rightarrow \mathbb{R}_{\geq 0}$,

$$W_1(p,q) \leq K(p-q;\infty) \leq C \cdot W_1(p,q)$$

in which $W_1(p,q) := \inf_{\gamma \in \Gamma(p,q)} \int_{V \times V} d(x, y) d\gamma(x, y)$, where $\Gamma(p,q)$ denotes the collection of all measures on $V \times V$ with marginals p and q in the first and second factors respectively and C is a constant dependent on G.

We manage to prove the first half of the conjecture, i.e.,
 W₁(p,q) ≤ K(p-q;∞), but it is still a mystery about the explicit formulation of the constant C in second half.

saito@math.ucdavis.edu (UC Davis)

The Cost Conjecture

 As time T→∞, one might expect the TSDM cost to be close to the optimal transport cost (i.e., the 1st Wasserstein distance) between any two vector measures defined on the graph.

Conjecture

Given any two probability distributions p, q on a connected graph G = (V, E, W) with graph geodesic distance metric $d: V \times V \rightarrow \mathbb{R}_{\geq 0}$,

$$W_1(p,q) \leq K(p-q;\infty) \leq C \cdot W_1(p,q)$$

in which $W_1(p,q) := \inf_{\gamma \in \Gamma(p,q)} \int_{V \times V} d(x, y) d\gamma(x, y)$, where $\Gamma(p,q)$ denotes the collection of all measures on $V \times V$ with marginals p and q in the first and second factors respectively and C is a constant dependent on G.

• We manage to prove the first half of the conjecture, i.e., $W_1(p,q) \le K(p-q;\infty)$, but it is still a mystery about the explicit formulation of the constant *C* in second half.

saito@math.ucdavis.edu (UC Davis)

TSDM (T = 0.1) on the Dendritic Tree

Figure: The magenta circle = the DC vector; the cyan circle = the Fiedler vector; the red circles = the localized eigenvectors; the larger colored circles = the eigenvectors supported on the upper-left branch

Outline

Building Natural Graph Wavelets

Natural Graph Wavelet Packet Dictionary

There may be a number of different ways to group and organize the graph Laplacian eigenvectors once the mutual distances are computed. Below, we discuss one of the simplest ones.

- Given a graph $G = \{V, E, W\}$ with |V| = n and the distance matrix $D = (D_{ij})$ of its eigenvectors, construct a *dual graph* $G^* = \{V^*, E^*, W^*\}$ where the *i*th node in V^* represents ϕ_i , and the edge weight W_{ij}^* reflects the affinity between ϕ_i and ϕ_j , e.g., $W_{ij}^* = 1/D_{ij}$ or $\exp(-D_{ij}^2/\sigma^2)$ for some appropriate scale parameter σ .
- Construct a hierarchical partition tree of G* using, e.g., the recursive bi-partition method that was used to construct our other graph wavelet packets such as the Hierarchical Graph Laplacian Eigen Transform (HGLET) and the Generalized Haar-Walsh Transform (GHWT). This corresponds to hierarchical partitioning of the frequency domain in the conventional time-frequency analysis, which generates classical wavelet packets.

saito@math.ucdavis.edu (UC Davis)

Figure: A binary partition tree of the dual graph G*
The graph wavelet packet vectors in G^{*j}_k can be generated as follows:
ψ^j_{k,l} = ΦF^j_kΦ^Te_l for j = 0: j_{max}, k = 0: 2^j - 1, l = 0: n - 1
in which, the diagonal matrix F^j_k ∈ ℝ^{n×n} with F^j_k[l, l] = χ_{V^{*j}k}(l),
l = 0: n - 1, which selects the eigenvectors corresponding V^{*j}_k, Φ is the eigenvector matrix, and e_l is the canonical basis vector at the *l*th vertex.

saito@math.ucdavis.edu (UC Davis)

An Ideal Case: Shannon Wavelets from DCT

• We can generate *Shannon wavelets* from the graph Laplacian eigenvectors of a 1D path (i.e., the DCT-II basis vectors) by simply setting $F_0^j = \text{diag}(\mathbf{1}_{n/2^j}, \mathbf{0}_{n-n/2^j})$; $F_1^j = \text{diag}(\mathbf{0}_{n/2^j}, \mathbf{1}_{n/2^j}, \mathbf{0}_{n-n/2^{j-1}})$, and computing $\boldsymbol{\phi}_l^j = \Phi F_0^j \Phi^{\mathsf{T}} \boldsymbol{e}_l$ (father); $\boldsymbol{\psi}_l^j = \Phi F_1^j \Phi^{\mathsf{T}} \boldsymbol{e}_l$ (mother).

• Can generate smoother wavelets (e.g., Meyer wavelets) by using smoother partition of unity in the diagonals of F_*^j 's

An Ideal Case: Shannon Wavelets from DCT

• We can generate *Shannon wavelets* from the graph Laplacian eigenvectors of a 1D path (i.e., the DCT-II basis vectors) by simply setting $F_0^j = \text{diag}(\mathbf{1}_{n/2^j}, \mathbf{0}_{n-n/2^j})$; $F_1^j = \text{diag}(\mathbf{0}_{n/2^j}, \mathbf{1}_{n/2^j}, \mathbf{0}_{n-n/2^{j-1}})$, and computing $\boldsymbol{\phi}_l^j = \Phi F_0^j \Phi^{\mathsf{T}} \boldsymbol{e}_l$ (father); $\boldsymbol{\psi}_l^j = \Phi F_1^j \Phi^{\mathsf{T}} \boldsymbol{e}_l$ (mother).

Figure: From DCT to Shannon wavelets (j = 3)

• Can generate smoother wavelets (e.g., Meyer wavelets) by using smoother partition of unity in the diagonals of F_*^j 's

saito@math.ucdavis.edu (UC Davis)

An Ideal Case: Shannon Wavelets from DCT

• We can generate *Shannon wavelets* from the graph Laplacian eigenvectors of a 1D path (i.e., the DCT-II basis vectors) by simply setting $F_0^j = \text{diag}(\mathbf{1}_{n/2^j}, \mathbf{0}_{n-n/2^j})$; $F_1^j = \text{diag}(\mathbf{0}_{n/2^j}, \mathbf{1}_{n/2^j}, \mathbf{0}_{n-n/2^{j-1}})$, and computing $\boldsymbol{\phi}_l^j = \Phi F_0^j \Phi^{\mathsf{T}} \boldsymbol{e}_l$ (father); $\boldsymbol{\psi}_l^j = \Phi F_1^j \Phi^{\mathsf{T}} \boldsymbol{e}_l$ (mother).

Figure: From DCT to Shannon wavelets (j = 3)

• Can generate smoother wavelets (e.g., Meyer wavelets) by using smoother partition of unity in the diagonals of F_*^j 's

saito@math.ucdavis.edu (UC Davis)

Some wavelet packet vectors on the RGC dendritic tree

- Obviously, the above natural graph wavelet packet dictionary are hugely redundant, containing approximately n(2n-1) basis vectors.
- Constructing a standard wavelet packet dictionary with $n(1 + \log_2 n)$ basis vectors, we only need a subset of $\{e_l\}_{l=0:n-1}$ so that the number of basis vectors to generate on $G_k^{\star j}$ is $|V_k^{\star j}|$ (if $n = 2^{j_{\max}}$ with the perfectly balanced binary tree, $|V_k^{\star j}| = 2^{j_{\max}-j}$ where $j_{\max} = \log_2 n$).
- One possibility is to pick the appropriate number (i.e., $|V_k^j|$) of the original nodes in V using the energy concentration of the eigenvectors in G_k^j and use those nodes for $\{e_l\}$ (this is a promising new idea proposed by Haotian Li).
- Once this is done, one can apply the *best-basis selection algorithm* of Coifman-Wickerhauser or its variants by the Saito group to choose the most suitable basis for a given task (e.g., efficient approximation, denoising, classification, regression, etc.). Note that the best-basis algorithm searches the best one among more than (1.5)ⁿ possible ONBs from the wavelet packet dictionary.

saito@math.ucdavis.edu (UC Davis)

- Obviously, the above natural graph wavelet packet dictionary are hugely redundant, containing approximately n(2n-1) basis vectors.
- Constructing a standard wavelet packet dictionary with $n(1 + \log_2 n)$ basis vectors, we only need a subset of $\{e_l\}_{l=0:n-1}$ so that the number of basis vectors to generate on $G_k^{\star j}$ is $|V_k^{\star j}|$ (if $n = 2^{j_{\max}}$ with the perfectly balanced binary tree, $|V_k^{\star j}| = 2^{j_{\max}-j}$ where $j_{\max} = \log_2 n$).
- One possibility is to pick the appropriate number (i.e., $|V_k^j|$) of the original nodes in V using the energy concentration of the eigenvectors in G_k^{*j} and use those nodes for $\{e_l\}$ (this is a promising new idea proposed by Haotian Li).
- Once this is done, one can apply the *best-basis selection algorithm* of Coifman-Wickerhauser or its variants by the Saito group to choose the most suitable basis for a given task (e.g., efficient approximation, denoising, classification, regression, etc.). Note that the best-basis algorithm searches the best one among more than (1.5)ⁿ possible ONBs from the wavelet packet dictionary.

saito@math.ucdavis.edu (UC Davis)

- Obviously, the above natural graph wavelet packet dictionary are hugely redundant, containing approximately n(2n-1) basis vectors.
- Constructing a standard wavelet packet dictionary with $n(1 + \log_2 n)$ basis vectors, we only need a subset of $\{e_l\}_{l=0:n-1}$ so that the number of basis vectors to generate on $G_k^{\star j}$ is $|V_k^{\star j}|$ (if $n = 2^{j_{\max}}$ with the perfectly balanced binary tree, $|V_k^{\star j}| = 2^{j_{\max}-j}$ where $j_{\max} = \log_2 n$).
- One possibility is to pick the appropriate number (i.e., $|V_k^{\star j}|$) of the original nodes in V using the energy concentration of the eigenvectors in $G_k^{\star j}$ and use those nodes for $\{e_l\}$ (this is a promising new idea proposed by Haotian Li).
- Once this is done, one can apply the *best-basis selection algorithm* of Coifman-Wickerhauser or its variants by the Saito group to choose the most suitable basis for a given task (e.g., efficient approximation, denoising, classification, regression, etc.). Note that the best-basis algorithm searches the best one among more than (1.5)ⁿ possible ONBs from the wavelet packet dictionary.

- Obviously, the above natural graph wavelet packet dictionary are hugely redundant, containing approximately n(2n-1) basis vectors.
- Constructing a standard wavelet packet dictionary with $n(1 + \log_2 n)$ basis vectors, we only need a subset of $\{e_l\}_{l=0:n-1}$ so that the number of basis vectors to generate on $G_k^{\star j}$ is $|V_k^{\star j}|$ (if $n = 2^{j_{\text{max}}}$ with the perfectly balanced binary tree, $|V_k^{\star j}| = 2^{j_{\text{max}}-j}$ where $j_{\text{max}} = \log_2 n$).
- One possibility is to pick the appropriate number (i.e., $|V_k^{\star j}|$) of the original nodes in V using the energy concentration of the eigenvectors in $G_k^{\star j}$ and use those nodes for $\{e_l\}$ (this is a promising new idea proposed by Haotian Li).
- Once this is done, one can apply the *best-basis selection algorithm* of Coifman-Wickerhauser or its variants by the Saito group to choose the most suitable basis for a given task (e.g., efficient approximation, denoising, classification, regression, etc.). Note that the best-basis algorithm searches the best one among more than (1.5)ⁿ possible ONBs from the wavelet packet dictionary.

saito@math.ucdavis.edu (UC Davis)

Outline

2 Building Natural Graph Wavelets

- Found a *natural* method to order graph Laplacian eigenvectors
 {φ_i}_{i=0:n-1} using the transportation cost as their mutual distances
 based on the ROT theory on a fixed graph
- How to examine all possible solutions of

$$\tilde{\tilde{Q}} \boldsymbol{w}_{ij} = \boldsymbol{p}_j - \boldsymbol{p}_i, \quad \boldsymbol{w}_{ij} \in \mathbb{R}^{2m}_{\geq 0}.$$

- How to find the sparsest nonnegative solution of Eqn. (*) ?
- How to select the best $\alpha \in [0,1]$ for $M_{\alpha}(G) := \sum_{e \in E(G)} w(e)^{\alpha} \operatorname{length}(e)$?
- Which way should we turn ϕ_i into p_i ?
- How to choose a good metric among several possibilities (ROT; TSD; DAG; ...)?
- How to improve the hierarchical partitioning of the dual graph without forcing recursive binary partitions?

- Found a *natural* method to order graph Laplacian eigenvectors
 {φ_i}_{i=0:n-1} using the transportation cost as their mutual distances
 based on the ROT theory on a fixed graph
- How to examine all possible solutions of

$$\tilde{\tilde{Q}}\boldsymbol{w}_{ij} = \boldsymbol{p}_j - \boldsymbol{p}_i, \quad \boldsymbol{w}_{ij} \in \mathbb{R}^{2m}_{\geq 0}.$$
(*)

- How to find the sparsest nonnegative solution of Eqn. (*) ?
- How to select the best $\alpha \in [0,1]$ for $M_{\alpha}(G) := \sum_{e \in E(G)} w(e)^{\alpha} \operatorname{length}(e)$?
- Which way should we turn ϕ_i into p_i ?
- How to choose a good metric among several possibilities (ROT; TSD; DAG; ...)?
- How to improve the hierarchical partitioning of the dual graph without forcing recursive binary partitions?

- Found a *natural* method to order graph Laplacian eigenvectors
 {φ_i}_{i=0:n-1} using the transportation cost as their mutual distances
 based on the ROT theory on a fixed graph
- How to examine all possible solutions of

$$\tilde{\tilde{Q}}\boldsymbol{w}_{ij} = \boldsymbol{p}_j - \boldsymbol{p}_i, \quad \boldsymbol{w}_{ij} \in \mathbb{R}^{2m}_{\geq 0}.$$
(*)

- How to find the *sparsest* nonnegative solution of Eqn. (*) ?
- How to select the best $\alpha \in [0,1]$ for $M_{\alpha}(G) := \sum_{e \in E(G)} w(e)^{\alpha} \operatorname{length}(e)$?
- How to choose a good metric among several possibilities (ROT; TSD; DAG; ...)?
- How to improve the hierarchical partitioning of the dual graph without forcing recursive binary partitions?

- Found a *natural* method to order graph Laplacian eigenvectors
 {φ_i}_{i=0:n-1} using the transportation cost as their mutual distances
 based on the ROT theory on a fixed graph
- How to examine all possible solutions of

$$\tilde{\tilde{Q}}\boldsymbol{w}_{ij} = \boldsymbol{p}_j - \boldsymbol{p}_i, \quad \boldsymbol{w}_{ij} \in \mathbb{R}^{2m}_{\geq 0}.$$
(*)

- How to find the *sparsest* nonnegative solution of Eqn. (*) ?
- How to select the best $\alpha \in [0,1]$ for $M_{\alpha}(G) := \sum_{e \in E(G)} w(e)^{\alpha} \operatorname{length}(e)$?
- Which way should we turn φ_i into p_i?
- How to choose a good metric among several possibilities (ROT; TSD; DAG; ...)?
- How to improve the hierarchical partitioning of the dual graph without forcing recursive binary partitions?

- Found a *natural* method to order graph Laplacian eigenvectors
 {φ_i}_{i=0:n-1} using the transportation cost as their mutual distances
 based on the ROT theory on a fixed graph
- How to examine all possible solutions of

$$\tilde{\tilde{Q}}\boldsymbol{w}_{ij} = \boldsymbol{p}_j - \boldsymbol{p}_i, \quad \boldsymbol{w}_{ij} \in \mathbb{R}^{2m}_{\geq 0}.$$
(*)

- How to find the *sparsest* nonnegative solution of Eqn. (*) ?
- How to select the best $\alpha \in [0,1]$ for $M_{\alpha}(G) := \sum_{e \in E(G)} w(e)^{\alpha} \operatorname{length}(e)$?
- Which way should we turn ϕ_i into p_i ?
- How to choose a good metric among several possibilities (ROT; TSD; DAG; ...)?
- How to improve the hierarchical partitioning of the dual graph without forcing recursive binary partitions?

- Found a *natural* method to order graph Laplacian eigenvectors
 {φ_i}_{i=0:n-1} using the transportation cost as their mutual distances
 based on the ROT theory on a fixed graph
- How to examine all possible solutions of

$$\tilde{\tilde{Q}}\boldsymbol{w}_{ij} = \boldsymbol{p}_j - \boldsymbol{p}_i, \quad \boldsymbol{w}_{ij} \in \mathbb{R}^{2m}_{\geq 0}.$$
(*)

- How to find the *sparsest* nonnegative solution of Eqn. (*) ?
- How to select the best $\alpha \in [0,1]$ for $M_{\alpha}(G) := \sum_{e \in E(G)} w(e)^{\alpha} \operatorname{length}(e)$?
- Which way should we turn ϕ_i into p_i ?
- How to choose a good metric among several possibilities (ROT; TSD; DAG; ...)?
- How to improve the hierarchical partitioning of the dual graph without forcing recursive binary partitions?

- Found a *natural* method to order graph Laplacian eigenvectors
 {φ_i}_{i=0:n-1} using the transportation cost as their mutual distances
 based on the ROT theory on a fixed graph
- How to examine all possible solutions of

$$\tilde{\tilde{Q}}\boldsymbol{w}_{ij} = \boldsymbol{p}_j - \boldsymbol{p}_i, \quad \boldsymbol{w}_{ij} \in \mathbb{R}^{2m}_{\geq 0}.$$
(*)

and find the true cost minimizing transportation plan?

- How to find the *sparsest* nonnegative solution of Eqn. (*) ?
- How to select the best $\alpha \in [0,1]$ for $M_{\alpha}(G) := \sum_{e \in E(G)} w(e)^{\alpha} \operatorname{length}(e)$?
- Which way should we turn ϕ_i into p_i ?
- How to choose a good metric among several possibilities (ROT; TSD; DAG; ...)?
- How to improve the hierarchical partitioning of the dual graph without forcing recursive binary partitions?

saito@math.ucdavis.edu (UC Davis)

References

- N. Saito & E. Woei: "On the phase transition phenomenon of graph Laplacian eigenfunctions on trees," *RIMS Kôkyûroku*, vol. 1743, pp. 77–90, 2011.
- Y. Nakatsukasa, N. Saito, & E. Woei: "Mysteries around graph Laplacian eigenvalue 4," *Linear Algebra Appl.*, vol. 438, no. 8, pp. 3231–3246, 2013.
- J. Irion & N. Saito: "The generalized Haar-Walsh transform," in Proc. 2014 IEEE Workshop on Statistical Signal Processing, pp. 472–475, 2014.
- J. Irion & N. Saito: "Applied and computational harmonic analysis on graphs and networks," in Wavelets and Sparsity XVI, Proc. SPIE 9597, Paper # 95971F, 2015.
- J. Irion & N. Saito: "Efficient approximation and denoising of graph signals using the multiscale basis dictionaries," *IEEE Trans. Signal and Inform. Process. Netw.*, vol. 3, no. 3, pp. 607–616, 2017.
- N. Saito: "How can we naturally order and organize graph Laplacian eigenvectors?" in *Proc. 2018 IEEE Workshop on Statistical Signal Processing*, pp. 483–487, 2018. Also arXiv: 1801.06782 [math.SP].
- H. Li & N. Saito: "Metrics of graph Laplacian eigenvectors," in *Wavelets and Sparsity XVIII, Proc. SPIE 11138*, 2019, to appear.
- A. Cloninger, H. Li, and N. Saito: "Natural graph wavelet packets," in preparation, 2019.