The enumeration of regions in the Shi arrangement with a given separating wall

S. Fishel, E. Tzanaki, M. Vazirani

Arizona State University, University of Crete, UC Davis

FPSAC, June 14, 2011

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Roots and hyperplanes

The roots α_1 , α_2 , and θ and their reflecting hyperplanes.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

m-Shi arrangement

For any positive integers n and m, the extended Shi arrangement is

$$\{H_{lpha_{ij},k} | k \in \mathbb{Z}, \ -m < k \leq m ext{ and } 1 \leq i \leq j \leq n-1\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Regions in the dominant chamber

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

12 regions

A hyperplane H separates two regions if they lie on opposite sides of it. A hyperplane H is a separating wall for a region R if H is a supporting hyperplane of R and H separates R from R_0 .

There are two regions which have $H_{\theta,m}$ as a separating wall.

Problem

Given a hyperplane $H_{\alpha_{ij},m}$, how many dominant regions have it as a separating wall? In other words, the rest of the hyperplanes in the arrangement cut $H_{\alpha_{ij},m}$ into regions. How many?

There are three regions which have $H_{\alpha_1,m}$ as a separating wall.

n-cores

Use a bijection from cores to regions.

An *n*-core is an integer partition λ such that $n \nmid h_{ij}$ for all boxes (i, j) in λ . Some 3-cores. Boxes contain their hook numbers.

Not a 3-core.

Abacus description of *n*-cores

The hooklengths from the first column of a partition λ , plus all negative integers, are a set of β -numbers for λ . Construct an *n*-abacus for a partition by putting its β -numbers on an *n*-runner abacus.

A partition λ is an *n*-core if and only if its abacus is flush.

Regions on $H_{\theta,m}$

Shaded regions have hook 4 = n(m-1) + 1 in box (1,1).

Regions on $H_{\theta,m}$

Number of regions on $H_{\theta,m}$

 λ is an *n*-core and box (1,1) has hook length n(m-1) + 1. What does its abacus look like? Runner 0 has 0 beads, runner 1 has *m* beads, and all other runners have from 0 to m-1 beads. There are m^{n-2} such abacuses.

Base case done

What about the rest of the $H_{\alpha,m}$?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

α_{14}	α_{13}	α_{12}	α_{11}
α_{24}	α_{23}	α_{22}	
α_{34}	$lpha_{33}$		
α_{44}			

Generating functions

$$f^n_{\alpha m}(p,q) = \sum_{R \in \mathfrak{h}^n_{\alpha m}} p^{r(R)} q^{c(R)}.$$

 $r(R) = |\{(j, k) : R \text{ and } R_0 \text{ are separated by } H_{\alpha_{1j}, k}$ where $1 \le k \le m$ and $1 \le j \le n - 1\}|$

$$c(R) = |\{(i, k) : R \text{ and } R_0 \text{ are separated by } H_{\alpha_{in-1}, k}$$

where $1 \le k \le m$ and $1 \le i \le n-1\}|.$

 $\mathfrak{h}_{\alpha m}^{n} = \{m$ -Shi regions which which have $H_{\alpha,m}$ as a separating wall. $\}$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Regions on $H_{\alpha_1,m}$

$$f^3_{lpha_1 2}(p,q) = p^4 q^2 (1+q+q^2)$$

Region coordinates

For each region R keep track of all hyperplanes crossed in a triangular array. Let r_{ij} be the number of translates of $H_{\alpha_{ij}}$ which separate the region R from R_0 .

<i>r</i> ₁₄	<i>r</i> ₁₃	<i>r</i> ₁₂	<i>r</i> ₁₁
<i>r</i> ₂₄	<i>r</i> ₂₃	r ₂₂	
r ₃₄	r ₃₃		
<i>r</i> 44			

Coordinates-array for a Shi region, n = 5.

Shi tableaux and regions

▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Recursion

A region $R \in S_{n,m}$ has $H_{\alpha_{ij},m}$ as a separating wall if and only if $r_{ij} = m$ and for all t such that $i \leq t < j$, $r_{it} + r_{t+1,j} = m - 1$. The conditions on the coordinates translate into a recursion on the generating function.

<i>r</i> ₁₄	<i>r</i> ₁₃	<i>r</i> ₁₂	<i>r</i> ₁₁
<i>r</i> ₂₄	r 23	r 22	
<i>r</i> ₃₄	r ₃₃		
r 44			

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Base case

$$\begin{aligned} f_{\theta m}^{n}(p,q) &= p^{m}q^{m}\left(p^{m-1}+p^{m-2}q+\ldots+pq^{m-2}+q^{m-1}\right)^{n-2} \\ &= [m]_{p,q}^{n-2}p^{m}q^{m} \end{aligned}$$

$$f^n_{ heta m}(p,q) = \sum_{\lambda: \lambda \hspace{0.1cm} `` \hspace{0.1cm} ext{has}'' \hspace{0.1cm} H_{ heta,m} \hspace{0.1cm} ext{as separating wall}} p^{\ell(\lambda)} q^{\lambda_1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Recursion applied to generating function

The generating function recursion keeps track of the number of ways to attach a new first part on a core partition (new first column on Shi tableau) which corresponds to a boundary region from one dimension less.

$$egin{array}{rl} f^n_{lpha m}(p,q) &= & \left(p^m (1+q+q^2+\cdots+q^{(n-1)m}) f^{n-1}_{lpha m}(p,q)
ight)_{\leq q^{(n-1)m}} \ &= & \left(p^m [(n-1)m+1]_q f^{n-1}_{lpha m}(p,q)
ight)_{\leq q^{(n-1)m}} \end{array}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Symmetry

T is the Shi tableau for R and T' (conjugate) is the Shi tableau for R'.

 $R \in \mathfrak{h}^n_{\alpha_{ij}m}$ if and only if $R \in \mathfrak{h}^n_{\alpha_{n-j,n-i}m}$.

In terms of generating functions, this becomes the following:

$$f^n_{\alpha_{ij}m}(p,q) = f^n_{\alpha_{n-j,n-j}m}(q,p).$$

Example

						-
α_{16}	α_{15}	α_{14}	α_{13}	α_{12}	α_{11}	
α_{26}	α_{25}	α_{24}	α_{23}	α_{22}		-
α_{36}	α_{35}	α_{34}	α_{33}		$f^7_{\alpha_{24}}$	2(p,q)
α_{46}	α_{45}	α_{44}				
α_{56}	α_{55}		-			
α_{66}		-				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

$$\begin{array}{c} \overbrace{\alpha_{13} \ \alpha_{12} \ \alpha_{11}} \\ \overbrace{\alpha_{23} \ \alpha_{22}} \\ \overbrace{\alpha_{33}} \ f_{\alpha_{242}}^7(p,q) = \left(p^2[13]_q f_{\alpha_{242}}^6(p,q)\right)_{\leq q^{12}} \\ = \left(p^2[13]_q \left(p^2[11]_q f_{\alpha_{242}}^5(p,q)\right)_{\leq q^{10}}\right)_{\leq q^{12}} \\ = \left(p^2[13]_q \left(p^2[11]_q f_{\alpha_{132}}^5(q,p)\right)_{\leq q^{10}}\right)_{\leq q^{12}} \\ = \left(p^2[13]_q \left(p^2[11]_q \left(q^2[9]_p f_{\alpha_{132}}^4(q,p)\right)_{\leq p^8}\right)_{\leq q^{10}}\right)_{\leq q^{12}} \\ = \left(p^2[13]_q \left(p^2[11]_q \left(q^2[9]_p \left(p^2q^2[2]_{p,q}^2\right)\right)_{\leq p^8}\right)_{\leq q^{10}}\right)_{\leq q^{12}} \end{array}$$

 $f^7_{lpha_{24}2}(1,1)=781$ (1) and (2) and