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Motivations

Why to Use Fast Multipole Method?

e The integral kernel which commute with the Laplacian operator is

1
k(x,y) = _ﬁlog Hx _yH27 X,y € Rz'
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Motivations

Why to Use Fast Multipole Method?

e The integral kernel which commute with the Laplacian operator is

1
k(x,y) = —5—loglle =yl x.y € R?.

¢ The eigenvalue problem

/Q k(x.y)60) dy = pdlx), x € Q C R
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Motivations

Why to Use Fast Multipole Method?

e The integral kernel which commute with the Laplacian operator is

1
k(x,y) = —5—loglle =yl x.y € R?.

¢ The eigenvalue problem

/Q k(x.y)60) dy = pdlx), x € Q C R

¢ In terms of matrix,

Ko = pg,

1 .

where K;; = —5- log ||x; — x;|2, and ¢ can be considered as a
vy

vector of charge strengths at points x;, i = 1,2,....
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Motivations ...

Why to Use Fast Multipole Method? ...

o Eigenvalue problem K¢ = u¢ needs a fast routine to compute
matrix vector product.
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Motivations ...

Why to Use Fast Multipole Method? ...

o Eigenvalue problem K¢ = u¢ needs a fast routine to compute
matrix vector product.

e FMM supplies a fast approximation algorithm. Its accuracy is
guaranteed by analytic consideration.

xdxue@math.ucdavis.edu (UC Davis) Original FMM and Its Matrix Version May 25, 2007 5/47



Motivations ...

Why to Use Fast Multipole Method? ...

o Eigenvalue problem K¢ = u¢ needs a fast routine to compute
matrix vector product.

e FMM supplies a fast approximation algorithm. Its accuracy is
guaranteed by analytic consideration.

o FMM is insensitive to the distribution of the sampling data.
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® Potential
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log ||x — y||> and Potential

Definition (Potential)

Suppose that a point charge of unit strength is located at point
(x0,y0) = xo € R2. Then, for any x = (x,y) € R? with x # x, the
potential due to this charge is described by

P (¥,y) = —log([lx —x0]|2)- (1)
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log ||x — y||> and Potential

Definition (Potential)

Suppose that a point charge of unit strength is located at point
(x0,y0) = xo € R2. Then, for any x = (x,y) € R? with x # x, the
potential due to this charge is described by

P (¥,y) = —log([lx —x0]|2)- (1)

Letz =x+1y, zo = x0 +1iyo € C. We have ¢,,(x) = Re(—log(z — zp)).
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log ||x — y||> and Potential

Definition (Potential)

Suppose that a point charge of unit strength is located at point
(x0,y0) = xo € R2. Then, for any x = (x,y) € R? with x # x, the
potential due to this charge is described by

P (¥,y) = —log([lx —x0]|2)- (1)

which is valid for any w € C with |w| < 1.
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log ||x — y||.» and Potential ...

Lemma

Let a point charge of strength q be located at zy. Then for any z such

_ toa(e—z0) — a [tozz = S~ L (@)
a(2) = alog(z zo>—q(1gz ;k(z)> @)

k
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log ||x — y||.» and Potential ...

Lemma

Let a point charge of strength q be located at zy. Then for any z such

¢z (2) = qlog(z —z0) = ¢q (logz—il (Z—O)k>- (@)
0 —k\z J

Given a set of particles S = {z1,2,...,z»} and their strengths
{q1, 42, ,qm}, then the potential at z due to the set S will be

$(2) = 6,(z) =D aqilog(z —z).
i=1 i=1
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©® Multipole Expansion
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Multipole Expansion

Theorem (Multipole Expansion)

Suppose that m charges of strengths
{g;, i=1,...,m} are located at points 2
{zi, i=1,...,m}, with |z;| < r. Then for
any z with |z| > r, the potential ¢(z)
induced by the charges is given by

$(z) = Qlog(z +Zk, (3) 0

where

Q_Zm ) d m Qizf‘(
=Yg and ax =371, A
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Multipole Expansion ...

Error Bound of Multipole Expansion
Forany p > 1,

p

< const - , (4)

Z

14
‘¢(Z) ~Qlog(x) - > %
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Multipole Expansion ...

Error Bound of Multipole Expansion

Forany p > 1,

Ak

Z

< const -

; (4)

Z

‘(b() Qlog(z)

MM“

Distant Parameter ¢
Z
r

l> |
|
A\

Letc = = 2, then the error bound will be

p

‘qb( ~ Qlog(z) Z %

k
- Z

1 P
< const - (§> , (5)

and if we want to obtain the a relative precision ¢, p must be of the order
—log, ().

v
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@ A 2D domain and Quadtree
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A 2D domain and Quadtiree

level 0 level 1

level 2 level 3

Quadtree structure induced by a uniform subdivision of a square
domain.

xdxue@math.ucdavis.edu (UC Davis) Original FMM and Its Matrix Version May 25, 2007 13/47



A 2D Domain and Quadtree ...

Definition (Near Neighbors)

Two boxes are said to be near neighbors if they are at the same
refinement level and share a boundary point. A box is a near neighbor
of itself.
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A 2D Domain and Quadtree ...

Definition (Well Separated)

Two boxes are said to be well separated if they are at the same
refinement level and are not near neighbors.
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A 2D Domain and Quadtree ...

Definition (Interaction List)

Each box i has its own interaction list, consisting of the children of
the near neighbors of i’s parent which are well separated from box i.
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A 2D Domain and Quadtree ...

Hierarchical Structure
Notice that the blue boxes in are the interaction list of i's parent.




@ The O(NlogN) Algorithm
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Interaction List and Multipole Expansion

Application of the Theorem of Multipole Expansion

For two boxes J and K, they are well separated and the distance pa-
rameter ¢ > 2, which allows us to use truncated multipole expansion.
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ical Algorithm
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Hierarchical Algorithm
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Hierarchical Algorithm

[ L[]
[

L]
L]
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Hierarchical Algorithm

Computation Cost: O(NlogN)

Mn

1 P
#(z) — Qlog(z) < const - (2) ,
k=1

To prepare the coefficients {a}/_,, each particle will be used p times.
Therefore, for each level, the computation cost is about O(Np). And the
total number of levels will be approximately log N.

v
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O FMM: The O(N) Method
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Translation of Multipole Expansion

Theorem (Translation of a multipole expansion)

Suppose that
¢(z) = aglog(z — 20) +Z

(6)

z—zo)

is a multipole expansion of the potential due to a set of m charges of
strength q1, q2, - - ., qm, all of which are located inside the circle D of
radius R with center at zy. Then for z outside the circle D, of radius
(R + |z0|) and center at the origin,

QS()_aOlOg +Z 17 (7)
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Translation of Multipole Expansion ...

Translation from the Children to the Parent

Fig.(a) shows that the multipole expansion about child disk D can be
translated to the multipole expansion about the parent disk D;. Fig.(b)
shows the similar behavior of the quadtree structure.
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Translation of Multipole Expansion ...

Error Bound for Translation of Multipole Expansion

The translation of the multipole expansion

¢(z) = aolog(z — z0) +27)k = ¢(z) = aplog(z) Z

Z_ZO

1 l
[—1
where b; = _aoTzo +) wzy k(k } 1). Furthermore, for any p > 1,
k=1
A p+1
B |zo| + R
z

|zo| + R
z

(8)

xdxue@math.ucdavis.edu (UC Davis) Original FMM and Its Matrix Version May 25, 2007 24 /47



Conversion of a Multipole Expansion (MP) into a Local

Expansion (LP)

Theorem (Multipole expansion =-
local expansion)

Suppose that m charges are located
inside the circle D, with radius R and
center at z, and that |zo| > (w + 1)R with
w > 1. Then the corresponding multipole
expansion (6) converges inside the circle
D, of radius R center at origin. Inside D5,

$z) =Y bi-7, ©)
=0

v
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Conversionofa MP intoa LP ...

Theorem Continued . ..

The conversion of the MP into a LP:

¢(z) = aolog(z — zo) +Zm = ¢(Z)=Zbl'zl7
=0

Furthermore, an error bound for the truncated series is given by

p 1 p+1
‘qﬁ(z) —Zbl-z’ < const - <;) , (10)

=0
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Conversionofa MP intoa LP ...

Conversion of Several MPs to a LP

Fig.(a) shows that the multipole expansion about disk D; can be con-
verted to a local expansion about the disk D,. Fig.(b) shows the similar
behavior of the quadtree structure.
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Translation of Local Expansion

For any complex zy, z, and {ax}, k =0,1,2,... . n,

Z ax(z — 20) = Z (Z ak (?) (—z())k_l> Z. (11)
k=0

k=l
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FMM V.S. Nlog N Algorithm

Nlog N Algorithm

m [ L[]
[
L]

L
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FMM V.S. Nlog N Algorithm

FMM Can Improve N log N Algorithm
¢ Conversion of the multipole expansions to a local expansion.

¢ Translation of a local expansion from parent box to children boxes.

a0
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FMM V.S. Nlog N Algorithm

FMM Can Improve N log N Algorithm
¢ Conversion of the multipole expansions to a local expansion.

¢ Translation of a local expansion from parent box to children boxes.

a0

AND FMM CAN SAVE MORE!!!

xdxue@math.ucdavis.edu (UC Davis) Original FMM and Its Matrix Version May 25, 2007 29/47



FMM V.S. Nlog N Algorithm
Save More by Using Translation of Multipole Expansion

o Start with finest level, translate the multipole expansion centered
at a child box into a multipole expansion centered at its parent box
in the coarser level.

¢ Add the four translated expansions together to get the multipole
expansion for the parent box.
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Decomposition of the Domain

Notice: Pf’s is the potential (Local Expansion) centered around x, due
to the particles set S.
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Decomposition of the Domain

Notice: Pf’s is the potential (Local Expansion) centered around x, due
to the particles set S.
o Pt the potential due to the

L

particles inside of i's near neighbors.

LI
L]

L]
=
LI
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Decomposition of the Domain

Notice: Pf’s is the potential (Local Expansion) centered around x, due
to the particles set S.
o Pt the potential due to the

i, nn

particles inside of i's near neighbors.

e P!, :the potential due to the

i, list*

particles inside of i’s interaction list.
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Decomposition of the Domain

Notice: P¢ s Is the potential (Local Expansion) centered around x, due
to the partlcles set S.

o Pt the potential due to the

1, nn.

partlcles inside of i’s near neighbors.

o P, the potential due to the

particles inside of i’s interaction list.

, ou- the potential due to the
partlcles outside of i’s parent’s near
neighbors, which can be computed
recursively.
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Decomposition of the Domain

Notice: Pf’s is the potential (Local Expansion) centered around x, due
to the particles set S.

P! . the potential due to the

L

particles inside of i’s near neighbors.

P; /“, : the potential due to the
particles inside of i’s interaction list.

e P!, the potential due to the
partlcles outside of i’s parent’s near
neighbors, which can be computed

recursively.

e P{7.,jis the parent box of box i.
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Decomposition of the Domain

Notice: Pf’s is the potential (Local Expansion) centered around x, due
to the particles set S.

P! . the potential due to the

L

particles inside of i’s near neighbors.

P; /“, : the potential due to the
particles inside of i’s interaction list.

e P!, the potential due to the
partlcles outside of i’s parent’s near
neighbors, which can be computed

recursively.

e P{7.,jis the parent box of box i.

° Pf ,f‘, k is the grandparent box of box
l.
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FMM Algorithm

e Given N particles distributed in a square domain.
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FMM Algorithm

Initialization

e Given N particles distributed in a square domain.
e Construct a quadtree with L + 1 levels.

. . .
' . e’ ' . . * . v O

. o* . * o f
. . o o P hd o o000

° ° L . L o

. . p . d L]
) ) °
level 0 level 1 level 2
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FMM Algorithm

Initialization

e Given N particles distributed in a square domain.
e Construct a quadtree with L + 1 levels.

e The indices of levels will be 0,1,2,...,L — 1, L.
level 0 level 1 level 2

May 25, 2007
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FMM Algorithm

Initialization

Given N particles distributed in a square domain.

Construct a quadtree with L + 1 levels.

The indices of levels willbe 0,1,2,...,L —1,L.

Assume that, on average, s particles per box in the finest level.

. . .
' . e’ ' . . * . v O

. o* . * o f
. . o o P hd o o000

° ° L . L o

. . p . d L]
) ) °
level 0 level 1 level 2
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FMM Algorithm

Initialization

e Given N particles distributed in a square domain.

e Construct a quadtree with L + 1 levels.

e The indices of levels will be 0,1,2,...,L — 1, L.

e Assume that, on average, s particles per box in the finest level.
o 4L .5 =N, or equivalently, L = log,(N/s).

level 0 level 1 level 2

31/47
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FMM algorithm ...

o Start with the finest level, construct multipole expansions for each
box.

 /

"a-l '\: K ']5‘:
RN
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FMM algorithm ...

o Start with the finest level, construct multipole expansions for each
box.

o Translate the multipole expansion to coarser levels.

 /

Bt TS

R
D N\
S T T o
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FMM algorithm ...

Upward Pass

o Start with the finest level, construct multipole expansions for each
box.

o Translate the multipole expansion to coarser levels.

e The multipole expansion about every box in the coarser levels will
be constructed by the merging procedure.

 /

3 E ]
o o
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FMM Algorithm . ..

o Start with the coarsest level, in fact, level 2, where each box k has
its interaction list. Construct the local expansion P ;.
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FMM Algorithm . ..

o Start with the coarsest level, in fact, level 2, where each box k has
its interaction list. Construct the local expansion P ;.

¢ Repeat this for every finer level. For simplicity, assume finest level
L=4.
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FMM Algorithm . ..

Downward Pass

o Start with the coarsest level, in fact, level 2, where each box k has
its interaction list. Construct the local expansion P ;.

¢ Repeat this for every finer level. For simplicity, assume finest level
L=4.

e Let box i at level 4 be the target. We already have Pj"h.st, Pﬁlm,
Pilm, where j is the parent of i, and k is the parent of .
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FMM Algorithm . ..

o Start with the coarsest level, in fact, level 2, where each box k has
its interaction list. Construct the local expansion P ;.

¢ Repeat this for every finer level. For simplicity, assume finest level
L=4.

e Let box i at level 4 be the target. We already have Pj"h.st, Pi,ist,
Pilm, where j is the parent of i, and k is the parent of .

o Start with the coarsest level again, translate the local expansion
from the parent to its children.
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FMM Algorithm . ..

o Start with the coarsest level, in fact, level 2, where each box k has
its interaction list. Construct the local expansion P ;.

Repeat this for every finer level. For simplicity, assume finest level
L=4.

Let box i at level 4 be the target. We already have P}, , P

idist> £ list
Pilm, where j is the parent of i, and & is the parent of ;.

Start with the coarsest level again, translate the local expansion
from the parent to its children.

2 3
Pk,list = Pj,out
3 3
Pj,out + Pj,list = P?,out
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FMM Algorithm . ..

o Start with the coarsest level, in fact, level 2, where each box k has
its interaction list. Construct the local expansion P ;.

Repeat this for every finer level. For simplicity, assume finest level
L=4.

Let box i at level 4 be the target. We already have P}, , P

idist> £ list
Pilm, where j is the parent of i, and & is the parent of ;.

Start with the coarsest level again, translate the local expansion
from the parent to its children.

2 3
Pk,list = Pj,out
3 3
Pj,out + Pj,list = P?,out

e Finally, P}, + P!, + P}, will be the total potential centered at i

due to all the other particles.
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FMM Algorithm : Downward Pass ...

- T =

2 3
® Piiig = P

j,out*
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Computation Cost of FMM

Cost of Upward Pass

¢ In the finest level, to form the multipole expansion centered at
each box, we need about Np operations, where p is the number of
terms in the multipole expansion.

e Then for the translations for the higher levels, we need about
(¥)p? operations, where s is the average number of particles in
each box of the finest level.

« Totally, cost of upward pass is Np + (¥)p?.
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Computation Cost of FMM

¢ To convert the multipole expansions about all boxes in the
interaction list of each box in an arbitrary level, we need about
27( )p* operations.

e Then for the translations from the parent to its children, we need
about (¥)p? operations.

¢ For the evaluation of a local expansion in the finest level and
computing potential directly from the near neighbor, we need
about Np and 9Ns respectively.

« Totally, cost of downward pass is 27(Y)p? + (¥)p? + Np + 9Ns.
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Computation Cost of FMM

Cost of Downward Pass
¢ To convert the multipole expansions about all boxes in the
interaction list of each box in an arbitrary level, we need about
27(¥)p? operations.

N

e Then for the translations from the parent to its children, we need
about (¥)p? operations.

¢ For the evaluation of a local expansion in the finest level and
computing potential directly from the near neighbor, we need
about Np and 9Ns respectively.

« Totally, cost of downward pass is 27(¥)p? + (¥)p? + Np + 9Ns.

Cost of FMM
Cost = 2Np + 29 (¥) p? + 9Ns, where if s = p, the cost will be 40Np.

v
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@ Matrix Version of FMM
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Matrix Vector Product

Given a set of N particles located at N distinct points, i.e.,
X = {x1,x2,...,xy} C R% and a set of reals {gq1,9>,...,q9n}, Where g;
is the charge strength of the particle located at x;.
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Matrix Vector Product

Given a set of N particles located at N distinct points, i.e.,
X = {x1,x2,...,xy} C R% and a set of reals {gq1,9>,...,q9n}, Where g;
is the charge strength of the particle located at x;.

We want to compute the potential for each particle at x; due to the rest
of particles located at {x;}}’, ;.

N
o)=Y glogllx; —xil|.

=1
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Matrix Vector Product

Given a set of N particles located at N distinct points, i.e.,
X = {x1,x2,...,xy} C R% and a set of reals {gq1,9>,...,q9n}, Where g;
is the charge strength of the particle located at x;.

We want to compute the potential for each particle at x; due to the rest
of particles located at {x;}}’, ;.

N
o)=Y glogllx; —xil|.

=Tt

P(x1) 0 log|lx; —xaf| --- log|lx; — x| q
P(x2) log [[x; — x2| 0 o log|lxy — x| 7
P(xn) log|jx; —xy|| log|}xs —xn|| --- 0 qn

P
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Structure of matrix P
e The sequence of {x;,x,,...,xy} determine the structure of P.
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Structure of matrix P
e The sequence of {x;,x,,...,xy} determine the structure of P.

o The well separated groups of points are the key to the FMM.

level 2 level 3

B interaction list of box i

: near neighbors of box i

Figure: Quadtree structure induced by a uniform subdivision of a square
domain.
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Structure of matrix P
e The sequence of {x;,x,,...,xy} determine the structure of P.

o The well separated groups of points are the key to the FMM.

¢ An indexing scheme for the hierarchical refinement structure is
needed.

level 2 level 3

B interaction list of box i

: near neighbors of box i

Figure: Quadtree structure induced by a uniform subdivision of a square
domain.
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Quadtree and Indexing

level 0 level 1

level 2 level 3

Figure: Quadtree structure induced by a uniform subdivision of a square
domain.
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Quadtree and Indexing

40“’1 01
0 1 273213

ol1 o]
2 3 273|273
level 1 level 2
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Quadtree and Indexing

40&1 01
0 1 273213

ol1 o]
2 3 273|273
level 1 level 2

o [ = (11,12,...,1[),Where1j:O,1,2,3,Withj: 1,2,...,¢.
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Quadtree and Indexing

40&1 01
0 1 273213

ol1 o]
2 3 273|273
level 1 level 2

o [ = (11,12,...,1[), Wherelj =0,1,2,3, Wlth] =1,2,...,/0
¢
* Introduce a new index: D =Y 471,
=1
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e IT=(L,h,...,1I;),where ; =0,1,2,3, withj = 1,2, ..., (.
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e I =(I,0,..., I;),where [; = 0,1,2,3, withj =1,2,...,£.

¢
* Introduce a new index: D =Y 4“7 I,
j=1

xdxue@math.ucdavis.edu (UC Davis) Original FMM and Its Matrix Version May 25, 2007 40/ 47



Low Rank Sub Matrices of P

819 |12

13

10%11 14|

15
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Low Rank Sub Matrices of P

0 1 2 3 4 56 7 89 101 12131415
llojo|@|®
l|lo|l0o@®|®|® [
/0000 [ 2N J
;3000 0|0 [ ] [ 2N J [ ]
0 1 4 5 4 [ J o000 0
ﬂ} 5 olejo|e
0 [ o000 0 [ ] (JKJ
2 3 6 7 7 o000 (JK )
8 [ JKJ o0 00
9 [ JK ] [ o 0|00 0 [ J
1 o000 0 [ J
10 11 14‘ 15 1 ° ole| [o] [o]o]0]0]0
13 [ JKJ o0 00
14 [ ] o000 0O
15 [ A 2K BN J
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Low Rank Sub Matrices of P

001 2 3 4 56 7 89101 12131415
l|lojo|@|o®
1| olojo|jojeo| |@®
10000 oo
j|ojo|eo0oj®| (@ |@f® °
0 1 4 5 4 ° ojleoo|o|0
ﬂ} 5 eolo|o|e
6 ° ojlejojojo |o 0
2 3 6 7 7 eoleo|0|0 10
8 N0 oo|ole
9 N0 ° o o/ojojo| |0
8|9 |12 13 0 ololele
1 o o/o/ojo| |0
I 1 ° olo| o] |o|o]e|e]e
10| 11 | 14| 15 " oo oTolole
14 o (ojo|o(0|0
15 oloo|e
The blank blocks are low rank matrices!
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Matrix Vector Product

0 1 23 4 56 789 101 12131415
llejoo|® Ll
1 o[o[e]e]e] [o L
1|e|e|e]e oo
i|o|e[e[e]e] (o] [oe ° [
i |o| [o]e]0]0]® ]
s LI Ll
i| [o] [o|e]e]e]e] [® ole
7 olejo]e oo [l
8 oo o[e[0]e ]
9 ole o [o|o]e]ee] o
10 o[eo]e [l
1 o[o[o/o[e| |o [
1 ° ole| o] [oe]e]e]e ]
13 ole ole]o]e
14 o [olofe|e]e [l
15 ejefole] []
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1 1 I
- D000

.. COERERODO0

5 - ° oo (o] [e]e[e]0]e

S5 — oojoo[e] [o

d - o o000

m e o0 o (ojeojeojo[e] |o

P - ole LI K K )

= - NN e[s[s s mEEN - WN

S MRS RREERRRRRRRS

..m - Y LI IE)

D - o|e[ele[e] [o] [eo]e °

o [l meem--mem—

W =[e]e[efe] [ [ || _0_1_1_3_4_5_

©

=

42 /47
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Matrix Vector Product

Computation Cost
[IERVARKER IR Y]

012345678910

I [o[o]o]® ] e Given A: m x n. The
1e]e|e]e]e] |o]H .

D00 He[e cost of A - v is mn.
joje[o[e]o] [o[le]e D

i |olle[e[o]0]0 ] e lfA=U-S-V,where S
2~,,:::: T ele . is of size p x p, then the
T[] W [elelele o[e computation cost of

8 ole He/e[e]e .

UEEDOD o[li[e[e]e[e[e] |o ] U-S-V-vis
:10: E ::::o 0 i p(m+n+p).
2 | He oo [o] [e]efefele| [] ol
s | M o@ olefefe| ]
ul | (M o [o]e[efe]e| []
HEN | ele[efe] []
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Column Bases and Row Bases

e B, 7 is the block matrix in red.

001234 56789100121 YIS
i [e]e]o]e

1|e]o[e[e[e] [@

1|ele]e]e Hele
j[e|ele[ele] (o |o]e °

4| Jo]| |o|e]e]e]e®

5 olelele

6| o] |o|o|o|e|o| |@ ole

7 ole/ole oo

$ ole o[e[efe

9 0 o |o/o|ejoje] |e
1 ole/ofe

1 ole[e[ofe] |0
1 ° olo| (o |o|e|eo]e]e
3 ole olejo|e
n o |oejo|o|e
15 olojole
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Column Bases and Row Bases

e B, 7 is the block matrix in red.

00123 456789100121 WIS .
llo|lol@le® ‘:‘ o We Want 3277 - U2 N S277 N ‘/71.
1]e]e][e[e[e] [o]H

1{e[o/o/o NN« INENNN

200000OE0 B0 .

i| (o] |oloje]e]®

5 olele]e

6] [o] [o]o[e[e[e] |® oo

7 oleje]e oo

8 ole Hie|e|e]e

9 ole o[ll[e[e[e[e]e| |o

10 He|eo|e]e

1 [Hje|e/e[e[e] [o

1 ° o[o[ [0 [o]e]e]e]e

13 oo oleje]e

1 o] [o]e[e]e]e

15 olefe]e
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Column Bases and Row Bases

e B, 7 is the block matrix in red.

00123 456789101 12131415 -
| [o]e]e® ] (] WewantBZJ = U2‘SQ77' V7I
1]e]e][e[e[e] [o]H

efee/o NN+ HENNEN e U, will capture the column
i':'::,:" ° bases of the blue blocks.

5 oleje]e

6] (o] [o]o[e][o][o] [® oo

7 olefe]e oo

8 ole Hie|e|e]e

9 ole o[ll[e[e[e[e]e| |o

10 He|eo|e]e

1 [ e[e[e[e]e] e

1 ° olo| [o] [o]e]0]e]e

3 oo ole|e]e

1 o] [e]e]e]e]e

I 0000
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Column Bases and Row Bases

B» 7 is the block matrix in red.

001234567 89101 1213115 .
I [o]o]o]® ] ° WewantBZJ = U2‘SQ77' V7I
1o]e|e[ee] [o]H

1{elele[c NN - HENNNE e U, will capture the column
i':'::.:" ° bases of the blue blocks.

5 elooe .

6| [o] [o]o]o]e[e] |e ole e V; will capture the row bases
ST Telel T T Wislstelel T of the green blocks.

9 ole o[ll[e[e[e[e]e| |o

10 He|eo|e]e

1 [Hje|e/e[e[e] [o

o ° oo o] [o]e]e]0]e

1 oo oloje]e

14 o [o]e[e|e]e

15 % ole|e]e
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Column Bases and Row Bases

B» 7 is the block matrix in red.

0123 4567 8900DRB YIS -
(R I ‘:‘ L4 We Want 3277 = U2 N 5277 ° ‘/71
1|e]e][ee[e] [o]H
2[o]o]e] o NNN e« MENEEN e U, will capture the column
j|{o[e]e]eje] [o[le]e °
‘[ JelMelele]® bases of the blue blocks.

5 W [ee]e )

6 Wele[e]e o e V; will capture the row bases
: e o of the green blocks.

9 ° ° T

10 [ ] ° B772 =U;- S772 : V2 .

1 ] °

1 ] olefe

13 ] olefe

1 ] olofe

15 [ ] olefe
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Column Bases and Row Bases

B» 7 is the block matrix in red.

0123 456 7 89 101 1213HKI5 .
llo0o|0o|® ‘:‘ [ We Want 3277 == U2 N 5277 * ‘/71
1|e]e][ee[e] [o]H
2[e[ee/o NN« HENNEN e U, will capture the column
j|{o[e]e]eje] [o[le]e °
‘[ JelMelele]® bases of the blue blocks.

5 W [ee]e )

6 Wele[e]e o e V; will capture the row bases
: e o of the green blocks.

9 o [ T

10 [ ] ° B772 =U;- S772 : V2 .

1 ] °

1 ] 000 °

3 T

y % olele By7=Us-S7-U;

15 [ ] olefe

Bia=1U;-83,-U;
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Low Rank Sub Matrices of P ......one more level
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Low Rank Sub Matrices of P ......one more level

012 3 4 56 7 89 101112131415

0
1
2
3
0 1 4 s[16 |17 | 20 ) 2 4
9 -
2 3 ﬂ\a 7 18 | 194122 | 23 5
810 ,12 1324 [ 257728 | 29 6
p4 o b 7
10 [ 10| 14| 15|26 |27 | 30| 31
32| 33| 36| 37|48 | 49 | 52| 53 8
Q9 1y 12
‘ O, 9
34 35,.’38 39 | 50 | 51,am54 |55
40 | abtaa | a5 | 56 | s7elle0 | 6l 10
1n 11 4 1= 1
1U I8 1 S
42 | 43| 46 | 47 | 8 | 59 | 62 | 63
12
13
14

—_—
wn
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S 6 7 8 9 10 11 12 13 14 15

W N = o

W
z
B

L

Aog = U - §0,4 : ff}-
Uy - Rop
Ui - Ro,1
Uy - Ry
Us - Ro3

Az7 = Us - §3,7 : 67T-
Uiz R0
Uiz R31

Uy =

Us =
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01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1 e
3 %Asn#z@p ﬁ
Up - Royp
S _ U -R
Aoa=U-Qoa-U;, where U= U; -Rg;
Us - Ry
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5 6 7 8 9 10 11 12 13 14 15

i

T

B

% As/

A0,4 = 170 . é0,4 . 174{, where 6() =

Uy -

Column Bases: U,.
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01 2 3 456 7 8 9 1011 1213 14 15
0
1 B
3 g [ [
Uy - Ro,0
~ o~ o~ ~ U -R
Aps=Up-Qoas- UZ, where Uy = Sl
Us - Ry
Us - Roj3
[ofefele] TTTTTTTITTITII [ [ [ [ [ [ [

Column Bases: U;.

xdxue@math.ucdavis.edu (UC Davis)

Original FMM and Its Matrix Version

May 25, 2007

46 /47



01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

1 B

3 %Asn#z@p ﬁ
Uy - Ro,0

S - ‘R
Aoy = Uy~ Qo4 U;, where U= Ui -Ro,
Us - Ry
Us - Roj3
[ofefele] TTTTTTTITTITII [ [ [ [ [ [ [ [ [ [ [ ]

[elefefele] T[T TTTTTTTI | | | | | | | | | | | |
[o]e[o[] mimumia | o] ] siasimusinsa |
[ele[e[e]e] o[ Jele] [ [e[ T ] | | | | | | | | | | | |

Column Bases: U-.
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01 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0
1 e
3 %Asn#z@p ﬁ
Up - Royp
S _ U -R
Aoa=U-Qoa-U;, where U= U; -Rg;
Us - Ry

geLeooecpcc g  c— ——(———(———(————(————(——— 1

Column Bases: Us.
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