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We introduce the graph theory for multiple reasons. Finstphs are very general.
They can be adapted to deal with numerous general situaimhgan represent
very complicated objects (e.g., high-dimensional datésg}s_, c R?). Graph
theory has been used in many different fields, such as clogtéand image seg-
mentation), classification, data mining, search engined, datistical learning
theory.

The following section is based on [1, Chap. 1] and [2].

1 Basics of the graph theory

1.1 A Series of Definitions and Notations

e A graph G consists of a set oferticesV and a set oédgesE connecting
some pairs of vertices ii. We writeG = (V, E).

e An edge connecting a vertex (or node¥ V to itself is called doop.

e Forzx,y € V, if there exist more than one edges connectirandy, then
they are calleanultiple edges



Figure 1: Directed Edge

A graph containing loops or multiple edges is callad@tiple graph, or a
multigraph . Otherwise, it is called aimple graph.

In this course, we shall only deal with simple graphs. So wiversay a
graph, we mean a simple graph.

If two distinct verticesr,y € V are connected by an edgec FE, thenx
andy are called theendpoints (or ends) ofe, andz andy are said to be
adjacent, written asz ~ y. In this situation, we also say thais incident
with z andy and that joins = andy.

Thedegree or valency, of a vertexz is the number of edges incident with
x, denoted as dég) or m(x).

For eachr € V, if m(x) is finite, then the grapty is called docally finite
graph. Howeverm..(G) 2 sup,y m(x) could be infinite. Afinite graph
G is one in which# (V) = |V| < co. Aninfinite graph is one in which
V| = 0.

If each edge it has a direction associated with it, then we call the gi@ph
adirected graph, or digraph. As in Figure 1¢ is calleddirected edge =
is called theail of e and the destination af, y, is called theneadof e. We
write e = [z, y], ande = [y, | for reverse direction. If there is no direction
associated with an edggjoining z, y, then we writee = (z,y) = (y, z).

Also we defineE 2 {a set of all directed edggs

For a givenz,y € V, a sequence = {vy,vs,...,v,41} Of vertices inlV/
is called apath connectingr andy if v; = z, v,41 = y, andv; ~ vy ~
...~ v, ~ v,11. We define thdength of a path ¢ is n in this case and
write ¢(c) = n.



For any two vertices i/, if there exists a path connecting them, such a
graphd is called aconnected graph

Thegraph distancebetween: andy is given by

d(z,y) 2 inf{¢(c) | cis a path connecting andy}.

Thediameter of a graphG is given by

diam(G) £ sup{d(z,y) | z,y € V}.

G isfinite <= diamG) < co.

We say two graphs arisomorphic if there exists a one-to-one correspon-
dence between the vertex sets such that if two vertices eneddy an edge
in one graph, the corresponding vertices are joined by am gdthe other
graph. In Figure 2(z;, G5 are isomorphic.
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Figure 2: Two graphs arisomor phic.

e A complete graphonn vertices, K, is a simple graph that has all possible
(’;) edges (i.e., every vertex is connected to every other Ver$®e Figure 3
for some examples.

o If all of the vertices of a graph G have the same degree, thendalied a
regular graph. Note thatk, is regular for alln = 2,3, . . ..

e A polygononn vertices,P,, is a finite connected graph that is regular of
degree 2. See Figure 4 for some simple examples.
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Figure 3: Some examples cdmplete graph.
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Figure 4: Some examples pblygon.

e A complete bipartite graph, K, ,,, is a simple graph on + m vertices
{a1,...,an,b1,...,by,} such thats, ~ b foralll <i<n,1<j<m.
Note that a complete bipartite graph is regular if and only i= m. A
simple example is shown in Figure 5.
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Figure 5: Acomplete bipartite graph with verticesa, a, by, ba, b3
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Figure 6: An example graph with 6 vertices

1.2 Matrices Associated with a GraphG = (V, E)

Definition 1.1. Theadjacency matrix A of GG consists of the following entries:

A1l ifu~w

Qe = { 0 otherwise.

S0A = (ay,) € RV whereN = |V|. Notice that for a multiple graph, we set
Ay = #(u,v) if u~ 0.

Definition 1.2. Thetransition matrix P of GG consists of the following entries:

NS o if uw~wv
DPuv = .
0 otherwise.

ThenP = (p,,) € R¥*N whereN = |V|. Notice that for a multiple graph,
Puv = ity if u ~ v. Itis not difficult to observe that,, represents the probability
of a random walk from: to v in on step if we view the random walk to take each
edge of a vertex with equal probability. And we h@é\év puw = 1forallu e V.

We call such a matri a stochastic matrix.

Example 1.3. Given a graphG as shown in Figure 6. We can construct both the
adjacency matripd and the transition matri¥ as:



[0 1 0 0 0 0] "0 1 0 0 0 017
101100 %0%%00
01 0110 0%0%%0
A= 011010 P= 0ot ioio
001101 00%%0%
000010 000010

Note that whileA” = A, PT # P. The graphG is completely determined hyt.

Now consider a functiorf onV, i.e.,f : V — R. Let B = A or P, then

Bf(u) =Y buf(v), ueV.

veV

Let
c(V) 2 {all functions defined ofr'}

and
Co(V) 2 {f € C(V)| supp f is a finite subset oF },

wheresupp f 2 {u e V| f(u) # 0}. Also define

LAV)E{feC)Ifl = VI < oo,
where(f, g) £ > m(u)f(u)g(w).

ueV

Lemmal.4.Forall f,g € L*(V), (Pf,g) = (f,Pg)and ||Pf|| < |If]l-

Proof.

(Pf.g) = > m(u)Pf(u)g(u)



The proof that| P f|| < || f|| will be left as an exercise. (Hint: use the fact tifat
is a stochastic matrix, whele ; p;; = 1 andp;; > 0.)
U
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