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Roots and hyperplanes
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The roots a1, ap, and 6 and their reflecting hyperplanes.



m-Shi arrangement
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For any positive integers n and m, the extended Shi arrangement is

{Ha; klk€Z, —m<k<mand1<i<j<n-1}
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Regions in the dominant chamber
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Regions on Hy
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A hyperplane H separates two regions if they lie on opposite sides
of it. A hyperplane H is a separating wall for a region R if H is a
supporting hyperplane of R and H separates R from Rj.

There are two regions which have Hyp , as a separating wall.



Problem
Given a hyperplane H%.,m, how many dominant regions have it as
a separating wall? In other words, the rest of the hyperplanes in
the arrangement cut H,,; m into regions. How many?
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There are three regions which have H,, » as a separating wall.



n-cores

Use a bijection from cores to regions.

—

JTF
E
(i-J

| | ‘ Hook h21 =)5

n-core is an integer partition A such that n{ hj; for all boxes
in A. Some 3-cores. Boxes contain their hook numbers.
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Not a 3-core.




Abacus description of n-cores

The hooklengths from the first column of a partition A, plus all
negative integers, are a set of J-numbers for A. Construct an
n-abacus for a partition by putting its S-numbers on an n-runner

abacus.
338
Q@ 4+ s

3
1]

A partition X is an n-core if and only if its abacus is flush.
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Regions on Hjp

n=3and m=2

Shaded regions have hook 4 = n(m —1) + 1 in box (1,1).



Regions on Hjp

n=3and m=3

Shaded regions have hook 7 = n(m — 1) + 1 in box (1,1).



Number of regions on Hy

A is an n-core and box (1,1) has hook length n(m — 1) + 1. What
does its abacus look like? Runner 0 has 0 beads, runner 1 has m
beads, and all other runners have from 0 to m — 1 beads. There
are m"~2 such abacuses.



Base case done

What about the rest of the H, ,?
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Generating functions

fam(prq) = Y pFgeR.
REh?xm

r(R) = [{(, k) : R and Ry are separated by Ha,; k

where 1 < k<mand1l<j<n-—1}
c(R) =|{(i,k) : R and Ry are separated by H,, ,«

where 1 < k<mand1</i<n-—1}|.

ham = {m-Shi regions which which have H, n, as a separating wall.}



Regions on H,, m
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£2,(p,q) = p**(1+ g+ ¢°)



Region coordinates

For each region R keep track of all hyperplanes crossed in a
triangular array. Let rj be the number of translates of H,,; which
separate the region R from Ry.
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Coordinates-array for a Shi region, n = 5.



Shi tableaux and regions
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Recursion

A region R € S, , has H,; m as a separating wall if and only if
rij = m and for all t such that i <t <, rir +rey1,=m—1The
conditions on the coordinates translate into a recursion on the
generating function.
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Base case

_ _ _ _ -2
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(P, q) = > p' Mgt

A:X “has” Hy n, as separating wall



Recursion applied to generating function

The generating function recursion keeps track of the number of
ways to attach a new first part on a core partition (new first
column on Shi tableau) which corresponds to a boundary region
from one dimension less.

fom(p @) = (P"(L+ G+ +- -+ g™ I (p, q))

= (pm[(n - l)m + 1]qfa?r;1(p7 q))gq(n—l)m
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Symmetry

T is the Shi tableau for R and T’ (conjugate) is the Shi tableau

for R'.
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In terms of generating functions, this becomes the following:

faym(P> Q)

fO’Zn_j’n_im(q’ p)



Example

n=7and m=2
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Example
n=4
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