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Abstract—Is compressive sensing overrated? Or can it live up the opportunities of compressive sensing. It is therefary o
to our expectations? What will come after compressive sensing natural for such a timely journal as the IEEE Signal Process-

and sparsity? And what has Galileo Galilei got to do with it? ing Letters, that compressive sensing and sparsity are now
Compressive sensing has taken the signal processing community. t ,d into th EDICS cat .
by storm. A large corpus of research devoted to the theory Incorporated Into the new categories.

and numerics of compressive sensing has been published in ¢ the mathematical heart of compressive sensing lies the
the last few years. Moreover, compressive sensing has inspired . o . .

and initiated intriguing new research directions, such as matrix discovery that it is possible _to reFonStrUCt a sparse S'Q“a'
completion. Potential new applications emerge at a dazzling €xactly from an underdetermined linear system of equations
rate. Yet some important theoretical questions remain open, andthat this can be done in a computationally efficient manner
and seemingly obvious applications keep escaping the grip of via convex programming. To fix ideas and notation, consider
compressive sensing. In this papérl discuss some of the recent Ax = y, where A is anm x n matrix of rank m with

progress in compressive sensing and point out key challenges H A dels th t .
and opportunities as the area of compressive sensing and sparse’’* < n. Here,A models the measurement (or sensing) process,

representations keeps evolving. | also attempt to assess the lengy € C™ is the vector of observations and € C" is the
term impact of compressive sensing. signal of interest. Conventional linear algebra wisdortstes

that in principle the number of measurementshas to be
at least as large as the signal lengthotherwise the system
|. INTRODUCTION would be underdetermined and there would be infinitely many
“Measure what can be measuredithis guote often at- solutions. Most data acquisition devices of current tetﬂrgw
tributed to Galileo Galilei, has become a paradigm for sciefbey this principle in one way or another (for instance, desi
tific discovery that seems to be more dominant nowadays th#at follow Shannon’s Sampling Theorem which states that th
ever beforé. However, in light of the data deluge we are facingampling rate must be at least twice the maximum frequency
today, it is perhaps time to modify this principle ‘thleasure present in the signal).
what should be measuredOf course the problem is that a Now assume that is sparse, i.ex satisfiess := ||x[jo < n
priori we often do not know what we should measure and whéwhere [|x[[o := #{k : ), # 0}), but we donot know the
not. What is important and what can be safely ignored? locations of the non-zero entries &f Due to the sparsity of
A typical example is a digital camera, which acquires ix one could try to computec by solving the optimization
the order of a million measurements each time a picture Rgoblem
taken, only to dump a good portion of the data soon after the minfjzfo st Az=y. 1)
acquisition through the application of an image compressi
algorithm. In contrastcompressive sensingperates under
the premise that signal acquisition and data compression &
be carried out simultaneouslyMeasure what should be min||z||; St Az=y, (2)
measured!” z
On the one end of the spectrum of scientific endeavour, tWgich can be solved efficiently via linear or quadratic pro-
concept of compressive sensing has led to the developm@f@mming techniques. It is by now well-known that under
of new data acquisition devices. On the other end, the beag@gftain conditions on the matriA and the sparsity ok,
of the underlying mathematical theory has attracted evea ptoth (1) and (2) have the same unique solution [2]-[4]. The
mathematicians. And “in between”, scientists from physicKestricted Isometry Propert{RIP) and thecoherenceof a
astronomy, engineering, biology, medical image proceggsiinatrix are to date the most widely used tools to derive such
etc. explore the possibilities of sparse representationd econditions. Indeed, for a properly chosAnaboutn = slogn
measurements suffice to uniquely recowerfrom (2). In
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1This is not a regular IEEE-SPL paper, but rather an invitenitrioution Compressive sensing took the signal processing community

offering a vision for key advances in emerging fields. by storm. As the graph in [5] shows, the number of publi-
2The full quote sayéMeasure what can be measured and make measurabations dealing with sparse representations and compeessi
what cannot be measuredbutitisdisputed\{vhet_herGaIiIei ever said qryvrotesensing has grown rapidly over the last couple of years.
these words [1]. Nevertheless, the quote is widely accepsed very fitting . . . .
characterization of the leitmotif of Galilei’s work with nesct to the central Admittedly, we were in a somewhat lucky situation when
role of theexperimenin the Nuova Scienza compressive sensing arrived on the scene: Researchers in

%owever solving (1) is an NP-hard problem and thus practi-
lly not feasible. Instead we consider its convex relaxati



signal processing, applied harmonic analysis, imaging s8PARS, SAM-SPARCS; Subsection II-B: DSP-SPARSE; Sub-
ences, and information theory had already fostered a euttir section 1I-C: MLAS-SPARS, IMD-SPAR, SAM-SPARCS;
close collaboration and interaction over the last two desadSubsection II-D: MLAS-SPARS, IMD-SPAR, SAM-SPARCS;
or so, laying the foundation for a strong willingness fronBubsection II-E: DSP-SPARSE, SAM-SPARCS; Subsec-
engineers, statisticians, and mathematicians to coaperad tion I|I-F: DSP-SPARSE; Subsection [I-G: DSP-SPARSE,
learn from each other. This fact definitely contributed te thSAM-SPARCS.

very quick adoption of compressive sensing by the various

research communities. A. Structured sensing matrices
Is compressive sensing overrated? Will compressive sgnsin : .
P 9 P " Much of the theory concerning explicit performance bounds

revolutionize data acquisition? Can compressive sensieg | : ; X
. ) ; for compressive sensing revolves around Gaussian and other
up to our (admittedly, rather high) expectations? What are . .
. o o . random matrices. These results have immense value as they
the most promising applications? Are there still interasti

open mathematical problems? And what will come aft%gow us, in principle, the possibilities of compressivesseg
c

. : . ; owever, in reality we usually do not have the luxury to
compressive sensing and sparse representations? While t IS seA as we please. Instead the sensing matrix is often
article may not be able to provide satisfactory answers Ito q S . .

. o . ictated by the physical properties of the sensing proaegs, (
these questions, it is nevertheless strongly motivatedhésnt . .
o . .the laws of wave propagation) as well as by constraintsaélat
| will discuss open problems and challenges, and while domg . C o o L

. ; tg its practical implementability. Furthermore, sensingtria

so, shed light on some recent progress. | will also attempt to

. ) L ces with a specific structure can give rise to fast algorithms
evaluate the impact of compressive sensing in the context.Q . S . A
Co for matrix-vector multiplication, which will significantlspeed
future scientific developments.

, . . .up recovery algorithms. Thus the typical sensing matrix in
| also want to draw the reader’s attention to the enlightgni ractice is not Gaussian or Bernoulli, but one with a very

article “Sparse and Redundant Representation Modeling — if - .
. . . .g. 10]-[13]. Th I
What Next?” by Michael Elad in the very same issue o pecific structure, e.g. see [10]-[13] 's includes ety

this iournal. | have tried to keeb the topics discussed in stic sensing matrices as well as matrices whose entries are
> | ' P op ¥ndom variables which are coupled across rows and columns
article somewhat complementary to his, but, naturally, teuar

articles do overlap at places, which was in part not avo'eiabin a peculiar way. This can make it highly nontrivial to
) patp ’ par ply standard proof techniques from the compressive rsgnsi
since we were writing them at about the same time. The reaqaﬁ‘?

who wonders why | did not mention the one or the othererature'
. y . L Over the last few years researchers have developed a fairly
important open problem, may likely find it very eloquently

. . : . od understanding of how to derive compressive sensin
described in Elad’s paper. | want to stress at this point th ? 9 P 9

. . eory for a variety of structured sensing matrices thageair
the areas of compressive sensing and sparse represa;ltaté

. rﬁSIications, see for instance the survey article [14] fanyn
obviously have a strong overlap, but one should not conflaé amples and references as well as the work of Rauhut [15].
them completely.

Despite thi irabl th i i
| assume that the reader is familiar with the basics ngSpl e this admirable progress, the derived bounds atain

. . . ) o far are not as strong as those for Gaussian-type random
compressive sensing an_d sparse representatlo_ns. E)m'al'lenmatrices. One either needs to collect more measurements
troductions to COMPressIvVe sensing are the review artiéles . onforce more restrictive bounds on the signal sparsity
[7], the soon-to-be-published book [8], and of course t

iinal h o4l A t ¢ mpared to Gaussian matrices, or one has to sacuficer-
ongma q reieatrc paperf t[' H .]' 9 g_lfﬁa so(ljJrce hor Spirgglity. Here, universality means that a fixed (random) sensing
and redundant representations 1S [9]. € reader who wan trix guarantees recovery afl sufficiently sparse signals.
get an overview of recent developments in these areas shoMa:

o ) . omparison, to obtain competitive theoretical boundagis
also che(_:k out Igor Carron’s informative bldduit Blanche structured sensing matrices we may have to assume that the
(http://nuit-blanche.blogspot.com).

locations and/or the signs of the non-zero entries of the
signal are randomly chosen [15]-[17]. As a consequence the
Il. PROGRESS ANDCHALLENGES performance guarantees obtained are not universal, as they
In this section | will discuss some problems which | conside?nly hOI.d for mostsignals. . .

So far involved and cumbersome combinatorial arguments,

important future research directions N compressive sgnS'which need to be carefully adapted to the algebraic stractur
They range from very concrete to quite abstract/conceptua* the matrix for each individual case, often provide thetbes

) . . 0
from very theoretical to quite applied. In some of the profse theoretical performance bounds for structured matricead- a

mentioned below we already have seen significant progrese:i as mentioned before, these bounds still fall short o$¢h

over the last few years, others are still in their infancyeT : . S
or Gaussian matrices. Can we overcome these limitations of

ordering of the problems does not reflect their importanc . . .
but is chosen to best aid the narrative of the paper. Tﬁie existing theory by developing a collection of tools that

list i . . S agows us to build a compressive sensing theory for strectur
ist is by no means exhaustive, moreover it is subjective and_ . : ;

biased towards the author’'s background, taste, and viewgoi matrices that is (almost) on par with that for random masftce
To highlight the connection with the new EDICS related to Now let us change our viewpoint somewhat. Assume that
sparsity and compressive sensing, | am listing the EDIG& do have the freedom to design the sensing matrix. The only

most relevant for each subsection: Subsection [I-A: MLAS:ondition we impose is that we want deterministic (explicit



constructions with the goal to establish performance bsung fall on the grid points irg, the vectorx will have exactlys
that are comparable to those of random matrices, for instamon-zero entries with coefficien{s;, }; _,. In general however
by establishing appropriate RIP bounds. Most bounds to daite frequencies will not lie on the grid, resulting in a large
on the RIP for deterministic matrix constructions are based gridding error, which creates a rather unfavorable situator
the coherence, which in turn causes the number of requirgohrse recovery. To guarantee that (4) is a good approximati
samples to scale quadratically with the signal sparsity18) to the true spectral estimation problem, we need to ensure a
the authors use extremely sophisticated and delicate angism small gridding error. For eacfj, to be close to some grid point
to achieve are-improvement in this scaling behavior of thein G, we may have to choos& to be very small. However, this
bounds. has two major drawbacks: (i) the number of columng\odvill

This poses the question, whether we can come up wibe large, which will negatively impact the numerical effiwg
deterministic matrices which satisfy the RIP in the optimaif potential recovery algorithms. (ii) The coherencefofwill
range of parameters. It may well be that the so constructed close to 1, which implies extremely bad theoretical bsaund
matrices will have little use in practice. But if we succead iwhen applying standard coherence-based estimates.
this enterprise, | expect the mathematical techniquesolesd Thus we are caught in a conundrum: Choosing a smaller
for this purpose to have impact far beyond compressidiscretization step on the one hand reduces the griddirg, err

sensing. but on the other hand increases the coherence as well as
the computational complexity. This problem begs for a aleve
B. Caught between two worlds: The gridding error solution.

With a few exceptions, the development of compres- Thefinite rate of innovatiorconcept [20] might be useful in

sive sensing until recently has focused on signals havingﬂﬁs context, but that concept by itself does not lead tolstab

sparse representation in discrete, finite-dimensionaiotiar- and fast algorithms or a framework that can handle signals

ies. However, signals arising in applications such as radg}at are only approximately sparse.

sonar, and remote sensing are typically determined by a f%\é}:’f goumn:js'i?]g ;lfprozazchgz ttr? (;?';‘;?:ter;hisgézjdg‘”grgg?:ﬁfsmhg?lz
parameters in a continuous domain. [21], [22]. prop pp

A common approach to make the recovery problemeir benefits, but also some drawbacks. Since the purpose

amenable to the compressive sensing framework, is to d?g-tr;:s gapekr) |skto hpomt boutlopen problems, lr?t T? fgCL;]S
cretize the continuous domain. This will result in what iteaf ©" € drawbacks here, but | want to stress that | find the

called thegridding error or basis mismatch [19]. By trying to simplici_ty of [21] and_ the ingenuity of [22] very appealin'me
mitigate the gridding error, we quickly find ourselves caugljiheoret'Cal assumptions on the signal sparsity and ther_dyma
between two worlds, the continuous and the discrete worf@"9¢ of the coefficients in [21] are much more restricthanth

The issue is best illustrated with a concrete example. Snpp(g ose of It\;we best resm:lts we hgve forbstandard compressive
the signal of interest is a multitone signal of the form sensing. Moreover, only approximate, but not exact, suppor
recovery is guaranteed. The framework of [22], based on an

intriguing approach to superresolution in [23], does nquiee

a discretization step, but it is currently limited to veryesic
classes of signals. Also, the proposed numerical algorithm
with unknown amplitudes{c;} and unknown frequencies|gcks some of the simplicity of;-minimization.

{fr} € [-W,W]. Assume we samplg at the time points  can we develop a rigorous compressive sensing framework
{t:}i2, < [0,1), the goal is to find{fx};_, and {ck}i_1 for signals which are sparse in a continuous domain, that
giveny := {y(t1),...y(tm)}. This is the well-known spectral s appjicable to a large class of signals, and comes with
estimation problem, and numerous methods have been pipnpe, efficient numerical algorithms that preserve ashrasc
posed for its solution. But the keep in mind that | chose (3)ossible the simplicity and power of the standard compvessi
only for illustration purposes, in truth we are interested Isensing approach? Can we derive theoretical guarantees abo
much more general sparse signals. We choose a regular grid superresolution capabilities of compressive sensirsgd

y(t) = cre?® i, 3)
k=1

R . . .
G = {5}l n C [-W. W], whereA is the stepsize. Let methods? In this context we refer the reader to [24], where
the sensing matrix be an infinite-dimensional framework for compressive sensing

. 1 . . d.
A = [al7 . 7371/], with a; = ﬁ{ej%rt[,AZ/(QW) f\;_ propose

(An approximation to) the spectral estimation problem cap. Structured sparsity and other prior information

now be expressed as The work of Lustig and collaborators in MRI [10] has

Ax =y +e, (4) shown that a careful utilization of the distribution of the
ih e — d being th ‘ h del large wavelet coefficients across scales can lead to suiadtan
with e = n + eing the error vector, whera models improvements in the practical performance of compressive

additive measurement noise addepresents noise due to theSensing in MRI. “Classical” compressive sensing theorysdoe

discretization or gridding errérAssuming that the frequenmesnot assume any structure or other prior information aboet th

3We could also have captured the gridding error as a periorbil of the locations of the non-zero entries of the signal. HOYV can we
sensing matrixA := A + E, but it would not change the gist of the story. best take advantage of the knowledge that all sparsityrpatte



may not be equally likely in a signal? This question is a topiwhere X}, is the k-th column ofX, see [31]. Or we could set

of active research, e.g. see [25]-[27] as well as many more .
references in [14]. S(X) = [[UXV7y,

_ Structured sparsity is only one of many kinds of priofherets andV are transforms designed such tBais sparse
|nfo_rmat|on we may have about the S|gna_1l or image. Besidgsiy, respect to the tensor badisz V, see [32]. Clearly, many
obvious constraints such as non-negativity of the signal coyiations of the theme are possible, cf. [32], [33] for hert
efficients, there is also application-specific prior infation, s ssjon and examples. Optimization problems of thisl kin
such as the likelihood of certain molecule configurationg ory, o e significant potential in a wide range of applicationshs
minimum distance between sparse coefficients dug to SO jynamic MRI, hyperspectral imaging, or target tracking.
repelling force. In particular in the low SNR regime the i this leads us naturally to the quite ambitious task of
proper utilization of a\{allable prior |nformat_|on can hax_ie constructing a unifying framework that allows to make state
big impact on the quality of the recovered signal. The aim |§¢ 5 apout the recovery conditions of mathematical object
to develop frameworks that can incorporate various kinds gfa+ ghey some minimal complexity measure via methods from
prior information poth at t.he theoretical and the algorithm convex optimization. An interesting step along this lines i
level of compressive sensing. taken in the paper [34]. Such an undertaking must incorporat
D. Bevond sparsity and comoressive sensin a further investigation of the connection between comfress

- By ) p ) y i P ] 9 ~_ sensing and information theory. A Shannon-information the

A very intriguing extension of compressive sensing is thgetic analog of compressive sensing was recently intrediuc

problem of recovering a low-rank matrix from incompletg,, \wy and Verd, see [35]. Further exciting results in this
information, also known as the problem miatrix completion girection can be found in [36], [37].

or matrix recovery[28], [29]. Let X be ann xn matrix. We do
not require thatX is a sparse matrix, but instead we assume ) ) )
that most of its singular values are zero, i.e., the ran&of E. Nonlinear compressive sensing
is small compared ta. Suppose we are given a linear map So far we have assumed that the observations we are
A C™ — C™ and measurementg = A(X). Can we collecting can be modeled dmear functionals of the form
recoverX? Trying to find X by minimizing the rank ofZ (x a;),k = 1,...,m, whereaj is a sensing vector repre-
subject t0.A(Z) = y would be natural but is computationallysenting a row ofA. However in many applications we can
not feasible. Inspired by concepts of compressive sensig whly take nonlinear measurements. An important example
are led to consider theuclear normminimization problem is the case where we observe signal intensities, i.e., the

min ||Z||, subject toA(Z) = y, measurements are of the_ fofx, a;)|?, the phase in_formaFion

is missing. The problem is then to reconstradtom intensity
where [|Z||, denotes the sum of the singular valuesZf measurements only. A classical example is the problem of
A large body of literature has been published on the topigcovering a signal or image from the intensity measuresnent
of matrix completion, covering conditions and algorithmgs its Fourier transform. Problems of this kind, known as
under which the nuclear norm minimization (or variationgnase retrievatirise in numerous applications, including X-ray
thereof) can indeed recovéX. Interestingly, the paper [30] crystallography, diffraction imaging, astronomy, and ofun
derives a framework that allows us to translate (some) \gov tomography [38].
conditionjs from compressive sensing to the setting of matri Concepts from compressive sensing and matrix completion
completion. _ _ have recently inspired a new approach to phase retrieviaical
_ Many high-dimensional data structures are not just sparsfaselift[39]. It has been shown that if the vectass are
in some basis, but in addition are highly correlated acroggmpled independently and uniformly at random on the unit
some coordinate axes. For instance _spectral signatures iEpﬁere, then the signal can be recovered exactly (up to a
hyperspectral data cube are often highly correlated acroggpal phase factor) from quadratic measurements by splvin
wavelength. Suppose noX is a hyperspectral data matrixy {race-norm minimization problem provided thatis on the
whose columns represent hyperspectral images and the GolWpyer of nlogn measurements PhaseLift does not assume
index corresponds to wavelength. We would like to acquiee thyt the signal is sparse. It is natural to ask if we can exteed
information represented bX with very few measurements .ompressive sensing theory to the recovery of sparse signal
only. We take measurements of the fogm= A(X), where fom intensity measurements. Some initial results can bado
A'is a properly designed sensing operator. Following idegg41), [42], but it is clear that this development is stifl its
in [31] and [32], it is intuitively appealing to combine thejnancy and much more remains to be done. For instance, it
powers of compressive sensing and matrix completion a@fhyiq be very useful for a variety of applications to know
consider the following optimization problem how many measurements are required to recoves-sparse
minimize || Z||. + A\S(Z) subject toA(Z) =y (5) signalx € C" from Fourier-type intensity measurements.

. . . Another type of nonlinear measurements is the case of
in order to recoverX. Here the functionalS is chosen to quantized samples, and in the extreme case, 1-bit measure-

exploit the sparsity inherent iX. For instance we may Choosements [43], [44] (which is in a sense the opposite of intgnsit
S(X) = I Xklrv,
k

4We know meanwhile that in the order afmeasurements suffice, see [40].



measurements). But what about more general nonlinear m&a-Hardware design

surements? For which types of nonlinear measurements can wepq concept of compressive sensing has inspired the de-

build an interesting and relevant compressive sensingyﬁeove|Opment of new data acquisition hardware. By now we

| expect such a potential framework to have wide impact iye seen compressive sensing “in action” in a variety of

disciplines like biology, Where we often encounter all Hndapplications, such as MRI, astronomy, and analog-toligit

of nonlinear processes driven by a few parameters. conversion, see Igor Carron’s list of compressive sensing
hardware [54]. Yet, the construction of compressive sensin
based hardware is still a great challenge.

F. Numerical algorithms But the process of developing compressive sensing hardware

In recent years we have seen a large variety of numerid&INot the job of the domain scientist alone. The knowledge

algorithms being developed to solve various versions of ﬂggme”d during th's_ process feeds back |_nfto the “production
é:le of compressive sensing, as theoreticians (havestol

compressive sensing problem. While the user of compressﬁy q heir th listi . di
sensing now has a plethora of algorithms to choose from, gw to adapt their theory to more realistic scenarios, and in

comparison of the advantages and disadvantages of individﬂ’m may then be able to provide the'practitioner With be‘Fter
algorithms is difficult. Some algorithms provide guaradteé_ns'ght mfto p_erforma_nce_ b(_)gnds and |mpr_oveq design gwde-
recovery of all sufficiently sparse signals, others succeéwes' Noise is a major limiting factor. Calibration remsua
only for many or most signals. Some algorithms claim tB|g prpblem. An efficient feedback. loop between the dllfferen
be numerically efficient, yet are only so, when very specifﬁc'em'StS working on theory, algorithms, and hardwaregtes

sensing matrices are used or certain assumptions areefillVill P& key to ensure further breakthroughs in this area.
Other algorithms are fast, but in order to succeed they requi

more measurements than competing methods. Fortunately the Ill. THE FUTURE OF COMPRESSIVESENSING

number of researchers who have made implementations offhe surest way for a scientist to make a fool of him-

their algorithms available is large (much larger than in manse|f/herself is by attempting to predict the future. Butret try
other areas where numerical algorithms play a key rolgjpyway. Is compressive sensing here to stay? How important
making it fairly easy to test many of the published algorishmyij| it be in the future? And how will it evolve?

in a variety of scenarios. Where tremendous hope and a lot of enthusiasm meet, there

Compressive sensing and matrix completion have stimig- naturally the danger of a hype and thus the possibility of
lated the development of a variety of efficient algorithms fajramatic failure. Will the roadmap of compressive sensing
¢;-minimization and semidefinite programming, see for irbe from hope to hype to histopylt is clear that when we
stance [45]-[48]. Many of these algorithms come with rigo ook back, say ten years from now, there will be areas where
theoretical guarantees. Based on heuristic considessome the concept of compressive sensing was not successful. One
of these algorithms have been extended to solve non-conygxson for such a failure may be that compressive sensing
problems, such a&,-minimization withp < 1. To what extent seemed a promising solution as long as we looked at an
can we support these promising empirical results for noolated subproblem. Yet, once we consider the subproliem i
convex optimization with theoretical convergence guaes® the context of the bigger problem from which it was extracted

Iterative thresholding algorithms have been proposed #® efficiencies gained via compressive sensing may have
numerically efficient alternatives to convex programming f diminished.
large-scale problems [49]-[51]. But until recently, known However, | will not attempt to predict in which areas
thresholding algorithms have offered substantially worsssmpressive sensing may not fulfill its promise. After all,
sparsity-undersampling tradeoffs than convex optimarati if there will not be any crushed hopes, then we simply did
Message passing algorithmare a breakthrough in thisnot aim high enough. Or, in the words of Mario Andretti:
regard [52]. Approximate Message Passing (AMP) alg6H everything seems under control, you're just not goingtfa
rithms proposed by Donoho, Montanari and their coworkenough!”. Instead let me sketch some areas, where | believe
ers, are low-complexity iterative thresholding algorifimthat compressive sensing will have (and in part already has
which can achieve optimal performance in terms of sparsitiad) a major impact.
undersampling tradeoff [36]. These AMP algorithms are also There is a growing gap between the amount of data we
able to utilize block sparsity for instance. Interestingly generate and the amount of data we are able to store, com-
the message passing framework of Donoho and Montanariinicate, and process. As Richard Baraniuk points out,én th
we observe a shift from sparsity to the&®i) information year 2011 we produced already twice as many data as could
dimension, which in turn leads us right to the discussiomat tbe stored [55]. And the gap keeps widening. As long as this
end of Subsection II-D. There are also intriguing connextio development continues there is an urgent need for novel data
to statistical physics. acquisition concepts like compressive sensing.

However, it remains a major challenge to extend the theoryThere is an obvious intellectual achievement, in which com-
underlying AMP from (Gaussian or band-diagonal) randojpressive sensing and sparse representations play a key role
matrices to those structured sensing matrices that araiancoAdvanced probability theory and (in particular) random rixat
tered in practice. Initial investigations have been cdrioeit theory, convex optimization, and applied harmonic analysi
by Schniter and collaborators, see e.g. [53]. will become and already have become standard ingredients



of the toolbox of many engineers. At the same time, mathfs]

ematicians will have gained a much deeper understanding of - / ) ) )
7] E. Cands and M. Wakin, “An introduction to compressive sampling,”

how to confront real-world applications. Compressive sens

teaches us (or forces us?) to work across disciplines, kut ng;
in form of an alibi collaboration whose main purpose is to
convince program directors and proposal reviewers to fund o [°]

next “interdisciplinary” project. No, it creates interdiglinary

collaborations for the only sensible reason: because some

(10]

important problems simply cannot be solved otherwise! Fui-!l

thermore, compressive sensing has advanced the develbpmen

of ¢;-minimization algorithms, and more generally of nonp2)
smooth optimization. These algorithms find wide-spreadmuse

many disciplines, including physics, biology, and econzani

[13]

There will be “conceptual” achievements. For example,
analogously to how wavelet theory has taught us how to thifié]
about multiscale and sparsity (despite the fact that weele
could not live up to many of our expectations), compressi\%’]
sensing will teach us how to think properly about minimal

complexity and how to exploit it in a computationally effiote 5
manner, and it may even be instrumental in developing[]a

rigorous information theory framework for various areastsu [17]

as molecular biology.

To revolutionize technology we will need to develop hard®!
ware and algorithms via an integrated, transdisciplingry a
proach. Hence, in the future when we design sensors, prodest Y. Chi, A. Pezeshki, L. Scharf, and R. Calderbank, “Sivity to

sors, and other devices, we may nho longer speak only about

hardwareand software where each of these two components
is developed essentially separately. Instead, we may havezy)

add a third category, which we could cdilybridware or

mathematical sensifg where the physical device and th

21]

mathematical algorithm are completely intertwined and co-

designed right from the beginning.

Hence, looking further into the future, maybe the mod¢2
important legacy of compressive sensing will be that it hq1§3]
forced us to think about information, complexity, hardware

and algorithms in a truly integrated manner.
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