The enumeration of regions in the Shi arrangement with a given separating wall

S. Fishel, E. Tzanaki, M. Vazirani

Arizona State University, University of Crete, UC Davis

FPSAC, June 14, 2011

Roots and hyperplanes

The roots α_{1}, α_{2}, and θ and their reflecting hyperplanes.

m-Shi arrangement

For any positive integers n and m, the extended Shi arrangement is

$$
\left\{H_{\alpha_{i j}, k} \mid k \in \mathbb{Z},-m<k \leq m \text { and } 1 \leq i \leq j \leq n-1\right\}
$$

Regions in the dominant chamber

12 regions

Regions on $H_{\theta, m}$

A hyperplane H separates two regions if they lie on opposite sides of it. A hyperplane H is a separating wall for a region R if H is a supporting hyperplane of R and H separates R from R_{0}.

There are two regions which have $H_{\theta, m}$ as a separating wall.

Problem

Given a hyperplane $H_{\alpha_{i j}, m}$, how many dominant regions have it as a separating wall? In other words, the rest of the hyperplanes in the arrangement cut $H_{\alpha_{i j}, m}$ into regions. How many?

There are three regions which have $H_{\alpha_{1}, m}$ as a separating wall.

n-cores

Use a bijection from cores to regions.

$$
\text { Hook } h_{21}=5
$$

An n-core is an integer partition λ such that $n \nmid h_{i j}$ for all boxes (i, j) in λ. Some 3-cores. Boxes contain their hook numbers.

Not a 3-core.

3	1
1	

Abacus description of n-cores

The hooklengths from the first column of a partition λ, plus all negative integers, are a set of β-numbers for λ. Construct an n-abacus for a partition by putting its β-numbers on an n-runner abacus.

A partition λ is an n-core if and only if its abacus is flush.

Regions on $H_{\theta, m}$

Shaded regions have hook $4=n(m-1)+1$ in box $(1,1)$.

Regions on $H_{\theta, m}$

Shaded regions have hook $7=n(m-1)+1$ in box $(1,1)$.

Number of regions on $H_{\theta, m}$

λ is an n-core and box $(1,1)$ has hook length $n(m-1)+1$. What does its abacus look like? Runner 0 has 0 beads, runner 1 has m beads, and all other runners have from 0 to $m-1$ beads. There are m^{n-2} such abacuses.

Base case done

What about the rest of the $H_{\alpha, m}$?

α_{14}	α_{13}	α_{12}	α_{11}
α_{24}	α_{23}	α_{22}	
α_{34}	α_{33}		
α_{44}			

Generating functions

$$
\begin{gathered}
f_{\alpha m}^{n}(p, q)=\sum_{R \in \mathfrak{h}_{\alpha m}^{n}} p^{r(R)} q^{c(R)} \\
r(R)=\mid\left\{(j, k): R \text { and } R_{0} \text { are separated by } H_{\alpha_{1 j}, k}\right. \\
\text { where } 1 \leq k \leq m \text { and } 1 \leq j \leq n-1\} \mid \\
c(R)=\mid\left\{(i, k): R \text { and } R_{0} \text { are separated by } H_{\alpha_{i n-1}, k}\right. \\
\text { where } 1 \leq k \leq m \text { and } 1 \leq i \leq n-1\} \mid .
\end{gathered}
$$

$\mathfrak{h}_{\alpha m}^{n}=\left\{m\right.$-Shi regions which which have $H_{\alpha, m}$ as a separating wall. $\}$

Regions on $H_{\alpha_{1}, m}$

Region coordinates

For each region R keep track of all hyperplanes crossed in a triangular array. Let $r_{i j}$ be the number of translates of $H_{\alpha_{i j}}$ which separate the region R from R_{0}.

Coordinates-array for a Shi region, $n=5$.

Shi tableaux and regions

Recursion

A region $R \in \mathcal{S}_{n, m}$ has $H_{\alpha_{i j}, m}$ as a separating wall if and only if $r_{i j}=m$ and for all t such that $i \leq t<j, r_{i t}+r_{t+1, j}=m-1$. The conditions on the coordinates translate into a recursion on the generating function.

r_{14}	r_{13}	r_{12}	r_{11}		
r_{24}	r_{23}	r_{22}			
r_{34}	r_{33}				
r_{44}					

Base case

$$
\begin{aligned}
f_{\theta m}^{n}(p, q) & =p^{m} q^{m}\left(p^{m-1}+p^{m-2} q+\ldots+p q^{m-2}+q^{m-1}\right)^{n-2} \\
& =[m]_{p, q}^{n-2} p^{m} q^{m}
\end{aligned} \quad \begin{aligned}
& f_{\theta m}^{n}(p, q)=\sum_{\lambda: \lambda \text { "has" }} \sum_{\theta, m} \text { as separating wall } p^{\ell(\lambda)} q^{\lambda_{1}}
\end{aligned}
$$

Recursion applied to generating function

The generating function recursion keeps track of the number of ways to attach a new first part on a core partition (new first column on Shi tableau) which corresponds to a boundary region from one dimension less.

$$
\begin{aligned}
f_{\alpha m}^{n}(p, q) & =\left(p^{m}\left(1+q+q^{2}+\cdots+q^{(n-1) m}\right) f_{\alpha m}^{n-1}(p, q)\right)_{\leq q^{(n-1) m}} \\
& =\left(p^{m}[(n-1) m+1]_{q} f_{\alpha m}^{n-1}(p, q)\right)_{\leq q^{(n-1) m}}
\end{aligned}
$$

Symmetry

T is the Shi tableau for R and T^{\prime} (conjugate) is the Shi tableau for R^{\prime}.

$R^{\prime} \Leftrightarrow$	r_{14}	r_{13}	r_{12}	r_{11}
	r_{24}	r_{23}	r_{22}	
	r_{34}	r_{33}		
	r_{44}			

$$
R \in \mathfrak{h}_{\alpha_{i j} m}^{n} \text { if and only if } R \in \mathfrak{h}_{\alpha_{n-j, n-i} m}^{n}
$$

In terms of generating functions, this becomes the following:

$$
f_{\alpha_{i j} m}^{n}(p, q)=f_{\alpha_{n-j, n-i} m}^{n}(q, p)
$$

Example

$$
n=7 \text { and } m=2
$$

α_{16}	α_{15}	α_{14}	α_{13}	α_{12}	α_{11}
α_{26}	α_{25}	α_{24}	α_{23}	α_{22}	
α_{36}	α_{35}	α_{34}	α_{33}		$f_{\alpha_{24}}^{7}(p, q)$
α_{46}	α_{45}	α_{44}			
α_{56}	α_{55}				
α_{66}					

Example

$$
\begin{aligned}
& n=4
\end{aligned}
$$

$$
\begin{aligned}
& =\left(p^{2}[13]_{q}\left(p^{2}[11]_{q} f_{\alpha_{24}}^{5}(p, q)\right)_{\leq q^{10}}\right)_{\leq q^{12}} \\
& =\left(p^{2}[13]_{q}\left(p^{2}[11]_{q} f_{\alpha_{13} 2}^{5}(q, p)\right)_{\leq q^{10}}\right)_{\leq q^{12}} \\
& =\left(p^{2}[13]_{q}\left(p^{2}[11]_{q}\left(q^{2}[9]_{p} f_{\alpha_{13}}^{4}(q, p)\right)_{\leq p^{8}}\right)_{\leq q^{10}}\right)_{\leq q^{12}} \\
& =\left(p^{2}[13]_{q}\left(p^{2}[11]_{q}\left(q^{2}[9]_{p}\left(p^{2} q^{2}[2]_{p, q}^{2}\right)\right)_{\leq p^{8}}\right)_{\leq q^{10}}\right)_{\leq q^{12}} \\
& f_{\alpha_{24}}^{7}(1,1)=781
\end{aligned}
$$

