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Outline

@ Intro: Multiscale Graph Basis Dictionaries
© Hierarchical Graph Laplacian Eigen Transform (HGLET)

© Applications of HGLET
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Intro: Multiscale Graph Basis Dictionaries
Outline

@ Intro: Multiscale Graph Basis Dictionaries
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Motivation: Building Multiscale Graph Basis Dictionaries

@ This lecture is based on the following papers:
o J. Irion & N. Saito: “Hierarchical graph Laplacian eigen transforms,” JSIAM
Letters, vol.6, pp.21-24, 2014.
@ J. Irion & N. Saito: “Applied and computational harmonic analysis on graphs
and networks,” in Wavelets and Sparsity XVI, Proc. SPIE 9597, Paper #
95971F, 2015.
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o Wavelets have been quite successful on regular domains
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o Wavelets have been quite successful on regular domains
@ They have been extended to irregular domains = “2nd Generation
Wavelets” including graphs, e.g.:

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs IV 12/03/19 5/40


https://doi.org/10.14495/jsiaml.6.21
https://doi.org/10.14495/jsiaml.6.21
https://doi.org/10.1117/12.2186921
https://doi.org/10.1117/12.2186921
https://doi.org/10.1117/12.2186921

Motivation: Building Multiscale Graph Basis Dictionaries

@ This lecture is based on the following papers:
o J. Irion & N. Saito: “Hierarchical graph Laplacian eigen transforms,” JSIAM
Letters, vol.6, pp.21-24, 2014.
@ J. Irion & N. Saito: “Applied and computational harmonic analysis on graphs
and networks,” in Wavelets and Sparsity XVI, Proc. SPIE 9597, Paper #
95971F, 2015.

o Wavelets have been quite successful on regular domains
@ They have been extended to irregular domains = “2nd Generation
Wavelets” including graphs, e.g.:

o Coifman and Maggioni (2006): diffusion wavelets; Bremer et al. (2006):
diffusion wavelet packets

e Jansen, Nason, and Silverman (2008): Adaptation of the lifting scheme to
graphs

e Hammond, Vandergheynst, and Gribonval (2011): Spectral graph wavelet
transforms (via spectral graph theory)

@ Sharon and Shkolnisky (2015): using a subset of the Laplacian eigenvectors
and a recursive partitioning tree to construct a multiresolution analysis and
consequently multiwavelet bases

o ...
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Key difficulties:

@ The notion of frequency is ill-defined on graphs and the Fourier
transform is not properly defined on graphs
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Key difficulties:

@ The notion of frequency is ill-defined on graphs and the Fourier
transform is not properly defined on graphs

@ Hence, the use of graph Laplacian eigenvectors, which can be viewed
as “sines” and “cosines” on graphs, has been quite popular
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Key difficulties:

@ The notion of frequency is ill-defined on graphs and the Fourier
transform is not properly defined on graphs

@ Hence, the use of graph Laplacian eigenvectors, which can be viewed
as “sines” and “cosines” on graphs, has been quite popular

@ However, they exhibit peculiar behaviors depending on topology and
structure of given graphs!
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Intro: Multiscale Graph Basis Dictionaries

Our transforms involve 2 main steps:

@ Recursively partition the graph

@ Using the regions on each level of the graph partitioning, generate a
set of orthonormal bases for the graph
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Intro: Multiscale Graph Basis Dictionaries

Our transforms involve 2 main steps:
@ Recursively partition the graph

{ These steps can be performed concurrently, or we can fully partition
the graph and then generate a set of bases

@ Using the regions on each level of the graph partitioning, generate a
set of orthonormal bases for the graph
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Hierarchical Graph Laplacian Eigen Transform (HGLET)
Outline

© Hierarchical Graph Laplacian Eigen Transform (HGLET)
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Now we present a novel transform that can be viewed as a generalization of
the block Discrete Cosine Transform. We refer to this transform as the
Hierarchical Graph Laplacian Eigen Transform (HGLET).

The algorithm proceeds as follows...
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

© Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is (p{c,l with j =0, [V|=n))

0 0 0 0
$0,0 $0,1 $o,2 v b, nd-1

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs IV



Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ¢, with j =0, |V|=n()

" . . j
@ Partition the graph using the Fiedler vector $ir

0 0 0 0
$0,0 $0,1 $o,2 ‘I’O,ng_l
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ¢y, with j =0, |V| = ng)

@ Partition the graph using the Fiedler vector ([)il
© Generate an orthonormal basis for each of the partitions = Laplacian
eigenvectors

0 0 0 0
[ #% o e " |

1 gl gl 1 14l gl 1
[‘/’0,0 $o1 Po2 ‘/’0‘"(1)_1] l¢1,o P11 P12 ¢1.n}—1]
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ¢{c’l with j =0, [V|=n))
" . . j
@ Partition the graph using the Fiedler vector ¢
© Generate an orthonormal basis for each of the partitions = Laplacian
eigenvectors
Q@ Repeat...

I T TR PR

0
0,n5—1

14l gl 1 14l gl 1
[‘/’0,0 $o1 Po2 ‘/’0‘"(1)_1] l¢1,o P11 P12 ¢1.n}—1]
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ¢{c’l with j =0, [V|=n))
" . . j
@ Partition the graph using the Fiedler vector ¢
© Generate an orthonormal basis for each of the partitions = Laplacian
eigenvectors
Q@ Repeat...

I T TR PR

0
0,n5—1

1 1 1 1 1 1 1 1
[‘/’0’0 P01 bop ‘/’0‘"(1)_1] l¢1,0 b1 b1 ¢1.n}—1]
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ¢y, with j =0, |V| = ng)

@ Partition the graph using the Fiedler vector ([)i,l

© Generate an orthonormal basis for each of the partitions = Laplacian
eigenvectors

Q@ Repeat...

0 0 0 0
[ $o0 %o $o,2 ¢0,n8—1 ]

14l gl 1 1Logl gl 1
l"’o,o o1 o2 ¢0,n5_1] [¢1,0 P11 P12 ¢1,n}—ll

2 2 2 2 2 2 2 2 2 2 2 2
[¢0,0 ‘Po,l ¢0,n371] [‘Pl,o ‘Pl,l ¢1,n§71] [‘Pz,o ¢2,1 ¢2,n§71] [¢3,0¢3,1 ¢3,n§71}
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ¢y, with j =0, |V| = ng)

@ Partition the graph using the Fiedler vector ([)i,l

© Generate an orthonormal basis for each of the partitions = Laplacian
eigenvectors

Q@ Repeat...

0 0 0 0
[ $o0 %o $o,2 ¢0,n8—1 ]

14l gl 1 1Logl gl 1
l"’o,o o1 o2 ¢0,n5_1] [¢1,0 P11 P12 ¢1,n}—ll

2 2 2 2 2 2 2 2 2 2 2 2
[¢0,0 bo,1 ¢0,n371] [‘pl,o b1 "’1,n§71] [‘pz,o $31 ¢2,n§71] [‘Ps,o ¢35 ¢3,n§71}

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs IV 12/03/19 10/ 40



Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ¢y, with j =0, |V| = ng)

@ Partition the graph using the Fiedler vector ([)i,l

© Generate an orthonormal basis for each of the partitions = Laplacian
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Q@ Repeat...
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

@ Generate an orthonormal basis for the entire graph = Laplacian
eigenvectors (Notation is ¢y, with j =0, |V| = ng)
o . . b
Partition the graph using the Fiedler vector ¢
Generate an orthonormal basis for each of the partitions = Laplacian
eigenvectors
Repeat...
Select an orthonormal basis from this collection of orthonormal bases

00 00

0 0 0 0
[ $o0 %o $o,2 ¢0,n8—1 ]
11 4l 1 1Logl gl 1
l"’o,o o1 o2 ¢0,n5_1] [¢1,0 P11 P12 ¢1,n}—ll

2 2 2 2 2 2 2 2 2 2 2 2
[¢0,0 bo,1 ¢0,n371] [¢1,0 b1 ¢1,n%71] [‘pz,o $31 ¢2,n§71} l¢3‘0 ¢35 ¢3,n§71}

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs IV 12/03/19 10/ 40



Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

@ For an unweighted path graph, this exactly yields the Hierarchical
Block DCT Dictionary
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

@ For an unweighted path graph, this exactly yields the Hierarchical

Block DCT Dictionary

@ Similar to wavelet packet or local cosine dictionaries in that it
generates a dictionary of bases (i.e., an overcomplete system) from
which we can select a particular basis useful for the task at hand >
the best-basis algorithm, the local discriminant basis algorithm, ...
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Remarks
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Block DCT Dictionary

@ Similar to wavelet packet or local cosine dictionaries in that it
generates a dictionary of bases (i.e., an overcomplete system) from
which we can select a particular basis useful for the task at hand >
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@ A union of bases on disjoint subsets is obviously orthonormal
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

@ For an unweighted path graph, this exactly yields the Hierarchical

Block DCT Dictionary
@ Similar to wavelet packet or local cosine dictionaries in that it
generates a dictionary of bases (i.e., an overcomplete system) from
which we can select a particular basis useful for the task at hand =
the best-basis algorithm, the local discriminant basis algorithm, . ..
@ A union of bases on disjoint subsets is obviously orthonormal
o There are about 0(1.5”8) searchable ONBs in this basis dictionary

0 0 0 0
[ $0,0 $o,1 b0 0,n)-1 ]
1 1 1 1 1 1 1 1
[¢0,0 ¢0,1 ‘po,z "’0',,(1)_1] [‘pl,o ¢1,1 (p1,2 ‘pl,n%,l]
2 2 2 2 2 2 2 2
[¢0,0 ¢0,n3—1] [¢1v0 ¢1,n§—1] [¢2,0 ¢2,n§—1] [¢3’0 ¢3,n§—1]
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

@ For an unweighted path graph, this exactly yields the Hierarchical

Block DCT Dictionary
@ Similar to wavelet packet or local cosine dictionaries in that it
generates a dictionary of bases (i.e., an overcomplete system) from
which we can select a particular basis useful for the task at hand =
the best-basis algorithm, the local discriminant basis algorithm, . ..
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

@ For an unweighted path graph, this exactly yields the Hierarchical

Block DCT Dictionary
@ Similar to wavelet packet or local cosine dictionaries in that it
generates a dictionary of bases (i.e., an overcomplete system) from
which we can select a particular basis useful for the task at hand =
the best-basis algorithm, the local discriminant basis algorithm, . ..
@ A union of bases on disjoint subsets is obviously orthonormal
o There are about 0(1.5”8) searchable ONBs in this basis dictionary

[ P00 b5, $o2 g,ng—l ]
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[#ha = ][ ][ o 9 o B
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

@ For an unweighted path graph, this exactly yields the Hierarchical

Block DCT Dictionary
@ Similar to wavelet packet or local cosine dictionaries in that it
generates a dictionary of bases (i.e., an overcomplete system) from
which we can select a particular basis useful for the task at hand =
the best-basis algorithm, the local discriminant basis algorithm, . ..
@ A union of bases on disjoint subsets is obviously orthonormal
o There are about 0(1.5”8) searchable ONBs in this basis dictionary
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

@ For an unweighted path graph, this exactly yields the Hierarchical

Block DCT Dictionary
@ Similar to wavelet packet or local cosine dictionaries in that it
generates a dictionary of bases (i.e., an overcomplete system) from
which we can select a particular basis useful for the task at hand =
the best-basis algorithm, the local discriminant basis algorithm, . ..
@ A union of bases on disjoint subsets is obviously orthonormal
o There are about 0(1.5”8) searchable ONBs in this basis dictionary

[ P00 b5, $o2 g,ng—l ]
[‘pé,o ‘/’(1),1 ‘/’(1),2 ‘pé,né,l] [‘pi,o ¢i,l ‘p},z ‘/’},n%,l]
o = #han|[Bhe o Ben][Be  H|[h  9e
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Hierarchical Graph Laplacian Eigen Transform (HGLET)

Remarks

@ For an unweighted path graph, this exactly yields the Hierarchical

Block DCT Dictionary
@ Similar to wavelet packet or local cosine dictionaries in that it
generates a dictionary of bases (i.e., an overcomplete system) from
which we can select a particular basis useful for the task at hand =
the best-basis algorithm, the local discriminant basis algorithm, . ..
@ A union of bases on disjoint subsets is obviously orthonormal
o There are about 0(1.5”8) searchable ONBs in this basis dictionary

[ P00 b5, $o2 g,ng—l ]
[‘l’(l),o (p(%,l ‘p<1),2 ‘p(l)',,(l)_l] [‘Pi,o (Pi,l ‘pi,z ‘p},n},l]
o o e |[We o ][ | [#e e

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs IV 12/03/19 11 /40



HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs IV 12/03/19 12 /40



HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)

Level j=0,  Region k=0,  ¢),
0
.
©
o
w

-0.01
45
-0.02
44
-0.03
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)

Level j=0,  Region k=0, ¢,
5
w
©
o
"

-0.01

45 -0.02

44 -0.03

43 -0.04

-98 -96 -94 -92 -90 -88
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)

Level j=0,  Region k=0, ¢,

50

49 0.04
0.03
48
0.02

47 0.01

46 ~0.01

-0.02
45

-0.03

44 -0.04

-0.05

43
-98 -96 -94 -92 -90 -88
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)

Level j=1, Region k=0, ®o,1

50
0.06

49
0.04

48
0.02

47

46

-0.02
45

-0.04
44

-0.06
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)

Level j=1, Region k=0, b

50 0.06

49
0.04

48
0.02

47

46

-0.02
45

-0.04
44

-0.06
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)

Level j=1, Region k=0, b3
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)

Level j=2,  Region k=0,  ¢2,
o
wl
wl
ol
wl

-0.02

451
-0.04

445

-0.06

43
-98 -96 -94 -92 -90 -88
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)

Level j=2,  Region k=0,  ¢2,

50r
49
48t
a7t

46
-0.02

45t -0.04
-0.06
44t
-0.08

43
-98 -96 -94 -92 -90 -88
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)
Level j=2, Region k=1, il

50 0.08

49 0.06

48 0.04

0.02
47
46
-0.02

45 ~0.04

44 -0.06

-0.08

43 +
-98 -96 -94 -92 -90 -88
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)
Level j=2, Region k=1, %,2

50
49
48
47

46 -0.02

-0.04
45

-0.06

44 -0.08
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on

the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)
P01

Level j=3, Region k=0,
50
49
48
47
46
45
44
4—398 -96 -94 -92 -90 -88
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)

Level j=3,  Region k=0,  ¢3,

50
0.15

49
0.1

48
0.05

47
46
-0.05

45

44

-0.15
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on

the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)
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HGLET Basis Vectors on MN

Here we display some of the basis vectors generated by our HGLET scheme on
the MN road network. (Note: j =0 is the coarsest scale, j =14 is the finest.)
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Related Work

@ The following work also proposed a similar strategy to construct a
multiscale basis dictionary, i.e., local cosine dictionary on a graph:

o A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr.,
“Diffusion-driven multiscale analysis on manifolds and graphs: top-down and
bottom-up constructions,” in Wavelets XI (M. Papadakis et al. eds.), Proc.
SPIE 5914, Paper # 59141D, 2005.
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Related Work

@ The following work also proposed a similar strategy to construct a
multiscale basis dictionary, i.e., local cosine dictionary on a graph:

o A. D. Szlam, M. Maggioni, R. R. Coifman, and J. C. Bremer, Jr.,
“Diffusion-driven multiscale analysis on manifolds and graphs: top-down and
bottom-up constructions,” in Wavelets XI (M. Papadakis et al. eds.), Proc.
SPIE 5914, Paper # 59141D, 2005.

@ However, in our opinion, the generalization of the folding/unfolding
operations (originally used in the construction of the local cosine
transforms on a regular domain) to the graph setting must be done
cautiously. If one needs smoother and overlapping basis vectors, then
a better partitioning scheme other than the folding/unfolding
operations is called for.
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Computational Complexity: HGLET

Computational | Run Time
Complexity for MN?
HGLET (redundant) O(N3) 67 sec

]'Computations performed on a personal laptop (4.00 GB RAM, 2.26 GHz), N =2640 and

nnz (W) =6604.
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Hierarchical Graph Laplacian Eigen Transform (HGLET) [RRGENEEE AL ]
Qutline

© Hierarchical Graph Laplacian Eigen Transform (HGLET)
@ The Best-Basis Search Algorithm for a Multiscale Graph Basis
Dictionary
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UG L
The Best-Basis Algorithm

o Coifman and Wickerhauser (1992) developed the best-basis algorithm
as a means of selecting the basis from a dictionary of wavelet packets
that is “best” for approximation/compression.
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o Coifman and Wickerhauser (1992) developed the best-basis algorithm
as a means of selecting the basis from a dictionary of wavelet packets
that is “best” for approximation/compression.

@ We generalize this approach, developing and implementing an
algorithm for selecting the basis from the dictionary of HGLET bases
that is “best” for approximation and compression.

@ We require an appropriate cost functional _¢. For example:

n 1/p
Fx)=lxlp = (leilp) O<p=1
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The Best-Basis Algorithm

o Coifman and Wickerhauser (1992) developed the best-basis algorithm
as a means of selecting the basis from a dictionary of wavelet packets
that is “best” for approximation/compression.

@ We generalize this approach, developing and implementing an
algorithm for selecting the basis from the dictionary of HGLET bases
that is “best” for approximation and compression.

@ We require an appropriate cost functional _¢. For example:

n 1/p
Fx)=lxlp = (leilp) O<p=1
i=1

@ Another example cost functional is based on the Minimum Description
Length (MDL).
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Hierarchical Graph Laplacian Eigen Transform (HGLET)
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Hierarchical Graph Laplacian Eigen Transform (HGLET)
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According to cost functional _¢, this is the best basis for approximation.
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© Applications of HGLET
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© Applications of HGLET
@ Signal Denoising Experiments
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Original Signal vs. Noisy Signal

a9r

48

46

aar

L L L L 4 L . L .
o8 96 94 92 90

(a) Original signal: mutilated Gaussian (b) Noisy signal: SNR = 5dB, i.e.,
Noise energy ~0.3162 x Signal energy
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Denoising Algorithm

@ Construct the HGLET dictionaries on the noisy signal
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Denoising Algorithm

@ Construct the HGLET dictionaries on the noisy signal

@ Choose a particular basis either automatically (e.g., the best basis) or
manually (e.g., a basis at the fixed scale)
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Denoising Algorithm

@ Construct the HGLET dictionaries on the noisy signal

@ Choose a particular basis either automatically (e.g., the best basis) or
manually (e.g., a basis at the fixed scale)
© Soft-threshold the expansion coefficients, i.e.,
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el
Denoising Algorithm

@ Construct the HGLET dictionaries on the noisy signal

@ Choose a particular basis either automatically (e.g., the best basis) or

manually (e.g., a basis at the fixed scale)
© Soft-threshold the expansion coefficients, i.e.,

@ Sort the expansion coefficients in non-increasing order of magnitude
o Specify a magnitude threshold, T, via the “elbow” selection algorithm
o Soft-threshold the coefficients c:

. sign(c())- (e -T) if lc(D)I>T
esT=1,

otherwise

Note: keep all scaling coefficients intact
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TSR ERCI N S (6= B Signal Denoising Experiments

Preliminary Results (Ly,'s for Recursive Partitioning)

Transform SNR (dB)  Coefficients Kept (%)
HGLET BB (L) 10.15 24.32
HGLET j=6 (L) 14.01 3.49
HGLET j=0 () 11.06 1.33
HGLET BB (Lw) 4.85 95.33
HGLET j=6 (Liw) 11.79 4.48
HGLET j=0 (Lyw) 11.18 2.69
HGLET BB (Lsym) 5.65 30.84
HGLET j =6 (Lsym) 6.40 5.54
HGLET j=0 (Lsym) 5.60 3.15
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TSR ERCI N S (6= B Signal Denoising Experiments

Preliminary Results (Ly,'s for Recursive Partitioning)

05
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(a) Original: SNR = o (b) Noisy signal: SNR = 5 dB
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TSR ERCI N S (6= B Signal Denoising Experiments

Preliminary Results (Lyy's for Recursive Partitioning) ...

05
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(a) HGLET j=6(L): SNR = 14.01 dB (b) Residual of HGLET =6 (1): SNR = 14.01 dB
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TSR ERCI N S (6= B Signal Denoising Experiments

Preliminary Results (Ly's for Recursive Partitioning) . . .
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(a) Partition at j=6 (b) Residual of HGLET j=6 (L): SNR = 14.01 dB
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TSR ERCI N S (6= B Signal Denoising Experiments

Preliminary Results (Ly's for Recursive Partitioning) . . .

05

) £ E ) o0 ) o6 N o2 o0

(a) HGLET BB (L): SNR = 10.15 dB (b) Residual of HGLET BB (L): SNR = 10.15 dB

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs IV 12/03/19 26 /40



TSR ERCI N S (6= B Signal Denoising Experiments

Preliminary Results (Ly's for Recursive Partitioning) . . .
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(a) HGLET BB (L) Partition (b) Residual of HGLET BB (L): SNR = 10.15 dB

saito@math.ucdavis.edu (UC Davis) Wavelets on Graphs IV 12/03/19 27 /40



TSR ERCI N S (6= B Signal Denoising Experiments

Preliminary Results (Ly,'s for Recursive Partitioning)

e

T
/Sf'\?f—=7'\/>/\ -

= I/
T bl

(a) HGLET BB (Lsym): SNR = 5.65 dB
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(b) Residual of HGLET BB (Lsym)
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TSR ERCI N S (6= B Signal Denoising Experiments

Preliminary Results (Ly's for Recursive Partitioning) . . .

05

(a) HGLET BB (Lsym) Partition (b) Residual of HGLET BB (Lsym): SNR = 5.65 dB
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TSR ERCI N S (6= B Signal Denoising Experiments

Observations

@ Overall, the bases at the fixed level j =6 performed best for this
dataset whereas the best bases performed relatively poor.
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dataset whereas the best bases performed relatively poor.

@ This is because at j =6 the partition turned out to be just right for
removing noise: small enough to capture details, but large enough to
drown out noise.
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Observations

@ Overall, the bases at the fixed level j =6 performed best for this
dataset whereas the best bases performed relatively poor.

@ This is because at j =6 the partition turned out to be just right for
removing noise: small enough to capture details, but large enough to
drown out noise.

@ The best bases with the sparsity criterion with #%! norm seem to have
adjusted to noises.

@ Results were not overly sensitive between the recursive partitioning
based on the Fiedler vectors of L matrices and L;,, matrices.
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TSR ERCI N S (6= B Signal Denoising Experiments

Observations

@ Overall, the bases at the fixed level j =6 performed best for this
dataset whereas the best bases performed relatively poor.

@ This is because at j =6 the partition turned out to be just right for
removing noise: small enough to capture details, but large enough to
drown out noise.

@ The best bases with the sparsity criterion with #%! norm seem to have
adjusted to noises.

@ Results were not overly sensitive between the recursive partitioning
based on the Fiedler vectors of L matrices and L;,, matrices.

@ We also truncated this graph to have 2!! = 2048 vertices, and denoised
the data using the standard transforms such as the Haar, Symmlet,
and BDCT by ignoring the graph structure and viewing them as
samples on the 1D regular lattice. The resulting SNR values range
from 5.01 dB to 6.98 dB, i.e., much worse than the graph-based
denoising methods in general.
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AVBIE NI N [N B Simultaneous Segmentation & Denoising of 1-D Signals
Qutline

© Applications of HGLET

@ Simultaneous Segmentation & Denoising of 1-D Signals
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AVBIE NI N [N B Simultaneous Segmentation & Denoising of 1-D Signals

Motivation

@ Thanks to the versatility of graphs, graph-based techniques have been
used to tackle classical problems, e.g., the nonlocal means algorithm
for image denoising can be viewed as a graph-based technique.
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AT B ERCT NS (M B Simultaneous Segmentation & Denoising of 1-D Signals

Motivation

@ Thanks to the versatility of graphs, graph-based techniques have been
used to tackle classical problems, e.g., the nonlocal means algorithm
for image denoising can be viewed as a graph-based technique.

@ Here, we demonstrate the versatility of our graph methods by applying
the HGLET and hybrid best-basis algorithm to the problem of
denoising and segmenting a 1-D signal sampled on a regular lattice
into meaningful parts.
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Applications of HGLET

Simultaneous Segmentation & Denoising of 1-D Signals

Simply put, the goal is to partition a given 1-D signal into segments based
on the characteristics of the signal, which may help interpretation, analysis,

compression, etc.

25

2|

15]

b

05

O )

5 200 250
00

o
(a) Good

;
.
;

A1\ \/H\

) 50 100 50 2

&

250

(c) Bad — too many segments

1
05’
0|

150 200 250

50

100

(b) Bad — too few segments

1
05 ’
o

)

50

100

150

200 250

(d) Bad — segmentation lines are poorly placed

saito@math.ucdavis.edu (UC Davis)

Wavelets on Graphs IV

12/03/19

33 /40



AVBIE NI N [N B Simultaneous Segmentation & Denoising of 1-D Signals

Method

We view a 1-D classical signal as signal on an unweighted path graph and
proceed as follows.

Iterate until the best-basis segmentation converges:
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Method

We view a 1-D classical signal as signal on an unweighted path graph and
proceed as follows.
Iterate until the best-basis segmentation converges:
© Recursively partition the graph: Construct a recursive
bipartitioning by minimizing NCut (without using the Fiedler vectors).
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Method

We view a 1-D classical signal as signal on an unweighted path graph and
proceed as follows.

Iterate until the best-basis segmentation converges:
© Recursively partition the graph: Construct a recursive
bipartitioning by minimizing NCut (without using the Fiedler vectors).
@ Perform the 3 HGLET transforms: Use the eigenvectors of L, Ly,

and Lgym of the unweighted path graph, i.e., three types of the DCTs
(no eigenvector computation necessary).
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Method

We view a 1-D classical signal as signal on an unweighted path graph and
proceed as follows.

Iterate until the best-basis segmentation converges:

© Recursively partition the graph: Construct a recursive
bipartitioning by minimizing NCut (without using the Fiedler vectors).

@ Perform the 3 HGLET transforms: Use the eigenvectors of L, Ly,
and Lgym of the unweighted path graph, i.e., three types of the DCTs
(no eigenvector computation necessary).

© Find the hybrid best basis: Use the MDL cost functional to search
among the coefficients from the 3 HGLET variations.
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AT B ERCT NS (M B Simultaneous Segmentation & Denoising of 1-D Signals
Method

We view a 1-D classical signal as signal on an unweighted path graph and
proceed as follows.

Iterate until the best-basis segmentation converges:

© Recursively partition the graph: Construct a recursive
bipartitioning by minimizing NCut (without using the Fiedler vectors).

@ Perform the 3 HGLET transforms: Use the eigenvectors of L, Ly,
and Lgym of the unweighted path graph, i.e., three types of the DCTs
(no eigenvector computation necessary).

© Find the hybrid best basis: Use the MDL cost functional to search
among the coefficients from the 3 HGLET variations.

@ Modify the graph’s edge weights: If the two adjacent segments in
the resulting best basis are represented by the same HGLET
transform, then we double the weight of the edge joining them and
halve the weights of its two neighboring edges.
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AT B ERCT NS (M B Simultaneous Segmentation & Denoising of 1-D Signals
Method

We view a 1-D classical signal as signal on an unweighted path graph and
proceed as follows.

Iterate until the best-basis segmentation converges:

© Recursively partition the graph: Construct a recursive
bipartitioning by minimizing NCut (without using the Fiedler vectors).

@ Perform the 3 HGLET transforms: Use the eigenvectors of L, Ly,
and Lgym of the unweighted path graph, i.e., three types of the DCTs
(no eigenvector computation necessary).

© Find the hybrid best basis: Use the MDL cost functional to search
among the coefficients from the 3 HGLET variations.

@ Modify the graph’s edge weights: If the two adjacent segments in
the resulting best basis are represented by the same HGLET
transform, then we double the weight of the edge joining them and
halve the weights of its two neighboring edges.

Post-process: the segments of the final best basis and reconstruct the
denoised signal from the quantized coefficients.
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Simultaneous Segmentation & Denoising of 1-D Signals
Minimum Description Length (MDL)

MDL principle: given 2 or more models for representing a signal, choose
the model that allows us to reconstruct the signal using the least amount
of bits.

= Need to specify the model, its parameters, and the expansion
coefficients of the signal.

Our MDL costs:
@ Specify the segments f; of the signal f

@ Specify the transform for each segment (HGLET L, HGLET Ly, or
HGLET Leym)

© The quantization precision §; =27k

@ The quantized expansion coefficients

© The quantized noise 6% (or error, if there is no noise in f;)

@ The codelength of f; given (1)-(5)
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AVBIE NI N [N B Simultaneous Segmentation & Denoising of 1-D Signals

Results
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(b) "Doppler” (n=257, SNR =40 dB) (d) “Plece—ReguIar" (n =1021, SNR =20 dB)

Figure: HGLET L, HGLET L., and HGLET Lsym segments.
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Simultaneous Segmentation & Denoising of 1-D Signals
A Real Signal Example
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Figure: Gamma-ray log from North Sea subsurface formations. Az = 6inches.
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Simultaneous Segmentation and Denoising
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(a) “Blocks” (n=2048, SNR =11.95 dB) (c) “Piece-Regular” (n=1021, SNR =20 dB)
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(b) Denoised (a) (n=2048, SNR =21.60 dB)  (d) Denoised (c) (n=1021, SNR =22.82 dB)

Figure: HGLET L, HGLET L, and HGLET Lgy, segments.
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Discussion

Why does the MDL perform well for this task?

© The MDL seeks an efficient way to represent the signal = dissimilar
regions are more efficiently represented separately than together
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Discussion

Why does the MDL perform well for this task?

© The MDL seeks an efficient way to represent the signal = dissimilar
regions are more efficiently represented separately than together

@ Partitions have a cost, and so regions will be merged unless keeping
them separate offers a savings in cost that warrants the extra cost of
the partition
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Discussion

What do we learn from this
w I particular example?

“ @ Our method is versatile in
— that it is compatible with
signals of arbitrary length
’/m L MM AL L = signals whose length are

(e) “Puece—ReguIar (n=1024, =200 dB) non-dyadic and even prime
are perfectly fine

@ Even with the addition of

“ significant noise and
changing the length from
dyadic to prime, the resulting
partitions look similar

500 600 700 800 900

(d) “Pleée Rgezgular” (n=1021, SNR 220 dB)
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