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1 The Cheeger Ratio and the Cheeger Constants of
a Graph
This lecture is based primarily on material in [17] and [3¢.S21-2.3].

Definition 1.1. Given a graphZ = (V, E). LetS C V be a subset of vertices.
Thenos 2 {e=(z,y) € ElxesS, y¢ S},

Example 1.2.In Figure 1,5 is the set of dark nodes, and the dotted lines form
8S.5 2 V\S. Also, vol(S) = m(S) £ 32, g m(x).
Definition 1.3. TheCheeger ratiofor S C V' is defined as

L . . — L —
min(vol(S),vol(S))  min(vol(S),vol(S))




Figure 1:S consists of the dark nodes. The dotted lines forsh

Example 1.4.In Figure 1, vo[S) =4+ 5+ 4+ 5 =18 and volS) =3+ 2 +
3+2+42=12. #(0S) = 8. So the Cheeger ratio i .S) = 8/12 = 2/3.

The Cheeger ratio tells about the quality of ih& of V into SU S = V. In
Figure 2, a graph that nearly separates into two separgtegisshown. Note that

this graph is well balanced, i.e., Yo!) ~ vol(5); and there exist few connections
betweensS ands, i.e.,|0S] is small. In such case, this cut will give us snmall).

S S

Figure 2: The cut intéd andS generates a small Cheeger ratio.

Definition 1.5. TheCheeger constants:»(G) andh 4(G) are defined as

A .
helG) = 5clvr,lg¢wh(5)’

2 in #(05) = inf —‘85‘
SV s70 min{#(S), #£(5)}  scv.520 min(|S], [S))

ha(G)
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The following theorem provides the upper boundsie(G) andh 4 (G).
Theorem 1.6.

(@),
SR

1. Dodzink and Kendall (1986) [5]: hp(G) < 1/2A7,ie, A >

2. Mohar (1987) [12]: ha(G) S \/ AY 2ma(G) = MY)  for p = #(V) >
4;

3. Tan (2003) [15]: hp(G) < /A2 = Ay | for p > 4. Equality holds
ifandonlyif G = K.

These inequalities are used to evaluate the lower bounﬁg bng/“.

For the upper bounds of the eigenvalues, we have

Theorem 1.7(Urakawa 1999 [16])

For 2 S] < Ldim;z(G)J,

A < (@) = 20/ meclG) = T 08 | e — |
T—|—1

2/ Mo (G) — 1 T
(P) _ 0
)\j <1 —Te) cos <diam'(G) n 1) )

25

Note that there also exists the simpler upper bound:
AP < 2np(@).

Let us prove this inequality.



Proof. Using the minimum principleNIP,), we have

df. d
AP uf <f’—2f>0
FeCo(v), (f1)=0, 20 || f]|

St an,
reCo(v), (F1)=0, f20 || f||?

D (flx) = f())?

- inf =
FECO(V), (F,1)=0, f£0 Zm(x)f ()

zeV

I

where we have used the following definitions:

(f,9)0 2 Zf(u)g(u), and
A2 2> m(u) £ (w).

——— if x¢5.
Then

1 1
= D wim™®@ +xes <_vol(5)) (=)
~vol(S)  vol(S)
~vol(S)  vol(9)
= 0.



We also have

A2 = > P a)m(z)

B . m(z) m(z
;vm(sy * ;vm(?)?
1 1

Moreover,

(df, dfYy = (Aaf,f)o
= ) (fl@) - f)

r~y

= > (f@) —fW)?P+ D (f@) - fW)P+ D (f@) - f)?

acTuN eyS wemsz;yeé z,y€S
1 1 \?
= 04195 -+ — + 0.
951 (voI(S) voI(S))

Now, using the inequalit)?aib” < minz(a 5 fora,b > 0, we find

|0S| ( ! + ! )2
P) vol(S) ~ vol(S)
A 1 1

vol(5) " vol(3)

1 1
= 1951 (voI(S) * voI(?))

2109
~ min(vol(S), vol(S))

= 2hp(G).

IA

The last equality is derived by the assumption thia@chievesip(G).



2 Isospectrality

Definition 2.1. LetG = (V, E). Define Spe(, A), Spe¢G, A4) and SpetG, Ap)
as the sets of spectra (eigenvaluesjipfA , and Ap of GG, respectively. For given
G andG,, if Sped G, A) = Spe¢G,, A), thenGG; andG,, are said to beospec-
tral. If SpedG,, As) = SpedGa, Ay) or Spe¢G,, Ap) = Spe¢Gq, Ap), then
(GG, and(, are said to bésospectral

For cospectrality and isospectrality of graphs, see [§],[1¥4] and [7]. For more
on the isospectral inequalities, see [9], [10] and chapterf 3, Chap. 2].

Example 2.2. (Fisher 1966 [6], Baker 1966 [1]). Figure 3 shows two cosfact
graphs, however they are not isomorphic.

~p— DK

Figure 3: Cospectral but not isomorphic graphs

Example 2.3. (Fuji-Katsuda 1999 [7], Tan 1998 [14]). Figure 4 is an exaang
two A 4-isospectral graphs.

LA

Figure 4: A 4-isospectral graphs.

Example 2.4.(Fuji-Katsuda 1999 [7], Tan 1998 [14]). Figure 5 shows amepke
of two Ap-isospectral graphs.



Figure 5: Ap-isospectral graphs.

3 Discrete Laplacian Eigenvalue Problems

Definition 3.1. G = (V, E) is said to havéboundary 0G = (0V,0F) if the
following two conditions are met:

1.
V=yJov vNaov =0
E=EU0E ENJE=4.

2. Foreactke = (x,y) € E,x,y € V,

661% — z,ycV;
e € F — xé\;,yem/orxeav,yex;.

Example 3.2. Note that there exists some arbitrarines®6f In Figure 6, the

open nodes are it;(, the closed nodes iV, the solid lines in~, and the dashed
lines inokE.

Figure 6: The arbitrariness ot;.



Consider the discrete Laplacian eigenvalue problem, difse

_ P T
Apu = pPluin v, Dirichlet-Laplacian(D-L") ;
u = 0 ondV.

_ o (P)y i 17
Apu = vPu in v, Neumann-LaplaciaiN-L")) .

du = 0 OnoE.
Of course, we can define the discrete Laplacian eigenvahldem withAA. We
can order these eigenvalues as

A A A 9

D— LWy <pfV << k=#(V).

D—LW < < <u” k=#0).
We have the following theorem.

Theorem 3.3. 1{"” > 0, and ;{* > 0, both with multiplicity 1. And there exist

o\P(z) > 0and ! (x) > 0 for all z €V.

Proof. The proof is essentially the same as the continuum caseyse the dis-
crete Green'’s identity with the boundary condition. Forrapée, Ietg0§P) be an
eigenfunction fom(lp) with ||go§P)H = 1, then using the discrete Green’s identity,

P P) (P P P P
' = <A90§ @l )> = <d90§ ', diy )> = [|dei” | > 0.

If dpl”) = 0, theny!” = const onV. But ! = 0 ondV forces us to have
o7 = 0. Sopul"” # 0. Thereforep!” > 0.
O]

Theorem 3.4(The discrete Faber-Krahn inequalitygee [9], [10].
If #(E UOE) = n, then

" (L) < 1y (G)
where equality holds if and only if G = L,. L, a graph is shown in Figure 7.

There are n nodes. Only the last to the right belongs to 0V, the rest belong to {;
and the same is true for the edges.
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Figure 7: Graph.,.
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