
Existence and stability results in the
L1 theory of optimal transportation

Luigi Ambrosio1 and Aldo Pratelli2

1 Scuola Normale Superiore
Piazza dei Cavalieri, 56100 Pisa, Italy
luigi@ambrosio.sns.it

2 Scuola Normale Superiore
Piazza dei Cavalieri, 56100 Pisa Italy
a.pratelli@sns.it

1 Introduction

In 1781, G.Monge raised the problem of transporting a given distribution of
matter (a pile of sand for instance) into another (an excavation for instance) in
such a way that the work done is minimal. Denoting by h0, h1 : R2 → [0,+∞)
the Borel functions describing the initial and final distribution of matter, there
is obviously a compatibility condition, that the total mass is the same:∫

R2
h0(x) dx =

∫
R2
h1(y) dy. (1)

Assuming with no loss of generality that the total mass is 1, we say that a
Borel map t : R2 → R2 is a transport if a local version of the balance of mass
condition holds, namely∫

t−1(E)
h0(x) dx =

∫
E

h1(y) dy for any E ⊂ R
2 Borel. (2)

Then, the Monge problem consists in minimizing the work of transportation
in the class of transports, i.e.

min
{∫

R2
|t(x) − x|h0(x) dx : t transport

}
. (3)

The Monge transport problem can be easily generalized in many directions,
and all these generalizations have proved to be quite useful:
• General measurable spaces X, Y , with measurable maps t : X → Y ;
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• General probability measures µ in X and ν in Y . In this case the local
balance of mass condition (2) reads as follows:

ν(E) = µ(t−1(E)) for any E ⊂ Y measurable. (4)

This means that the push-forward operator t# induced by t, mapping proba-
bility measures in X into probability measures in Y , maps µ into ν.
• General cost functions: a measurable map c : X×Y → [0,+∞]. In this case
the cost to be minimized is

W (t) :=
∫

X

c(x, t(x)) dµ(x).

The transport problem has by now an impressive number of applications,
covering Non-linear PDE’s, Calculus of Variations, Probability, Economics,
Statistical Mechanics and many other fields. We refer to the surveys/books
[3], [23], [36], [43], [44] for more informations on this wide topic.

Even in Euclidean spaces, the problem of existence of optimal transport
maps is far from being trivial, mainly due to the non-linearity with respect to
t of the condition t#µ = ν. In particular the class of transports is not closed
with respect to any reasonable weak topology. Furthermore, it is easy to build
examples where the Monge problem is ill-posed simply because there is no
transport map: this happens for instance when µ is a Dirac mass and ν is not
a Dirac mass.

In order to overcome these difficulties, in 1942 L.V.Kantorovich proposed
in [31], [32] a notion of weak solution of the transport problem. He suggested
to look for plannings instead of transports, i.e. probability measures γ in
X×Y whose marginals are µ and ν. Formally this means that πX#γ = µ and
πY #γ = ν, where πX : X × Y → X and πY : X × Y → Y are the canonical
projections. Denoting by Π(µ, ν) the class of plannings, he wrote the following
minimization problem

min
{∫

X×Y

c(x, y) dγ : γ ∈ Π(µ, ν)
}
. (5)

Notice thatΠ(µ, ν) is not empty, as the product µ⊗ν has µ and ν as marginals.
Due to the convexity of the new constraint γ ∈ Π(µ, ν) it turns out that weak
topologies can be effectively used to provide existence of solutions to (5): this
happens for instance whenever X and Y are Polish spaces and c is lower
semicontinuous (see for instance [36]).

The connection between the Kantorovich formulation of the transport
problem and Monge’s original one can be seen noticing that any transport
map t induces a planning γ, defined by (Id× t)#µ. This planning is concen-
trated on the graph of t in X × Y and it is easy to show that the converse
holds, i.e. whenever γ is concentrated on a graph, then γ is induced by a
transport map. Since any transport induces a planning with the same cost, it
turns out that
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inf (3) ≥ min (5).

Moreover, by approximating any planning by plannings induced by transports,
it can be shown that equality holds under fairly general assumptions (see for
instance [3]). Therefore we can really consider the Kantorovich formulation of
the transport problem as a weak formulation of the original problem.

The theory of disintegration of measures (see the Appendix) provides a
very useful representation of plannings, and more generally of probability
measures γ in X×Y whose first marginal is µ: there exist probability measures
γx in Y such that γ = γx ⊗ µ, i.e.∫

X×Y

ϕ(x, y) dγ(x, y) =
∫

X

(∫
Y

ϕ(x, y) dγx(y)
)
dµ(x).

for any bounded measurable function ϕ. In this sense we can consider a plan-
ning γ as a “stochastic” transport map x �→ γx, allowing the splitting of mass,
and corresponding to a “deterministic” transport map only if γx is a Dirac
mass for µ-a.e. x ∈ X. This representation of plannings also shows the close
connection between the ideas of Kantorovich and of L.C. Young, who devel-
oped in the same years his theory of generalized controls (see [45, 46, 47]).

Kantorovich’s weak solutions are by now considered as the “natural” so-
lutions of the problem in Probability and in some related fields and, besides
the general existence theorem mentioned above, general necessary and suf-
ficient conditions for optimality, based on a duality formulation, have been
found (see for instance [36], [24], [39], [40], [44]). Notice that, by the Choquet
theorem, the linearity of the functional and the convexity of the constraint
γ ∈ Π(µ, ν) ensure that the minimum is achieved on an extremal point of
Π(µ, ν). Therefore, if extremal points were induced by transports one would
get existence of transport maps directly from the Kantorovich formulation. It
is not difficult to show that plannings γ induced by transports are extremal
in Π(µ, ν), since the disintegrated measures γx are Dirac masses; the converse
holds in some particular cases, as

µ =
N∑

i=1

1
N
δxi

, ν =
N∑

i=1

1
N
δyi

(by the well-known Birkhoff theorem) but unfortunately it is not true in gen-
eral: for instance the measure γ := γx ⊗ L1 [0, 1] with γx := 1

2 (δx + δ2−x)
is not induced by a transport y = t(x) but it is extremal in Π(µ, ν)
with ν := 1

2L1 [0, 2], due to the fact that it is induced by the transport
x = t(y) = |y − 1|. It turns out that the existence of optimal transport maps
depends not only on the geometry of Π(µ, ν), but also on the choice of the
cost function c.

When X = Y = R
n and c(x, y) = h(x − y) with h strictly convex and

µ absolutely continuous with respect to Ln, the duality methods yield that
any optimal planning is induced by a transport; as a consequence, the opti-
mal transport map exists and is unique (see [12], [13], [14], [24], [39], [40]).
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The same results can be shown directly making a first variation in the dual
formulation, bypassing the Kantorovich formulation (see [29], [15]). See also
[34] for the extension of these results to a Riemannian setting.

The case when h is not strictly convex, corresponding to the original prob-
lem raised by Monge, is more subtle. Indeed, if c(x, y) = |x−y| (the euclidean
distance) then the standard duality methods provide information on the direc-
tion of transportation but no information on the distance |x−y|, at least when
µ is absolutely continuous with respect to Lebesgue measure: to be precise one
can show the existence of a 1-Lipschitz map u : R

n → R such that

(x, y) ∈ spt γ =⇒ y ∈ {x− t∇u(x) : t ≥ 0}

for µ-a.e. x. A similar result holds if the Euclidean norm is replaced by any
strictly convex norm. Moreover, when c(x, y) = ‖x− y‖ with ‖ · ‖ not strictly
convex, then we have an even more dramatic loss of information about the
location of y:

(x, y) ∈ spt γ =⇒ y ∈ {x− t(du(x))∗ : t ≥ 0},

where, for L in the unit ball of (Rn)∗ (the dual of R
n), the set L∗ consists of

all vectors v ∈ R
n such that ‖v‖ = 1 and L(v) = 1.

The first attempt to bypass these difficulties came with the work of Su-
dakov [41], who claimed to have a solution for any distance cost function
induced by a norm. Sudakov’s approach is based on a clever decomposition
of the space R

n in affine regions with variable dimension where the Kan-
torovich potential associated to the transport problem is an affine function.
His strategy is to solve the transport problem in any of these regions, eventu-
ally getting an optimal transport map just by gluing all these transport maps.
An essential ingredient in his proof is Proposition 78, where he states that,
if µ � Ln, then the conditional measures induced by the decomposition are
absolutely continuous with respect to the Lebesgue measure (of the correct di-
mension). However, it turns out that this property is not true in general even
for the simplest decomposition, i.e. the decomposition in segments: G.Alberti,
B.Kirchheim and D.Preiss [4] found an example of a compact faily of pairwise
disjoint open segments in R

3 such that the family M of their midpoints has
strictly positive Lebesgue measure (the construction is a variant of previous
examples due to A.S.Besicovitch and D.G.Larman [33]). In this case, choosing
µ = L3 M , the conditional measures induced by the decomposition are Dirac
masses. Therefore it is clear that this kind of counterexamples should be ruled
out by some kind of additional “regularity” property of the decomposition. In
this way the Sudakov strategy would be fully rigorous.

Several years later, Evans and Gangbo made a remarkable progress in
[24], showing by differential methods the existence of a transport map, under
the assumption that sptµ ∩ spt ν = ∅, that the two measures are absolutely
continuous with respect to Ln and that their densities are Lipschitz functions
with compact support. The missing piece of information about the length of
transportation is recovered by a p-laplacian approximation
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−div
(
|∇u|p−2∇u

)
= µ− ν, u ∈ H1

0 (BR), R � 1

obtaining in the limit as p → +∞ a nonnegative function a ∈ L∞(Rn) and a
1-Lipschitz function u solving

−div (a∇u) = µ− ν, |∇u| = 1 Ln-a.e. on {a > 0}.

The measure σ := aLn, the so-called transport density, plays an important
rôle in the theory: its uniqueness and its regularity are discussed, under more
general assumptions on µ and ν, in [27], [20], [21]. This measure appears in
the scalar mass optimization problem studied in [9, 10, 11], and in [3] several
equivalent representation of the transport density and its uniqueness have
been studied.

Coming back to the transport problem with Euclidean distance (or, more
generally, with a distance induced by a C2 and uniformly convex norm),
the first existence results for general absolutely continuous measures µ, ν
with compact support have been independently obtained by L.Caffarelli,
M.Feldman and R.Mc Cann in [16] and by N.Trudinger and L.Wang in [42].
Afterwards, the first author estabilished in [3] the existence of an optimal
transport map assuming only that the initial measure µ is absolutely contin-
uous, and the results of [16] and [42] have been extended to a Riemannian
setting in [28]. All these proofs involve basically a Sudakov decomposition in
transport rays, but the technical implementation of the idea is different from
paper to paper: for instance in [16] a local change of variable is made, so that
transport rays become parallel and Fubini theorem, in place of abstract disin-
tegration theorems for measures, can be used. The proof in [3], instead, uses
the co-area formula to show that absolute continuity with respect to Lebesgue
measure is stable under disintegration.

In this paper we are particularly interested to the strategy pursued in
[16], based on the approximation of the cost function c(x, y) = ‖x − y‖ by
the cost functions cε(x, y) = ‖x − y‖1+ε. The approximation is used in that
paper to build a special Kantorovich potential u, by taking limits as ε ↓ 0
of the potentials (uε, u

cε
ε ) in the dual formulation (see Section 3 for a precise

description of the dual formulation). The potential u is used to prescribe the
geometry of transport rays and to build, by a 1-dimensional reduction, an
optimal transport map. Here we give a new variational interpretation of the
Caffarelli-Feldman-McCann approximation, based on the theory of asymptotic
developments by Γ -convergence, developed by G.Anzellotti and S.Baldo in
[7] (see also [8]). This new interpretation provides stronger results and, in
particular, allows us to show that the family of optimal maps tε relative to
the costs cε converges in measure as ε ↓ 0 to the map built in [16]. However,
since we don’t assume a priori the existence of this map, our strategy provides
at the same time an existence and a stability result for the Monge problem.

The underlying variational principle in our argument is that any limit of
the optimal plannings γε associated to tε is not only optimal for the Kan-
torovich problem, but optimal for the secondary variational problem
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min
γ∈Π1(µ,ν)

∫
Rn×Rn

‖x− y‖ ln(‖x− y‖) dγ, (6)

where Π1(µ, ν) denotes the class of all optimal plannings for the Kantorovich
problem (the entropy function in (6) comes from the Taylor expansion of cε
around ε = 0, see also [11]). Then, we show that the secondary variational
problem has a unique minimizer, and that this minimizer is induced by a
transport map (a posteriori, the map built in [16]).

It is very likely, as the authors themselves of [16] suggest in the introduction
of their paper, that the convergence of tε can still be proved working in the
dual formulation, without appealing to our variational argument. However, we
discovered that this new principle can be used in some situations to provide a
“variational” decomposition in transport rays, bypassing the above mentioned
difficulties in Sudakov’s argument: in the forthcoming paper [5] we will show
existence of optimal transport maps for distances induced by any “crystalline”
norm ‖ · ‖ (whose unit ball is contained in finitely many hyperplanes and
therefore not strictly convex) by looking at the approximation

cε(x, y) := ‖x− y‖ + ε|x− y| + ε2|x− y| ln(|x− y|).

Quite surprisingly, also in this situation we get full convergence as ε ↓ 0 of tε
to an optimal map t. Moreover, we will obtain existence of optimal transports
for distances induced by any norm in the planar case n = 2.

We close this introduction by an analytic description of the content of
this paper, conceived as a survey paper but also with original results, some of
which are necessary for the forthcoming work [5].

In Section 3 we develop the duality theory for the Kantorovich problem.
In view of the applications we have in mind (see Remark 7.1) we allow lower
semicontinuous and possibly infinite cost functions, showing that also in this
situation the c-monotonicity is a necessary condition for minimality (this is
one of the key technical ingredients in [5]). We also discuss the problem of
sufficiency of c-monotonocity: a general answer to this problem is not known,
but we find a very general sufficient condition which seems not to be available
in the literature (see Remark 3.1). We also provide a counterexample, but
with a +∞ valued cost function.

Section 4 contains the basic facts about the theory of Γ -asymptotic devel-
opments.

Section 5 reviews the theory of optimal transportation on the real line,
for convex and nondecreasing cost functions. In this situation it is well known
that, if µ has no atom, the unique nondecreasing map t pushing µ into ν is
optimal, and it is the unique optimal map (even among plannings) when the
cost function is nondecreasing and strictly convex. We show also a simple vari-
ant of this result (Theorem 5.2) where we drop the monotonicity assumption
on the cost, to allow the entropy function as in (6).

Section 6 contains an abstract version of Sudakov’s argument, based on a
decomposition of the space in 1-dimensional transport rays, see Theorem 6.2.
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We will apply this result to solve the transport problem in particular situa-
tions, see [5], [6]. In view of the counterexample [4], we make the assumption
that the family of (maximal) rays is countably Lipschitz to ensure that any
absolutely continuous measure µ with respect to Ln produces, after disintegra-
tion, a family of measures concentrated on 1-dimensional rays and absolutely
continuous with respect to H1, therefore with no atom. As a consequence the
1-dimensional theory of the previous section applies to these measures. No-
tice also that, in view of the example in [33], the countable Lipschitz property
seems to be necessary also to show that the family of estreme points of rays
is Lebesgue negligible.

Section 7 contains the existence and stability result for Monge optimal
transports mentioned above, under the same assumptions on the norm made
in [16].

In Section 8 we show by a counterexample (or, rather, a class of counterex-
amples) that the absolute continuity assumption on µ is necessary. This is a
distinctive feature of the linear case, since for strictly convex cost functions
we have existence and uniqueness of optimal transport maps whenever µ has
dimension strictly greater than n− 1 (see [30]).

Finally, the Appendix contains all basic facts about disintegration of mea-
sures needed in this paper. Of particular interest is Theorem 9.4, taken from
[3], where we show stability of absolute continuity under disintegration, and
the measurability criterion stated in Theorem 9.2.

2 Notation

In this section we fix our main notation and the terminology. We shall always
assume that the measurable spaces we deal with are metric spaces endowed
with the Borel σ-algebra, although this assumption could be easily weakened
in some situations. Given a Borel map f : X → Y , and given a positive and
finite measure µ on X, we denote by f#µ its image, defined by f#µ(B) =
µ
(
f−1(B)

)
for any Borel set B ⊂ Y . According to the change of variable

formula we have∫
Y

φdν =
∫

X

φ ◦ f dµ for any bounded Borel function φ : Y → R.

We denote by sptµ the support of µ, i.e. the closed set of all points x ∈ X
such that µ(Br(x)) > 0 for any r > 0. We say that µ is concentrated on a
Borel set B if µ(X \B) = 0. If X is separable then µ is concentrated on sptµ
and the support is the minimal closed set on which µ is concentrated. On the
other hand, a measure can be concentrated on a set much smaller than the
support: for instance the probability measure

µ :=
∞∑

n=0

2−1−nδqn ,
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where {qn} is an enumeration of the rational numbers, has R as support but
it is concentrated on Q.

In the following table we resume the notation used without further ex-
plaination throughout the text:

Ln Lebesgue measure in R
n

Hk Hausdorff k-dimensional measure in R
n

Sn−1 unit sphere in R
n

B(X) Borel σ-algebra of X
Lip(X) real valued Lipschitz functions defined on X
Lip1(X) functions in Lip(X) with Lipschitz constant not greater than 1
π0, πX projection X × Y � (x, y) �→ x ∈ X
π1, πY projection X × Y � (x, y) �→ y ∈ Y
So(X) open oriented segments ]]x, y[[ with x, y ∈ X, x �= y
Sc(X) closed oriented segments [[x, y]] with x, y ∈ X, x �= y
M+(X) positive and finite Radon measures in X
P(X) probability measures in X
µ B restriction of µ to B, defined by χBµ.

3 Duality and optimality conditions

In this section we look for general necessary and sufficient optimality condi-
tions for the Kantorovich problem (5). We make fairly standard assumptions
on the spaces X, Y , assuming them to be locally compact and separable (these
assumptions can be easily relaxed, see for instance [36]), but we look for gen-
eral lower semicontinuous cost functions c : X × Y → [0,+∞], allowing in
some cases the value +∞. This extension is important in view of the applica-
tions we have in mind (see Remark 7.1 and [5]). See also [36] for more general
versions of the duality formula.

Theorem 3.1 (Duality formula). The minimum of the Kantorovich prob-
lem is equal to

sup
{∫

X

ϕ(x) dµ(x) +
∫

Y

ψ(y) dν(y)
}

(7)

where the supremum runs among all pairs (ϕ,ψ) ∈ L1(X,µ) × L1(Y, ν) such
that ϕ(x) + ψ(y) ≤ c(x, y).

Proof. This identity is well-known if c is bounded, see for instance [36], [44].
In the general case it suffices to approximate c from below by an increasing
sequence of bounded continuous functions ch, defined for instance by

ch(x, y) := min {c(x′, y′) ∧ h+ hdX(x, x′) + hdY (y, y′)} ,

noticing that a simple compactness argument gives
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min
{∫

X×Y

ch dγ : γ ∈ Π(µ, ν)
}

↑ min
{∫

X×Y

c dγ : γ ∈ Π(µ, ν)
}

and that any pair (ϕ,ψ) such that ϕ+ ψ ≤ ch is admissible in (7).

We recall briefly the definitions of c-transform, c-concavity and c-cyclical
monotonicity, referring to the papers [22], [37], [30] and to the book [36] for a
more detailed analysis.

For u : X → R, the c-transform uc : Y → R is defined by

uc(y) := inf
x∈X

c(x, y) − u(x)

with the convention that the sum is +∞ whenever c(x, y) = +∞ and u(x) =
+∞. Analogously, for v : Y → R, the c-transform vc : X → R is defined by

vc(x) := inf
y∈Y

c(x, y) − v(y)

with the same convention when an indetermination of the sum is present.
We say that u : X → R is c-concave if u = vc for some v; equivalently, u

is c-concave if there is some family {(yi, ti)}i∈I ⊂ Y ×R such that

u(x) = inf
i∈I

c(x, yi) + ti ∀x ∈ X.

An analogous definition can be given for functions v : Y → R.
It is not hard to show that ucc ≥ u and that equality holds if and only

if u is c-concave. Analogously, vcc ≥ v and equality holds if and only if v is
c-concave.

Finally, we say that Γ ⊂ X × Y is c-monotone if

n∑
i=1

c(xi, yσ(i)) ≥
n∑

i=1

c(xi, yi)

whenever (x1, y1), . . . , (xn, yn) ∈ Γ and σ is a permutation of {1, . . . , n}.

Theorem 3.2 (Necessary and sufficient optimality conditions).
(Necessity) If γ ∈ Π(µ, ν) is optimal and

∫
X×Y

c dγ < +∞, then γ is concen-
trated on a c-monotone Borel subset of X × Y .
(Sufficiency) Assume that c is real-valued, γ is concentrated on a c-monotone
Borel subset of X × Y and

µ

({
x ∈ X :

∫
Y

c(x, y) dν(y) < +∞
})

> 0, (8)

ν

({
y ∈ Y :

∫
X

c(x, y) dµ(x) < +∞
})

> 0. (9)

Then γ is optimal,
∫

X×Y
c dγ < +∞ and there exists a maximizing pair (ϕ,ψ)

in (7) with ϕ c-concave and ψ = ϕc.
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Proof. Let (ϕn, ψn) be a maximizing sequence in (7) and let cn = c−ϕn−ψn.
Since ∫

X×Y

cn dγ =
∫

X×Y

c dγ −
∫

X

ϕn dµ−
∫

Y

ψn dν → 0

and cn ≥ 0 we can find a subsequence cn(k) and a Borel set Γ on which γ is
concentrated and c is finite, such that cn(k) → 0 on Γ . If {(xi, yi)}1≤i≤p ⊂ Γ
and σ is a permutation of {1, . . . , p} we get

p∑
i=1

c(xi, yσ(i)) ≥
p∑

i=1

ϕn(k)(xi) + ψn(k)(yσ(i))

=
p∑

i=1

ϕn(k)(xi) + ψn(k)(yi) =
p∑

i=1

c(xi, yi) − cn(k)(xi, yi)

for any k. Letting k → ∞ the c-monotonicity of Γ follows.
Now we show the converse implication, assuming that (8) and (9) hold. We

denote by Γ a Borel and c-monotone set on which γ is concentrated; without
loss of generality we can assume that Γ = ∪kΓk with Γk compact and c|Γk

continuous. We choose continuous functions cl such that cl ↑ c and split the
proof in several steps.
Step 1. There exists a c-concave Borel function ϕ : X → [−∞,+∞) such
that ϕ(x) > −∞ for µ-a.e. x ∈ X and

ϕ(x′) ≤ ϕ(x) + c(x′, y) − c(x, y) ∀x′ ∈ X, (x, y) ∈ Γ. (10)

To this aim, we use the explicit construction given in the generalized Rock-
afellar theorem in [37], setting

ϕ(x) := inf{c(x, yp) − c(xp, yp) + c(xp, yp−1) − c(xp−1, yp−1)
+ · · ·+ c(x1, y0) − c(x0, y0)}

where (x0, y0) ∈ Γ1 is fixed and the infimum runs among all integers p and
collections {(xi, yi)}1≤i≤p ⊂ Γ .

It can be easily checked that

ϕ = lim
p→∞ lim

m→∞ lim
l→∞

ϕp,m,l,

where

ϕp,m,l(x) := inf{cl(x, yp) − c(xp, yp) + cl(xp, yp−1) − c(xp−1, yp−1)
+ · · ·+ cl(x1, y0) − c(x0, y0)}

and the infimum is made among all collections {(xi, yi)}1≤i≤p ⊂ Γm. As all
functions ϕp,m,l are upper semicontinuous we obtain that ϕ is a Borel function.

Arguing as in [37] it is straightforward to check that ϕ(x0) = 0 and (10)
holds. Choosing x′ = x0 we obtain that ϕ > −∞ on πX(Γ ) (here we use the
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assumption that c is real-valued). But since γ is concentrated on Γ the Borel
set πX(Γ ) has full measure with respect to µ = πX#γ, hence ϕ ∈ R µ-a.e.
Step 2. Now we show that ψ := ϕc is ν-measurable, real-valued ν-a.e. and
that

ϕ+ ψ = c on Γ . (11)

It suffices to study ψ on πY (Γ ): indeed, as γ is concentrated on Γ , the Borel
set πY (Γ ) has full measure with respect to ν = πY #γ. For y ∈ πY (Γ ) we
notice that (10) gives

ψ(y) = c(x, y) − ϕ(x) ∈ R ∀x ∈ Γy := {x : (x, y) ∈ Γ}.

In order to show that ψ is ν-measurable we use the disintegration γ = γy⊗ν of
γ with respect to y (see the appendix) and notice that the probability measure
γy is concentrated on Γy for ν-a.e. y, therefore

ψ(y) =
∫

X

c(x, y) − ϕ(x) dγy(x) for ν-a.e. y.

Since y �→ γy is a Borel measure-valued map we obtain that ψ is ν-measurable.
Step 3. We show that ϕ+ and ψ+ are integrable with respect to µ and ν
respectively (here we use (8) and (9)). By (8) we can choose x in such a way
that

∫
Y
c(x, y) dν(y) is finite and ϕ(x) ∈ R, so that by integrating on Y the

inequality ψ+ ≤ c(x, ·) + ϕ−(x) we obtain that ψ+ ∈ L1(Y, ν). The argument
for ϕ+ uses (9) and is similar.
Step 4. Conclusion. The semi-integrability of ϕ and ψ gives the null-
lagrangian identity∫

X×Y

(ϕ+ ψ) dγ̃ =
∫

X

ϕdµ+
∫

Y

ψ dν ∈ R ∪ {−∞} ∀γ̃ ∈ Π(µ, ν),

so that choosing γ̃ = γ we obtain from (11) that
∫

X×Y
c dγ < +∞ and

ϕ ∈ L1(X,µ), ψ ∈ L1(Y, ν). Moreover, for any γ̃ ∈ Π(µ, ν) we get∫
X×Y

c dγ̃ ≥
∫

X×Y

(ϕ+ ψ) dγ̃ =
∫

X

ϕdµ+
∫

Y

ψ dν

=
∫

X×Y

(ϕ+ ψ) dγ =
∫

Γ

(ϕ+ ψ) dγ =
∫

X×Y

c dγ.

This chain of inequalities gives that γ is optimal and, at the same time, that
(ϕ,ψ) is optimal in (7).

We say that a Borel function ϕ ∈ L1(X,µ) is a maximal Kantorovich
potential if (ϕ,ϕc) is a maximizing pair in (7). In many applications it is useful
to write the optimality conditions using a maximal Kantorovich potential,
instead of the cyclical monotonicity.
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Theorem 3.3. Let µ ∈ P(X), ν ∈ P(Y ), assume that (8) and (9) hold, that
c is real-valued and the sup in (7) is finite. Then there exists a maximizing
pair (ϕ,ϕc) in (7) and γ ∈ Π(µ, ν) is optimal if and only if

ϕ(x) + ϕc(y) = c(x, y) γ-a.e. in X × Y .

Proof. The existence of a maximizing pair is a direct consequence of the suf-
ficiency part of the previous theorem, choosing an optimal γ and (by the
necessity part of the statement) a c-monotone set on which γ is concentrated.

If γ is optimal then∫
X×Y

(c− ϕ− ϕc) dγ =
∫

X×Y

c dγ −
∫

X

ϕdµ−
∫

Y

ϕc dν = 0.

As the integrand is nonnegative, it must vanish γ-a.e. The converse implication
is analogous.

Remark 3.1. The assumptions (8), (9) are implied by∫
X×Y

c(x, y) dµ⊗ ν(x, y) < +∞. (12)

In turn, (12) is weaker than the condition

c(x, y) ≤ a(x) + b(y) with a ∈ L1(µ), b ∈ L1(ν)

considered in Theorem 2.3.12 of Part I of [36].

The following example shows that some kind of finiteness/integrability
condition seems to be necessary in order to infer minimality from cyclical
monotonicity. It is interesting to notice that in very specific cases (but im-
portant for the applications) like X = Y = R

n and c(x, y) = |x − y|2 it is
not presently clear whether cyclical monotonicity implies minimality without
additional conditions, e.g. the finiteness of the moments

∫
|x|2 dµ,

∫
|y|2 dν

(see the Open problem 16 in Chapter 3 of [44]).

Example 3.1. Given α ∈ [0, 1] \ Q, let ϕ : [0, 1] × [0, 1] → [0,+∞] be defined
as follows:

ϕ(x, y) :=




1 if y = x

2 if y = x⊕ α

+∞ otherwise,

where ⊕ : [0, 1] × [0, 1] → [0, 1] is the sum modulo 1: Figure 1 shows this
function. Let us then consider the transport problem in Ω = [0, 2] ⊂ R with
µ = L1 [0, 1], ν = L1 [1, 2] and with any cost c such that c(x, y) = ϕ(x, y−1)
whenever 0 ≤ x ≤ 1 ≤ y ≤ 2. Clearly the unique optimal plan of transport is
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+∞

2

1

2

α

Fig. 1. The function ϕ in Example 3.1

γ̄ = (Id, 1 + Id)# L1 [0, 1], while we will prove that also the support of the
non-optimal plan γ =

(
Id, 1 + (Id⊕ α)

)
# L1 [0, 1] is c-monotone.

If not, there would be a minimal set of couples (x1, y1), (x2, y2), . . . ,
(xn, yn) in the support of γ with the property that

d(x1, y1) + · · ·+ d(xn, yn) > d(x2, y1) + d(x3, y2) + · · ·+ d(x1, yn);

but (xi, yi) ∈ spt γ means yi = 1 + (xi ⊕ α): moreover, since the preceding
inequality assures d(xi+1, yi) < +∞, we can infer that yi = 1 + xi+1 or
yi = 1 + (xi+1 ⊕ α), and then xi+1 = xi ⊕ α or xi+1 = xi. Since the second
possibility is incompatible with the minimality of the set, it must be xi+1 =
xi⊕α; applying this equality n times, we find x1 = x1⊕nα, which is impossible
since α is not a rational number.

4 Γ -convergence and Γ -asymptotic expansions

In this section we recall some basic facts about Γ -convergence and we present
the essential aspects of the theory of Γ -asymptotic expansions, first introduced
in [7] (see also [8] for an application of this theory in elasticity). A general
reference for the theory of Γ -convergence is [18].

Let X be a compact metric space and let us denote by S−(X) the collection
of all lower semicontinuous functions f : X → R. We say that a sequence
(fh) ⊂ S−(X) Γ -converges to f ∈ S−(X) if the following two properties hold
for any x ∈ X:
(a) lim inf fh(xh) ≥ f(x) for any sequence xh → x;
(b) there exists a sequence xh → x such that fh(xh) → f(x).

It can be shown that the Γ -convergence is induced by a metric dΓ and
that (S−(X), dΓ ) is a compact metric space.

If (fh) Γ -converges to f then mh := minX fh → m := minX f and, in
addition,
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lim sup
h→∞

Argmin (fh) ⊂ Argmin (f). (13)

In words, any limit point of minimizers of fh minimizes f . The same is true for
sequences (xh) which are asymptotically minimizing, i.e. such that fh(xh) −
mh → 0.

However, the converse is not true in general: for instance the functions
fh(x) = 1/h ∧ |x| Γ -converge to f ≡ 0 in X = [−1, 1] but x = 0 is the only
minimizer of f that can be approximated by minimizers of fh.

In order to improve the inclusion above, G.Anzellotti and S.Baldo proposed
the following procedure: assuming that m is a real number, they proposed to
consider the new functions

f ′
h :=

fh −m

εh

for suitable positive infinitesimals εh. Assuming that f ′
h Γ -converge to f ′ (this

is not really restrictive, by the compactness of S−(X)), the following result
holds:

Theorem 4.1. The functional f ′ is equal +∞ out of Argmin f , hence
Argmin f ′ ⊂ Argmin f . Moreover

lim sup
h→∞

Argmin (fh) ⊂ Argmin (f ′). (14)

Proof. If f ′(x) < +∞ there exists a sequence (xh) converging to x, by condi-
tion (b), such that f ′

h(xh) is bounded above. As

fh(xh) = m+ εhf
′
h(xh) ≤ mh + o(1)

the sequence (xh) is asymptotically minimizing and therefore x ∈ Argmin f .
Finally (14) is a direct consequence of (13), noticing that Argmin fh =
Argmin f ′

h.

If εh have been properly chosen, so that m′ := minX f ′ ∈ R, then the
convergence of minX f ′

h = (mh −m)/εh to m′ gives the expansion

mh = m+m′εh + o(εh).

This procedure can of course be iterated, giving further restrictions on the
set of limit points of minimizers of fh and higher order expansions of the
difference mh −m.

5 1-dimensional theory

In this section we recall some aspects of the theory of optimal transportation
in R. In this case, at least when µ has no atom, there is a canonical transport
map obtained by monotone rearrangement. This map is optimal whenever the
cost is a nondecreasing and convex function of the distance.
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Theorem 5.1. Let µ, ν ∈ P(R), µ without atoms, and let

G(x) := µ ((−∞, x)) , F (y) := ν ((−∞, y))

be respectively the distribution functions of µ, ν. Then

(i) The nondecreasing function t : R → R defined by

t(x) := sup {y ∈ R : F (y) ≤ G(x)}

(with the convention sup ∅ = −∞) maps µ into ν. Any other nondecreasing
map t′ such that t′#µ = ν coincides with t on sptµ up to a countable set.

(ii)If φ : [0,+∞) → R is nondecreasing and convex, then t is an optimal
transport between µ and ν relative to the cost c(x, y) = φ(|x−y|). Moreover
t is the unique optimal transport map if φ is strictly convex.

For the proof the reader may consult [3], [30], [44]).
Notice that the monotonicity constraint forces us to take R as range of

t (for instance this happens when µ has compact support and spt ν = R).
However, since t#µ = ν, the half-lines {t = ±∞} are µ-negligible.

In view of the applications we have in mind (where φ(t) could be t ln t) we
are interested in dropping the assumption that φ is nondecreasing. This can
be done under a suitable compatibility condition between µ and ν, expressed
in (15) below, by restricting the class of competitors γ.

Theorem 5.2. Let µ, ν ∈ P(R), µ without atoms and let t be the map in
Theorem 5.1. Assume that µ and ν have finite first order moments and

A := {γ ∈ Π(µ, ν) : spt γ ⊂ {(x, y) : y ≥ x}} �= ∅. (15)

Then t(x) ≥ x for µ-a.e. x ∈ R and γt = (Id × t)#µ is a solution of the
problem

min
γ∈A

∫
R×R

φ(|y − x|) dγ (16)

whenever φ : [0,+∞) → R is a convex function bounded from below. If φ
is strictly convex and the minimum in (16) is finite, then γt is the unique
solution.

Proof. We argue as in [30] and we consider the strictly convex case only (the
general case follows by a simple perturbation argument). Since A is weakly
compact, we can find an optimal γ ∈ A for (16). Assuming that γ has finite
energy, by the construction in [30] one can show that Γ := spt γ satisfies the
restricted monotonicity condition

φ(y1 − x1) + φ(y2 − x2) ≤ φ(y2 − x1) + φ(y1 − x2)

whenever (x1, y1), (x2, y2) ∈ Γ and x1 < y2, x2 < y1 (indeed, in this case the
additional constraint that competitors must be in A is not effective).
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Now we show the implication:

(x1, y1) ∈ Γ, (x2, y2) ∈ Γ, x1 < x2 =⇒ y1 ≤ y2. (17)

Assuming by contradiction that y1 > y2, since xi ≤ yi, i = 1, 2, we obtain
x1 < x2 ≤ y2 < y1. In this case, setting a = x2 − x1, b = y2 − x2, c = y1 − y2,
the cyclical monotonicity of Γ gives

φ(a+ b+ c) + φ(b) ≤ φ(a+ b) + φ(b+ c).

On the other hand, since c > 0 the strict convexity of φ gives

φ(a+ b+ c) − φ(b+ c) > φ(a+ b) − φ(b)

and therefore a contradiction.
By (17) we obtain that the vertical sections Γx of Γ are ordered, i.e.

y1 ∈ Γx1 ≤ y2 ∈ Γx2 whenever x1 < x2. As a consequence the set of all x such
that Γx is not a singleton is at most countable (since we can index with this
set a family of pairwise disjoint open intervals), and therefore µ-negligible. As
spt γx ⊂ Γx, it follows that γx is a Dirac mass for µ-a.e. x. Setting γx = δt′(x)
the map t′ is nondecreasing by (17), satisfies t′(x) ≥ x because γ ∈ A and
maps µ into ν because γ = (Id × t′)#µ. By Theorem 5.1(i) we obtain t′ = t
µ-a.e.

The proof is finished by showing that problem (16) is non trivial (i.e.
the minimum is finite) for at least one stricly convex φ. This follows by the
assumption on the finiteness of first moments, choosing φ(t) :=

√
1 + t2 − 1.

6 Transport rays and transport set

Given Γ ⊂ Rn × Rn, we define the notions of transport ray, ray direction,
transport set, fixed point, maximal transport ray. The terminology is close
to the one adopted in [24] and [16], with the difference that our definitions
depend on Γ rather than a Kantorovich potential. We reconcile with the other
approaches in (24) and in Theorem 6.2.

(Transport ray) We say that ]]x, y[[ is a transport ray if x �= y and (x, y) ∈ Γ .
(Ray direction) Given a transport ray ]]x, y[[, we denote its direction by

τ(x, y) :=
(y − x)
|y − x| .

(Transport sets) We denote by TΓ the union of all transport rays relative
to Γ , i.e. ⋃

(x,y)∈Γ

]]x, y[[.
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We define also T l
Γ as the union of all sets [[x, y[[, as (x, y) ∈ Γ , and T r

Γ as
the union of all sets ]]x, y]], as (x, y) ∈ Γ (by convention [[x, y[[=]]x, y]] = {x} if
x = y).
(Fixed points) We say that x is a fixed point if (x, x) ∈ Γ and (x, y) /∈ Γ
for any y �= x. We denote by FΓ the set of all fixed points.
(Maximal transport ray) We say that an open interval S ⊂ Rn (possibly
unbounded) is a maximal transport ray if

(a) for any z ∈ S there exists (x, y) ∈ Γ with z ∈]]x, y[[;
(b) any open interval containing S and satisfying (a) coincides with S.

Notice that maximal transport rays need not be transport rays: for in-
stance if Γ = {(1/(k + 2), 1/k)}, for k ≥ 1 integer, then (0, 1) is a maximal
transport ray but not a transport ray.

In the following we shall always assume that Γ is a σ-compact set. This
ensures that all sets TΓ , T l

Γ , T r
Γ , FΓ associated to Γ are Borel sets. Notice

also that
FΓ = π0(Γ ∩∆) \ π0(Γ \∆),

where ∆ is the diagonal of R
n × R

n.
Clearly any transport ray is contained in a unique maximal transport ray.

As a consequence, any point in TΓ is contained in a maximal transport ray.
Under the no-crossing condition

[[x, y]] ∩ [[x′, y′]] �= ∅ =⇒ x = x′ or y = y′ whenever τ(x, y) �= τ(x′, y′)
(18)

(meaning that two closed rays with different orientations can meet only at a
common endpoint) it is also immediate to check that this maximal transport
ray is unique. Therefore Γ induces a map π

Γ
: TΓ → So(Rn) which associates

to any point the maximal transport ray containing it. We also denote by
τ

Γ
: TΓ → Sn−1 the map which gives the direction of the transport ray.
Since we used the open segments to define the transport set and the maxi-

mal transport ray, we need to take into account also the extreme points (which
are not in TΓ ) of the maximal transport rays.

The following proposition shows that only points in T l
Γ ∪ T r

Γ can carry
some mass, and therefore are relevant for the transport problem.

Proposition 6.1. (i) Any point in T l
Γ \(TΓ ∪FΓ ) (respectively T r

Γ \(TΓ ∪FΓ ))
is a left (resp. right) extreme point of a maximal transport ray.

(ii)If γ ∈ Π(µ, ν) is concentrated on Γ , then µ is concentrated on T l
Γ and ν

is concentrated on T r
Γ .

Proof. (i) If x ∈ T l
Γ \FΓ there exists y �= x such that (x, y) ∈ Γ . If x /∈ TΓ the

maximal transport ray containing ]]x, y[[ must have x as left extreme point.
(ii) Clearly µ is concentrated on L, the projection of Γ on the first factor. If
x ∈ L there exists y ∈ R

n such that (x, y) ∈ Γ , and therefore x ∈ T l
Γ . The

argument for ν is similar.
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The converse implication in Proposition 6.1(i) does not hold, as shown by
the previous example of a maximal transport ray which is not a transport ray.

Definition 6.1 (Metric on Sc(Rn) and So(Rn)). In the following we need
to define a metric structure (actually we would need only a measurable one)
on the spaces Sc(Rn) and So(Rn). When one considers only bounded oriented
segments the natural metric comes from the embedding into R

n × R
n, by

looking at the distances between the two left extreme points and the two right
extreme points. In our case, since we allow halflines and lines as segments, we
define the metric in Sc(Rn) as

d (S, S′) :=
∞∑

R=1

2−R |xR − x′
R| + |yR − y′

R|
1 + |xR − x′

R| + |yR − y′
R|
,

where [[xR, yR]] (respectively [[x′
R, y

′
R]]) is the intersection of S (resp. S′) with

the closed ball BR. Since any open segment is in one to one correspondence
with a closed segment (remember that singletons do not belong to Sc(Rn))
we define a metric in So(Rn) in such a way that this correspondence is an
isometry.

It is not hard to check that So(Rn) and Sc(Rn) are locally compact and
separable metric spaces.

Now we prove a measurability result about the map π
Γ
.

Lemma 6.1. If Γ is σ−compact and (18) holds, then the map π
Γ

which as-
sociates to any point in TΓ the maximal transport ray in So(Rn) containing
it is Borel.

Proof. Since Γ is σ−compact, let us write Γ =
⋃

i∈N Γi, where each Γi is
compact; we define also ϕ : P(So) → P(Rn), denoting by P(X) the subsets of
X, as follows:

ϕ(C) := {x ∈ R
n : ∃S ∈ C s.t. x ∈ S} ∀C ⊂ So.

The first thing we can note is the following
Claim: If C ⊂ So(Rn) is closed, then ϕ(C) ⊂ R

n is Borel.
Let us first of all consider the case when C is compact: the assert follows
directly, recalling Definition 6.1: if we would work with the closed segments,
i.e. with Sc(Rn) instead of So(Rn), then the image of C were easily seen to
be compact, and then ϕ(C) is a countable union of compact sets, and then a
Borel set. In general, if C is closed, it is a countable union of compact sets,
and then ϕ(C) is a countable union of Borel sets, thus Borel.

To prove the thesis, given a compact C ⊂ So(Rn), it suffices to show that
π

Γ
−1(C) is a Borel set: to do this, first of all we define

Ci :=
{]]

sx+ (1 − s)y, ty + (1 − t)x
[[

s.t. ]]x, y[[∈ C, 0 ≤ s, t ≤ 1
2i

}
,
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which is easily seen to be closed (in fact, it is compact). Given any p > 0,
we will moreover denote by Gp the (closed) set of all the open segments in
R

n of lenght p. We need to define now the sets Γi,j ⊂ So(Rn) with i, j ∈ N;
to begin, for any X ⊂ So(Rn) we will denote by Sub(X) the set of all its
open subsegments: in other words, ]]x, y[[∈ Sub(X) if and only if there exists
]]z, w[[∈ X such that ]]x, y[[⊂ ]]z, w[[. For j = 1, then, we fix Γi,1 := Sub (Γi),
while for j = 2, it will be

Γi,2 :=Sub
(
Γi,1

⋃
{]]x, y[[=]]x,w[[∪ ]]z, y[[ s.t. ]]x,w[[, ]]z, y[[∈ Γi,1, |z − w| ≥ 1}

)
.

In words, we add to Γi,1 some open segments which are union of two segments
in Γi,1, and then consider again all the possible subsegments; it is easy to
note that Γi,2 is closed thanks to the request |z−w| ≥ 1 in the last definition
(in fact, we made that assumption only to ensure the closedness of Γi,2). In
general, we will write

Γi,j+1 :=Sub
(
Γi,j∪

{
]]x, y[[=]]x,w[[∪ ]]z, y[[ s.t. ]]x,w[[, ]]z, y[[∈Γi,j , |z−w| ≥ 1/j

})
which generalizes the definition of Γi,2. One can note that Γi,i is an increasing
sequence of subsets of So(Rn) and that

Γi,i −→ Sub
(
π

Γ
(TΓ )

)
for i→ +∞.

The last step to reach the thesis is then to note that

π
Γ

−1(C) =
⋂
i∈N

⋃
m∈N

⋃
p∈Q+

⋂
n≥m

((
ϕ
(
Γn ∩ Ci ∩Gp

))∖ (
ϕ
(
Γn ∩Gp+1/2i−1

)))
,

which assures π
Γ

−1(C) to be Borel. To be convinced of the last equation, let
us restrict our attention to the case when Γ is associated to a single maximal
transport ray ]]x, y[[ of lenght l: then we can note that, for n sufficiently large,(

ϕ
(
Γn ∩Gp

)) ∖ (
ϕ
(
Γn ∩Gp+1/2i−1

))
is empty unless p ≤ l ≤ p+ 1/2i−1. Thus⋃

m∈N

⋃
p∈Q+

⋂
n≥m

((
ϕ
(
Γn ∩ Ci ∩Gp

))∖ (
ϕ
(
Γn ∩Gp+1/2i−1

)))
(19)

is empty if Ci does not contain segments “close” to ]]x, y[[, and then the inter-
section among all the integers i is empty if C does not contain ]]x, y[[; on the
other hand, if C contains ]]x, y[[ then the set in (19) is exactly ϕ(]]x, y[[). The
intersection for all the integers i, then, gives the thesis. We can now note that
the same argument works in the general case with many maximal transport
rays, since we can consider separately each maximal ray and apply the argu-
ment to it; note also that the role of the no-crossing condition (18) is only to
ensure that each point in TΓ is contained in a unique maximal transport ray,
which allows to define the map π

Γ
.
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Now we state an “abstract” existence result on optimal transport maps.
The result is valid under some regularity conditions on the decomposition in
transport rays induced by Γ . Notice that assumption (ii) below on the µ-
negligibility of left extreme points which are not fixed points is necessary for
n ≥ 3 even for absolutely continuous measures µ, in view of the counterex-
ample in [33]. We will show in [5] that (ii), (iii) hold for n = 2 whenever µ is
absolutely continuous.

Theorem 6.1. Let µ, ν ∈ P(Rn) with finite first order moments and let γ ∈
Π(µ, ν) be concentrated on Γ . Assume that (18) holds and that

(i) µ is absolutely continuous with respect to Ln;
(ii)T l

Γ \ (TΓ ∪ FΓ ) is µ-negligible;
(iii)there exists a µ-negligible set N ⊂ TΓ and an increasing sequence of com-

pact sets Kh such that τ
Γ
|Kh

is a Lipschitz map and the union of Kh is
TΓ \N .

Then there exists γ# ∈ Π(µ, ν) such that

(a) γ# is induced by a transport map t and t is optimal whenever Γ is c-
monotone.

(b) γ# is concentrated on the set of pairs (x, y) such that either x = y or [[x, y]]
is contained in the closure of a maximal transport ray of Γ .

(c) For any convex function φ : [0,+∞) → R bounded from below we have∫
Rn×Rn

φ(|x− y|) dγ# ≤
∫

Rn×Rn

φ(|x− y|) dγ.

If φ is strictly convex the inequality above is strict unless γ = γ#.

Proof. We split the proof in five steps. In the first four steps we assume that
FΓ ⊂ TΓ , i.e. that any fixed point is contained in a transport ray. In the
following, points in the closure of the same maximal transport rays will be
ordered according to the orientation of the ray.
Step 1. The map r which associates to a pair (x, y) ∈ Γ the closure of the
maximal transport ray containing ]]x, y[[ when x �= y and containing {x} when
x = y is well defined on Γ , hence defined γ-a.e. According to Theorem 9.2 we
can represent

γ = γC ⊗ σ with σ := r#γ ∈ P(Sc(Rn))

where γC are probability measures in R
n × R

n concentrated on r−1(C) ⊂
C × C, and therefore satisfying

γC ({(x, y) ∈ C × C : y < x}) = 0. (20)

We define µC := π0#γC and νC := π1#γC , so that γC ∈ Π(µC , νC) and (37)
yields
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µ = µC ⊗ σ, ν = νC ⊗ σ. (21)

Since r−1(C) ⊂ C × C the probability measures µC , νC are concentrated on
C. More precisely, we will use in the following the fact that µC is concentrated
on π0

(
r−1(C)

)
. Notice also that µC , νC have finite first order moments for

σ-a.e. C because µ and ν have finite first order moments.
Step 2. We claim that µC has no atom for σ-a.e. C.

Taking into account Proposition 6.1(ii), the inclusion FΓ ⊂ TΓ and the
assumption (ii) we obtain that µ is concentrated on TΓ , therefore µC is con-
centrated on TΓ∩π0(r−1(C)) for σ-a.e. C. Now we check that, due to condition
(18), TΓ ∩ π0(r−1(C)) is contained in the relative interior of C. Indeed, let
x ∈ TΓ ∩ π0(r−1(C)), let (x′, y′) ∈ Γ such that x ∈]]x′, y′[[ and let C0 be the
closure of the maximal transport ray containing ]]x′, y′[[. If C = C0 then x is
in the relative interior of C; if, on the other hand, C �= C0 then there exists
y ∈ R

n such that r(x, y) = C, thus condition (18) is violated because [[x, y]]
and [[x′, y′]] intersect at x′, in the relative interior of [[x, y]].

Denoting by π
Γ

: TΓ �→ So(Rn) the map which associates to a point
the maximal transport ray containing it, by Theorem 9.4, Remark 9.1 and
assumption (iii) we have µ = µ′

A ⊗ θ with θ = π
Γ #µ, µ′

A concentrated on
π−1

Γ
(A) ⊂ A, and µ′

A � H1 A (and in particolar has no atom) for θ-a.e. A.
Denoting by cl : So(Rn) → Sc(Rn) the bijection which associates to an

open segment its closure, we have

µ = µC ⊗ σ(C) = µcl(A) ⊗ cl−1
# σ(A)

and since µcl(A) are probability measures concentrated on A the uniqueness
Theorem 9.2 gives cl−1

# σ = θ and µcl(A) = µ′
A for θ-a.e. A.

As σ = cl#θ, this proves that µC has no atom for σ-a.e. C.
Step 3. According to Theorem 5.1 we can find a non-decreasing map tC
defined on the relative interior of C (i.e. the maximal transport ray relative to
C) and with values in C, such that tC#µC = νC . Moreover, by Theorem 5.2
and (20), for any convex function φ : [0,+∞) → R bounded from below we
have ∫

C

φ(|x− tC(x)|) dµC ≤
∫

C×C

φ(|x− y|) dγC (22)

with strict inequality if φ is strictly convex and (Id× tC)#µC �= γC .
Step 4. We define t on TΓ by gluing the maps tC . Since the map C �→
γC = (Id× tC)#µC is Borel (as a measure-valued map, see the Appendix) by
Theorem 9.3 we infer the existence of a Borel map t such that t = tC µC-a.e.
for σ-a.e. C. As tC and t map µC in νC , it follows immediately from (21) that
t maps µ into ν.

Setting γ# := (Id × t)#µ ∈ Π(µ, ν), conditions (a) and (b) are satisfied
by construction, as the segments [[x, t(x)]] are contained in the closure of a
maximal transport ray of Γ . Condition (c) follows by (22) after an integration
on Sc(Rn) with respect to σ.
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Step 5. Now we remove the assumption that FΓ ⊂ TΓ . Let L := FΓ \TΓ and
let Γ ′ = Γ \{(x, x) : x ∈ L}. By applying the first four steps to γ′ := γ Γ ′ we
obtain a transport map t defined on TΓ ′ mapping π0#γ

′ to π1#γ
′. Noticing

that TΓ = TΓ ′ , it suffices to extend t to L setting t = Id on L and to set
γ# := (Id× t)#µ.

Now we assume that ‖ · ‖ is a norm in R
n satisfying the regularity and

uniform convexity conditions

c1 ≤
∂2

∂ξ∂ξ
‖ · ‖2 ≤ c2 ∀ξ ∈ Sn−1 for some c2 ≥ c1 > 0. (23)

We consider a σ-compact set Γ ⊂ Γu, where

Γu := {(x, y) ∈ R
n × R

n : ‖x− y‖ = u(x) − u(y)} (24)

for some function u : R
n → R which is 1-Lipschitz relative to the distance

induced in R
n by ‖ · ‖.

Theorem 6.2. With the choice of Γ above, (18) and the following properties
hold:

(i) For any maximal transport ray S we have u(x′)−u(y′) = ‖x′−y′‖ whenever
x′, y′ ∈ S and x′ ≤ y′.

(ii)The set T l
Γ \ (TΓ ∪ FΓ ) is Lebesgue negligible.

(iii)Condition (iii) in Theorem 6.1 holds.

Proof. Arguing as in [16] (or [24] for the euclidean norm) one can show that
at any point z ∈]]x, y[[ inside TΓ the function u is differentiable, ‖du(z)‖∗ = 1,
and (du(z))∗ is the direction of the ray ]]x, y[[. This immediately leads to the
fact that (18) holds.
(i) We first show the property for transport rays. If x′, y′ ∈]]x, y[[ and x′ ≤ y′

then

u(x) − u(x′) ≤ ‖x− x′‖ and u(y′) − u(y) ≤ ‖y − y′‖,

so that, taking into account that u(x) − u(y) = ‖x− y‖ and

‖x− y‖ = ‖x− x′‖ + ‖x′ − y′‖ + ‖y′ − y‖

we obtain that u(x′)−u(y′) ≥ ‖x′ − y′‖. The extension to maximal transport
rays is analogous.
Properties (ii), (iii) with Γ = Γu and N = ∅ are shown in [16]. A fortiori
(iii) holds when Γ ⊂ Γu, as TΓ ⊂ TΓu , while the set in (ii) is more sensitive
to the choice of Γ . For the reader’s convenience we give a different proof of
both (ii) and (iii), in the spirit of [3] and based on semiconcavity estimates,
in the general situation when Γ is contained in Γu. In the following we denote
by T the set T l

Γu
\ Σ, where Σ is the Ln-negligible Borel set where u is not

differentiable.
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Step 1. We show that x �→ du(x) is Ln-countably Lipschitz on T . Given a
direction ξ ∈ Sn−1 and a ∈ R, let R be the union of the half closed maximal
transport rays [[x, y[[ with 〈y − x, ξ〉 ≥ 0 and 〈y, ξ〉 ≥ a. It suffices to prove
that the restriction of du to

Ra := R ∩ {x : x · ξ < a}

has the countable Lipschitz property stated in the theorem. To this aim, since
BVloc funtions have this property (see for instance Theorem 5.34 of [2] or [26]),
it suffices to prove that ∇u coincides Ln-a.e. in Ra with a suitable function
w ∈ [BVloc(Sa)]n, where Sa = {x : x · ξ < a}. To this aim we define

ũ(x) := min {u(y) + ‖x− y‖ : y ∈ Ya}

where Ya is the collection of all right endpoints of maximal transport rays
with y · ξ ≥ a. By construction ũ ≥ u and equality holds on Ra.

We claim that, for b < a, ũ − C|x|2 is concave in Sb for C = C(b) large
enough. Indeed, since ‖x− y‖ ≥ a− b > 0 for any y ∈ Ya and any x ∈ Sb, the
functions

x �→ u(y) + ‖x− y‖ − C|x|2, y ∈ Ya

are all concave in Sb for C large enough depending on a − b (here we use
the upper estimate in (23)). In particular, as gradients of real valued concave
functions are BVloc (see for instance [1]), we obtain that

w := ∇ũ = ∇(ũ− C|x|2) + 2Cx

is a BVloc function in Sa. Since ∇u = w Ln-a.e. in Ra the proof is achieved.
Now we notice that the duality map which associates to a unit vector

L ∈ (Rn)∗ the unique unit vector v ∈ R
n such that L(v) = 1 is Lipschitz

(here we use the lower bound in (23)): indeed, setting φ(v) = ‖v‖2/2, by
the Lagrange multiplier rule we have L + λ∇φ(v) = 0 for some λ ∈ R and
evaluation at v gives λ = −1/〈∇φ(v), v〉 (because 〈L, v〉 = 1), therefore

L =
∇φ(v)

〈∇φ(v), v〉 =
∇φ(v)
2φ(v)

= ∇φ(v).

Since v �→ ∇φ(v) is a strictly monotone operator its inverse is a Lipschitz
map. It follows that x �→ (du(x))∗ is Ln-countably Lipschitz on T .
Step 2. Now we show that the family L of left extreme points of maximal
transport rays of Γu is Lebesgue negligible. As Γu is closed and

L =
⋃

(x,y)∈Γu

[[x, y[[
∖ ⋃

(x,y)∈Γu

]]x, y[[

we have that L is a Borel set. For any x ∈ L \ Σ there is a unique maximal
transport ray emanating from x, with direction (du(x))∗ and with length
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l(x). It is immediate to check that l is upper semicontinuous on L \ Σ, and
therefore l is a Borel function. By Lusin theorem it will be sufficient to show
that Ln(K) = 0 for any compact set K ⊂ L \ Σ where l and (du)∗ are
continuous. We define

B :=
⋃

x∈K

[[x, x+
l(x)
2

(du(x))∗]] \Σ

(B is Borel due to the continuity of l and of (du)∗) and we apply Theorem 9.4
with λ = Ln K and τ(x) = (du(x))∗ (notice that condition (iii) of the
theorem holds because of Step 1 and the inclusion B ⊂ T ) to get

Ln(K) =
∫

Sc(Rn)
λC(K) dµ(C) = 0

because λC � H1 C for µ-a.e. C and K ∩C contains only one point for any
closed maximal transport ray C.
Step 3. We show that T l

Γ \ (TΓ ∪ FΓ ) is Lebesgue negligible. Any point in
this set is either a left extreme point of a maximal transport ray of Γu or is
contained in TΓu

. Therefore, by Step 2, it suffices to consider only the set

R := T l
Γ ∩ TΓu \ (TΓ ∪ FΓ ).

Since the intersection of R with any maximal transport ray of Γu is at most
countable, by Remark 9.1 with B = R and λ = Ln R we obtain as in Step
2 that Ln(R) = 0.

7 A stability result

In this section we assume that:
(I) µ, ν are probability measures in R

n with finite first order moments and
µ� Ln;
(II) c(x, y) = ‖x−y‖, where the norm ‖ ·‖ satisfies the regularity and uniform
convexity conditions (23).

The main results of this section is the following existence and stability
theorem. For ε > 0, we consider nondecreasing and strictly convex maps
φε : [0,+∞) → [0,+∞) satisfying the following conditions:
(a) ε→ φε(d) is convex and φε(d) → d as ε ↓ 0 for any d ≥ 0;
(b) the right derivative

φ(d) := lim
ε→0+

φε(d) − d

ε

exists and is a real-valued strictly convex function in [0,+∞) bounded from
below.

Two model cases are φε(d) = d+εφ(d), with φ strictly convex and bounded
from below, or φε(d) = d1+ε. In the latter case, φ(d) = d ln d.
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Theorem 7.1. Assume (I) and (II). Then:

(i) The problem

min
{∫

Rn

‖t(x) − x‖ dµ(x) : t#µ = ν

}
(25)

has a solution.
(ii)Assume that∫

Rn×Rn

φε0(‖x− y‖) dγ <∞ for any γ ∈ Π(µ, ν) (26)

for some ε0 > 0 and let, for ε ∈ (0, ε0), tε be the optimal maps in the
problem

min
{∫

Rn

φε (‖t(x) − x‖) dµ(x) : t#µ = ν

}
. (27)

Then tε → t in measure as ε→ 0+ and t solves (25).

Proof. We need only to prove statement (ii). Indeed, choosing φ(t)+
√

1 + t2−
1, (26) holds for any ε0 > 0 with φε = Id + εφ. Therefore we can apply
statement (ii) to obtain an optimal transport map as limit as ε→ 0+ of maps
tε.

The proof of (ii) relies essentially on Theorem 7.2 below. Indeed, the vari-
ational argument of Proposition 7.1, based on the theory of Γ -asymptotic
expansions, shows that any γ0, limit point of γε = (Id× tε)#µ as ε → 0+, is
an optimal planning for the Kantorovich problem and, in addition, minimizes
the secondary variational problem

γ �→
∫

Rn×Rn

φ(‖x− y‖) dγ

among all optimal plannings for the primary variational problem. Theorem 7.2
says that there is a unique such minimizer induced by a transport map t, i.e.
γ0 = (Id× t)#µ.

This shows that problem (25) has a solution and that (Id × tε)#µ →
(Id × t)#µ weakly as ε → 0+. Let now δ > 0 and choose a compact set
K ⊂ R

n such that t|K is continuous and µ(Rn \ K) < δ. Denoting by t̃ a
continuous extension of t|K and choosing as test function

ϕ(x, y) = χK(x) × ψ
(
y − t̃(x)

)
with ψ ∈ C(Rn, [0, 1]), ψ(0) = 0 and ψ(z) = 1 for |z| ≥ δ, we obtain

lim sup
ε→0+

µ ({|tε − t| > δ}) ≤ δ + lim sup
ε→0+

µ (K ∩ {|tε − t| > δ})

≤ δ + lim sup
ε→0+

∫
ϕdγε

≤ δ +
∫

ϕd(Id× t)#µ = δ.
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Since δ > 0 is arbitrary this proves the convergence in measure of tε to t.

Theorem 7.2. Assume (I) and (II). Let Π1(µ, ν) be the collection of all op-
timal plannings in the primary problem

min
{∫

Rn×Rn

‖x− y‖ dγ : γ ∈ Π(µ, ν)
}

(28)

and let φ : [0,+∞) → R be a strictly convex function bounded from below. Let
us consider the secondary variational problem

min
{∫

Rn×Rn

φ(‖x− y‖) dγ : γ ∈ Π1(µ, ν)
}

(29)

and let us assume that the minimum is finite. Then (29) has a unique solution
and this solution is induced by a transport map t.

Proof. The existence of a solution γ0 of the secondary variational problem
is a direct consequence of the weak compactness of the class Π1(µ, ν). As
c-concavity reduces to 1-Lipschitz continuity when the cost function is a dis-
tance, according to Theorem 3.3 there exists a function u : R

n → R which
is 1-Lipschitz with respect to the distance induced by ‖ · ‖ and such that
γ ∈ Π1(µ, ν) if and only if

spt γ ⊂ {(x, y) ∈ R
n × R

n : u(x) − u(y) = ‖x− y‖} .

We define Γ = Γu as in (24) and we wish to apply Theorem 6.1 to γ0. Obvi-
ously assumption (i) of the theorem is satisfied, while assumptions (ii), (iii)
follow by Theorem 6.2(ii) and Theorem 6.2(iii).

By Theorem 6.1 we obtain γ# = (Id× t)#µ ∈ Π(µ, ν) such that∫
Rn×Rn

ψ(|x− y|) dγ# ≤
∫

Rn×Rn

ψ(|x− y|) dγ

for any convex function ψ : [0,+∞) → R bounded from below, with strict
inequality if ψ is strictly convex. Choosing ψ(t) = t we obtain that γ# ∈
Π1(µ, ν). Choosing ψ = φ the minimality of γ0 in (29) gives γ0 = γ#, and
therefore γ0 is induced by a transport map.

The uniqueness of γ0 is an easy consequence of the linear structure of the
variational problems (28), (29): if γ0 = (Id × t)#µ and γ′

0 = (Id × t′)#µ are
both optimal then (γ0 + γ′

0)/2 is still optimal and therefore is induced by a
transport map. This is possible only if t = t′ µ-a.e.

Remark 7.1. The secondary variational problem (29) can also be rephrased as
follows: minimize

γ �→
∫

Rn×Rn

c̃(x, y) dγ

in Π(µ, ν), where c̃ : R
n × R

n → [0,+∞] is given by
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c̃(x, y) =
{
φ(‖x− y‖) if ‖x− y‖ ≤ u(x) − u(y)
+∞ if ‖x− y‖ > u(x) − u(y).

Indeed, the duality theory for the primary variational problem says that γ ∈
Π1(µ, ν) if and only if spt γ ⊂ Γu.

Proposition 7.1. Assume (I) and (26). For ε ∈ (0, ε0), let tε be the optimal
maps in (27) and let γε = (Id× tε)#µ be the optimal plannings associated to
tε. Then any limit point γ0 of γε is a minimizer of the secondary variational
problem (29) and the minimum if finite.

Proof. For γ ∈ Π(µ, ν) and ε ∈ (0, ε0) we define

Fε(γ) :=
∫

Rn×Rn

φε (‖x− y‖) dγ, F (γ) :=
∫

Rn×Rn

‖x− y‖ dγ.

Let m = minF and F ′
ε := (Fε −m)/ε. According to Theorem 4.1 it suffices

to show that Fε Γ -converge in Π(µ, ν) to F and F ′
ε Γ -converge in Π(µ, ν) to

F ′(γ) :=



∫

Rn×Rn

φ (‖x− y‖) dγ if γ ∈ Π1(µ, ν)

+∞ otherwise

(here we consider any metric in Π(µ, ν) inducing the convergence in the du-
ality with Cb(Rn × R

n)).
In order to show the Γ -convergence of Fε to F , we notice that the convexity

of ε �→ φε(d) gives

lim inf
ε→0+

Fε(γε) ≥ lim inf
ε→0+

∫
B

‖y − x‖ − εφ (‖y − x‖) dγε ≥
∫

B

‖y − x‖ dγ

for any family γε weakly converging to γ and any bounded open set B ⊂
R

n × R
n. Letting B ↑ R

n × R
n the lim inf inequality follows.

The lim sup inequality with γε = γ is again a direct consequence of a
convexity argument, which provides the estimate

Fε(γ) − F (γ) ≤ ε

ε0
(Fε0(γ) − F (γ)) .

Now we show the Γ -convergence of F ′
ε, starting from the lim inf inequality.

Let γε → γ weakly and assume with no loss of generality that lim infε F
′
ε(γε)

is finite. Then, the Γ -convergence of Fε to F gives that γ ∈ Π1(µ, ν) and the
convexity of the map ε �→ φε(d) gives φε(d) ≥ d+ εφ(d), so that

Fε(γε) −m ≥ Fε(γε) − F (γε) ≥ εF ′(γε).

As φ is continuous and bounded from below, dividing both sides by ε we
obtain
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lim inf
ε→0+

F ′
ε(γε) ≥ lim inf

ε→0+
F ′(γε) ≥ F ′(γ).

In order to show the lim sup inequality we can assume with no loss of generality
that γ ∈ Π1(µ, ν). Then

Fε(γ) −m

ε
=
∫

Rn×Rn

φε(‖y − x‖) − ‖y − x‖
ε

dγ

and since ε �→ (φε(d) − d)/ε is nondecreasing the dominated convergence
theorem gives

lim
ε→0+

Fε(γ) −m

ε
= F ′(γ).

8 A counterexample

In the transport problem in the Euclidean space R
n, the condition

µ(B) = 0 whenever B ∈ B(Rn) and Hn−1(B) <∞ (30)

ensures existence of optimal transport maps whenever ν has compact support
and c(x, y) = h(y−x), with h strictly convex and locally C1,1 (see [30]). Con-
dition (30) is sharp, as the following simple and well-known example shows:

Example 8.1. Let I = [0, 1], µ = H1 {0}×I, 2ν = H1 {−1}×I+H1 {1}×
I. Then, choosing c(x, y) = |x − y|α, with α > 0, it is easy to check that
γx := (δ(1,x2) + δ(−1,x2))/2 is the unique solution of the Kantorovich problem.
Therefore the classical transport problem has no solution.

In this section we show that (30) does not provide in general existence
of optimal transport maps when the cost function is the euclidean distance,
building measures µ with dimension arbitrarily close to n such that the trans-
port problem has no solution. This basically happens because in this case
different maximal transport rays cannot cross in their interior (see (18)). Our
construction provides also a counterexample to the statement made in the
last page of [41] about the existence of optimal transport maps for measures
µ such that µ(Br(x)) = o(rn−1).

Lemma 8.1 (Horizontal transport rays). Let I = [0, 1] and let µ, ν be
probability measures in R

2 with support respectively in I×I and [5, 6]×I. We
assume that

µ([0, 1] × [0, t]) = ν([5, 6] × [0, t]) ∀t ∈ I. (31)

Then the optimal plannings move mass only along horizontal rays.
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Proof. Let γ be an optimal planning relative to µ, ν. Assuming by contradic-
tion that mass is not transported along horizontal rays, the number

ε := sup {|y2 − x2| : (x, y) ∈ spt γ}

is strictly positive and we can choose (x, y) ∈ spt γ such that |y2 − x2| > ε/2.
We assume with no loss of generality (up to a reflection) that y2 < x2 and we
prove by an elementary geometric argument the existence of (x′, y′) ∈ spt γ
with y′

2 − x′
2 > ε, thus reaching a contradiction.

x

z

x′

y′

y

Fig. 2. Location of rays in Lemma 8.1

Applying the mass balance condition (31) with t = (x2 + y2)/2, we can
find (x′, y′) ∈ spt γ such that y′

2 ≥ t ≥ x′
2 and, since the rays [[x, y]] and [[x′, y′]]

cannot cross, there is z ∈ [[x′, y′]] with z1 = x1 and z2 > x2 as in Figure 2
(possibly exchanging the roles of µ and ν). By easy geometric arguments the
following inequalities hold:

z1 − x′
1 ≤ 1, y′

1 − x′
1 ≥ 4, z2 − x′

2 ≥ x2 − t =
x2 − y2

2
>

ε

4
.

Then, since by similitude
y′
2 − x′

2

z2 − x′
2

=
y′
1 − x′

1

z1 − x′
1
, it follows y′

2 − x′
2 > ε, the

searched contradiction.

Theorem 8.1. For any s ∈ (1, 2) there exists a continuous function f : I → I
such that, setting

Γ := {(x1, x2) : x1 = f(x2)}, µ := (f × Id)#L1 I, ν := L2 ([5, 6] × I)

the following properties hold:

(i) The Hausdorff dimension of Γ is s and µ� Ht for any t < s;
(ii)the Kantorovich problem with data µ, ν and c(x, y) = |x−y| has the unique

solution γx = H1
(
[5, 6] × {x2}

)
.

In particular µ satisfies (30) but the classical optimal transport problem has
no solution.
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Proof. (i) We use the classical construction given in Theorem 8.2 of [25]. Let
g : R → R be the 4-periodic sawtooth function defined by

g(x) =



x if 0 ≤ x ≤ 1
2 − x if 1 ≤ x ≤ 3
x− 4 if 3 ≤ x ≤ 4

(32)

and set

f(x) := κ+
∞∑

i=1

λs−2
i g(λix) x ∈ I

where (λi) ⊂ (0,+∞) are such that λi+1/λi → +∞ and ln(λi+1)/ ln(λi) → 1
(for instance λi = i!). We choose κ ∈ R and normalize λi so that 0 ≤ f ≤ 1.
In [25] it is shown that there exists a constant δ > 0 such that

|f(x) − f(y)| ≤ 6|x− y|2−s for |x− y| ≤ δ. (33)

As a consequence, a simple covering argument (see Theorem 8.1 in [25]) gives

Hs (Γ ∩Qr(x)) ≤ crs ∀r ∈ (0, 2), (34)

with c = c(s, δ), for any cube Qr(x) with side length r centered at x ∈ Γ . In
particular Hs(Γ ) <∞.

Another estimate still proved in [25] (see (8.12) on page 117) gives for any
t < s the existence of a constant c1 = c1(t) such that

µ (Γ ∩Qr(x)) ≤ c1r
t ∀x ∈ Γ, r ∈ (0, 2). (35)

It follows that µ� Ht for any t < s. If Ht(Γ ) were finite for some t < s then
Ht′

(Γ ) would be equal to 0 for t′ = (s+ t)/2, hence µ(Γ ) would be zero. This
contradiction proves that Ht(Γ ) = +∞ for any t < s, hence the Hausdorff
dimension of Γ is s.
(ii) The measures µ, ν satisfy by construction the identity (31). By Lemma 8.1
the support of γx is contained in [5, 6] × {x2} for µ-a.e. x. Since

ν =
∫

R2
γx dµ(x) =

∫
I

γ(f(t),t) dt

and the measures γ(f(t),t) are supported on R × {t}, the uniqueness of the
disintegration of ν with respect to t = x2 yields γ(f(t),t) = H1

(
[5, 6] × {t}

)
for a.e. t ∈ I.

9 Appendix: disintegration of measures

In this appendix we recall some basic facts about disintegration of measures,
focussing for simplicity on the case of positive measures. In this section, un-
less otherwise stated, all spaces X, Y, Z we consider are locally compact and
separable metric spaces.
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Theorem 9.1 (Existence). Let π : X → Y be a Borel map, let λ ∈ M+(X)
and set µ = π#λ ∈ M+(Y ). Then there exist measures λy ∈ M+(X) such
that

(i) y �→ λy is a Borel map and λy ∈ P(X) for µ-a.e. y ∈ Y ;
(ii)λ = λy ⊗ µ, i.e.

λ(A) =
∫

Y

λy(A) dµ(y) ∀A ∈ B(X); (36)

(iii)λy is concentrated on π−1(y) for µ-a.e. y ∈ Y .

According to our terminology (which maybe is not canonical), a map y �→
λy is Borel if y �→ λy(B) is a Borel map in Y for any B ∈ B(X). This is
equivalent (see for instance [2]) to the property that

y �→
∫

X

ϕ(x, y) dλy(x)

is a Borel map in Y for any bounded Borel function ϕ : X × Y → R. Our
terminology is also justified by the observation that y �→ λy is a Borel map
in the conventional sense if we view P(X) as a subset of the compact metric
of all positive Radon measures with total mass less than 1, endowed with
the weak∗ topology coming from the duality with continuous and compactly
supported functions in X. We will always make this embedding when we need
to consider the space of probability measures as a measurable space.

The representation provided by Theorem 9.1 of λ can be used sometimes
to compute the push forward of λ. Indeed,

f#(λy ⊗ µ) = f#λy ⊗ µ (37)

for any Borel map f : X → Z, where Z is any other metric space. Notice also
that if T : Y → Z is a Borel and 1-1 map, µ′ := T#µ and λ = ηz ⊗ µ′, then

λy = ηT (y) for µ-a.e. y ∈ Y . (38)

This is a simple consequence of the uniqueness of the disintegration, see The-
orem 9.2 below.

The proof of Theorem 9.1 is available in many textbooks of measure theory
or probability (in this case λy are the the so-called conditional probabilities
induced by the random variable π, see for instance [2, 19]). In the case when
X = Y × Z is a product space and π(y, z) = y is the projection on the first
variable the measures λy are concentrated on π−1(y) = {y} × Z, therefore it
is often convenient to consider them as measures on Z, rather than measures
on X, writing (36) in the form

λ(B) =
∫

Y

λy ({z : (y, z) ∈ B}) dµ(y) ∀B ∈ B(X). (39)
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We will always use this convention in the Kantorovich problem, writing each
γ ∈ Π(µ, ν) ⊂ P(X × Y ) as γx ⊗ µ with γx probability measures in Y .

Once the decomposition theorem is known in the special case X = Y × Z
and π(y, z) = z the general case can be easily recovered: it suffices to embed
X into the product Y × X through the map f(x) = (π(x), x) and to apply
the decomposition theorem to λ̃ = f#λ.

Now we discuss the uniqueness of λy and µ in the representation λ = λy⊗µ.

Theorem 9.2 (Uniqueness). Let X, Y and π be as in Theorem 9.1; let
λ ∈ M+(X), µ ∈ M+(Y ) and let y �→ ηy be a Borel M+(X)-valued map
defined on Y such that

(i) λ = ηy ⊗ µ, i.e. λ(A) =
∫

Y
ηy(A) dµ(y) for any A ∈ B(X);

(ii)ηy is concentrated on π−1(y) for µ-a.e. y ∈ Y .

Then the ηy are uniquely determined µ-a.e. in Y by (i), (ii) and moreover,
setting C = {y : ηy(X) > 0}, the measure µ C is absolutely continuous with
respect to π#λ. In particular

µ B

π#λ
ηy = λy for π#λ-a.e. y ∈ Y (40)

where λy are as in Theorem 9.1.

Proof. Let ηy, η
′
y be satisfying (i), (ii). We have to show that ηy = η′

y for
µ-a.e. y. Let (An) be a sequence of open sets stable by finite intersection
which generates the Borel σ-algebra of X. Choosing A = An ∩ π−1(B), with
B ∈ B(Y ), in (i) gives∫

B

ηy(An) dµ(y) =
∫

B

η′
y(An) dµ(y).

Being B arbitrary, we infer that ηy(An) = η′
y(An) for µ-a.e. y, and therefore

there exists a µ-negligible set N such that ηy(An) = η′
y(An) for any n ∈ N

and any y ∈ Y \N . By a well-know coincidence criterion for measures (see for
instance Proposition 1.8 of [2]) we obtain that ηy = η′

y for any y ∈ Y \N .
Let B′ ⊂ B be any π#λ-negligible set; then π−1(B′) is λ-negligible and

therefore (ii) gives

0 =
∫

Y

ηy

(
π−1(B′)

)
dµ(y) =

∫
B′
ηy(X) dµ(y).

As ηy(X) > 0 on B ⊃ B′ this implies that µ(B′) = 0. Writing µ B = hπ#λ
we obtain λ = hηy ⊗ π#λ and λ = λy ⊗ π#λ. As a consequence (40) holds.

In the following proposition we address the delicate problem, which occurs
in optimal transport problems, of the measurability of maps f obtained by
“gluing” different transport maps defined on the level sets of π. Simple exam-
ples show that the λy-measurability of f , though necessary, it is not sufficient:
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for instance when X = Y × Z is a product space, π is the projection on the
first factor and λ is concentrated on the graph of φ : Y → Z, then λy are
Dirac masses concentrated at (y, φ(y)) for µ-a.e. y, therefore λy-measurability
provides no information on λ-measurability or, rather, on the existence of a
Borel map g such that g = f λy-a.e. for µ-a.e. y ∈ Y .

In order to state our measurability criterion we need some more terminol-
ogy. Given a λy-measurable function f : X → Z, we canonically associate to
f the measure γy(f) := (Id×f)#λy, a probability measure in X×Z. It turns
out that the measurability of the map y �→ γy is sufficient to provide a Borel
map g equivalent to f , i.e. such that g = f λy-a.e. for µ-a.e. y.

Theorem 9.3 (Measurability criterion). Keeping the notation of Theo-
rem 9.1, let f : X → Z be satisfying the following two conditions:

(i) f is λy-measurable for µ-a.e. y;
(ii)y �→ γy(f) is a µ-measurable map between Y and P(X × Z).

Then there exists a Borel map g : X → Z such that g = f λy-a.e. for µ-a.e.
y.

Proof. For the sake of simplicity we consider only the case when X, Y, Z are
compact. Given ν ∈ M+(X) we define a metric on the space L(X, ν;Z) of
ν-measurable maps between X and Z by

dν(f, g) :=
∫

X

dZ (f(x), g(x)) dν(x).

It is well known that this metric induces the convergence in ν-measure and
that L(X, ν;Z) is a complete metric space (with the canonical equivalence
relation between ν-measurable maps).

Without loss of generality (by Lusin’s theorem, see Theorem 2.3.5 in [26])
we can assume that:
(a) π is continuous (so that sptλy ⊂ π−1(y) are pairwise disjoint).
(b) y �→ sptλy is continuous between Y and the class K of closed subsets
of X, endowed with the Hausdorff metric. Indeed, the σ-algebra of the Borel
subsets of K is generated by the sets {K : K ∩U �= ∅}, for U ⊂ X open, and

{y : sptλy ∩ U �= ∅} = {y : λy(U) > 0} ∈ B(Y ).

(c) y �→ λy is continuous.
Step 1. We assume first that the restriction of f to sptλy is a M -Lipschitz
function with values in Z for some M ≥ 0 independent of y. By Lusin’s
theorem again we can find an increasing family of compact sets Yh ⊂ Y
whose union covers µ-almost all of Y and such that γy(f) restricted to Yh is
continuous for any h.

We claim now that the restriction of f to the compact set (compactness
comes from assumption (b))
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Xh :=
⋃

y∈Yh

sptλy

is continuous. Indeed, assume that xk ∈ sptλyk
converge to x ∈ sptλy (with

yk, y ∈ Yh) but dY (f(xk), f(x)) ≥ ε for some ε > 0. Then the equi-Lipschitz
condition provides r > 0 such that dY (f(z), f(w)) ≥ ε/2 for any choice of
z ∈ Br(x) ∩ sptλyk

, w ∈ Br(x) ∩ sptλy. Choosing a test function χ of the
form χ1(x)χ2(z), with sptχ1 ⊂ Br(x), sptχ2 ⊂ Bε/2(f(x)) and χ2(f(x)) = 1
we find

lim
k→+∞

γyk
(χ) = 0 < γy(χ),

contradicting the continuity of y �→ γy on Yh.
As the union of Xh covers λ-almost all of X we obtain that f is λ-

measurable.
Step 2. Now we attack the general case. For any h and any y ∈ Y we consider
the set Kh(y) of all probability measures in X × Z of the form (Id× f)#λy,
with f : X → Z with Lipschitz constant less than h. By assumption (c)
the multifunction Kh(y) has a closed graph in Y × P(X × Z) and therefore,
according to Proposition 9.1, we can find a µ-measurable map y �→ (Id ×
fh

y )#λy such that

d
(
(Id× f)#λy, (Id× fh

y )#λy

)
= dist ((Id× f)#λy,Kh(y)) for µ-a.e. y.

Defining fh in such a way that fh = fh
y on sptλy, by Step 1 we have that fh

is λ-measurable. Moreover

lim
h→+∞

(Id× fh)#λy = (Id× f)#λy

for µ-a.e. y, hence (see the simple argument in the end of the proof of The-
orem 7.1) we obtain that (fh) converges in L(X,λy;Z) to f for µ-a.e. y. As
λ = λy ⊗µ we obtain that (fh) is a Cauchy sequence in L(X,λ;Z). Denoting
by g a Borel limit function, we can find a subsequence h(k) such that∫

Y

∞∑
k=1

dλy

(
fh(k), g

)
dµ =

∞∑
k=1

dλ

(
fh(k), g

)
< +∞.

Therefore fh(k) converge in L(X,λy;Z) to g for µ-a.e. y and g = f λy-a.e. for
µ-a.e. y.

The proof of the following measurable selection result is available for in-
stance in [17].

Proposition 9.1 (Measurable selection). Let λ ∈ M+(X) and let f :
X → Y be λ-measurable. Assume that x �→ Γ (x) is a multifunction which
associates to any x ∈ X a compact and nonempty subset of Y . If the graph
of Γ (i.e. {(x, y) : y ∈ Γ (x)}) is closed, there exists a λ-measurable map
g : X → Y such that g(x) ∈ Γ (x) and

dY (f(x), g(x)) = distY (f(x), Γ (x)) for λ-a.e. x ∈ X.
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In the applications to transport problems in Euclidean spaces the typical
situation occurs with B ∈ B(Rn) and π : B → Sc(Rn), where π satisfies with
x ∈ π(x) for any x. By disintegrating a measure λ concentrated on B along
the level sets π−1(C) (contained in C and therefore 1-dimensional), in order to
apply the 1-dimensional theory we would like to find conditions ensuring that
the disintegrated measures λC have no atom. Although no sharp condition
seems to be known, it can be shown that the absolute continuity of λC is
inherited from λ provided the family of segments π(B) is countably Lipschitz.
The proof below is taken from [3], where this problem is discussed more in
detail (see Remark 6.1 therein).

Theorem 9.4 (Absolute continuity). Let B ∈ B(Rn), let Y = Sc(Rn)
and let π : B → Y be a Borel map satisfying the conditions

(i) If π(x) �= π(x′) then the intersection π(x) ∩ π(x′) can contain at most the
initial point of π(x) and of π(x′) and this point is not in B.

(ii)x ∈ π(x) for any x ∈ B.
(iii)The direction τ(x) of π(x) is a Sn−1-valued countably Lipschitz map on

B, i.e. there exist sets Bh ⊂ B whose union contains B and such that τ |Bh

is a Lipschitz map for any h.

Then, for any measure λ ∈ M+(Rn) absolutely continuous with respect to
Ln B, setting µ = π#λ ∈ M+(Y ), the measures λC of Theorem 9.1 are
absolutely continuous with respect to H1 C for µ-a.e. C ∈ Y .

Proof. Being the property stated stable under countable disjoint unions we
may assume that

(a) there exists a unit vector ξ such that τ(x) · ξ ≥ 1
2 for any x ∈ B;

(b) τ(x) is a Lipschitz map on B;
(c) B is contained in a strip

{x : a− b ≤ x · ξ ≤ a}

with b > 0 sufficiently small (depending only on the Lipschitz constant of
ν) and π(x) intersects the hyperplane {x : x · ξ = a}.
Assuming with no loss of generality ξ = en and a = 0, we write x = (y, z)

with y ∈ Rn−1 and z < 0. Under assumption (a), the map T : π(B) → Rn−1

which associates to any segment π(x) the vector y ∈ Rn−1 such that (y, 0) ∈
π(x) is well defined. Moreover, by condition (i), T is one to one. Hence, setting
f = T ◦ π : B → Rn−1,

ν := T#µ = f#λ, C(y) := T−1(y) ⊃ f−1(y)

and representing λ = ηy ⊗ ν with ηy = λC(y) ∈ M1(f−1(y)) (see (38)), we
need only to prove that ηy � H1 C(y) for ν-a.e. y.

To this aim we examine the Jacobian, in the y variables, of the map f(y, t).
Writing τ = (τy, τt), we have
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f(y, t) = y + d(y, t)τy(y, t) with d(y, t) = − t

τt(y, t)
.

Since τt ≥ 1/2 and d ≤ 2b on B we have

det (∇yf(y, t)) = det
(
Id+ d∇yτy +

t

τ2
t

∇yτt ⊗ τy

)
> 0

if b is small enough, depending only on the Lipschitz constant of τ .
Therefore, the coarea factor

Cf :=
√∑

A

det2A

(where the sum runs on all (n− 1)× (n− 1) minors A of ∇f) of f is strictly
positive on B and, writing λ = gLn with g = 0 out of B, Federer’s coarea
formula (see for instance [2], [26], [38]) gives

λ =
g

Cf
CfLn =

g

Cf
H1 f−1(y) ⊗ Ln−1 = η′

y ⊗ ν′

and

η′
y :=

g
Cf H1 f−1(y)∫
f−1(y) g/Cf dH1 , ν′ :=

(∫
f−1(y)

g

Cf
dH1

)
Ln−1 L

with L :=
{
y ∈ Rn−1 : H1(f−1(y)) > 0

}
.

By Theorem 9.2 we obtain ν = ν′ and ηy = η′
y for ν-a.e. y, and this

concludes the proof.

Remark 9.1. As the proof clearly shows, the statement is still valid for maps
π : B → So(Rn) provided condition (i) is replaced by the simpler condition
that π(x) ∩ π(x′) = ∅ whenever π(x) �= π(x′).
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10. G.Bouchitté & G.Buttazzo: Characterization of optimal shapes and masses
through Monge–Kantorovich equation. J. Eur. Math. Soc., 3 (2001), 139–168.
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36. S.T.Rachev & L.Rüschendorf: Mass transportation problems. Vol I: Theory,
Vol. II: Applications. Probability and its applications, Springer, 1998.
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