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Abstract. Athanasiadis introduced separating walls for a region in the ex-

tended Shi arrangement and used them to generalize the Narayana numbers.
In this paper, we fix a hyperplane in the extended Shi arrangement for type A

and calculate the number of dominant regions which have the fixed hyperplane

as a separating wall; that is, regions where the hyperplane supports a facet of
the region and separates the region from the origin.

1. Introduction

A hyperplane arrangement dissects its ambient vector space into regions. The
regions have walls–hyperplanes which support facets of the region– and the walls
may or may not separate the region from the origin. The regions in the extended
Shi arrangement are enumerated by well-known sequences: all regions by the ex-
tended parking functions numbers, the dominant regions by the extended Catalan
numbers, dominant regions with a given number of certain separating walls by the
Narayana numbers. In this paper we study the extended Shi arrangement by fixing
a hyperplane in it and calculating the number of regions for which that hyperplane
is a separating wall. For example, suppose we are considering the mth extended
Shi arrangement in dimension n − 1, with highest root θ. Let Hθ,m be the mth
translate of the hyperplane through the origin with θ as normal. Then we show
there are mn−2 regions which abut Hθ,m and are separated from the origin by it.

At the heart of this paper is a well-known bijection from certain integer partitions
to dominant alcoves (and regions). One particularly nice aspect of our work is that
we are able to use the bijection to enumerate regions. We characterize the partitions
associated to the regions in question by certain interesting features and easily count
those partitions, whereas it is not clear how to count the regions directly.

We give two very different descriptions of this bijection, one combinatorial and
one geometric. We can then prove several results in two ways, using the different
descriptions.

We rely on work from several sources. Shi (1986) introduced what is now called
the Shi arrangement while studying the affine Weyl group of type A, and Stanley
(1998) extended it. We also use his study of alcoves in Shi (1987a). Richards (1996),
on decomposition numbers for Hecke algebras, has been very useful. The Catalan
numbers have been extended and generalized; see Athanasiadis (2005) for the his-
tory. Fuss-Catalan numbers is another name for the extended Catalan numbers.
The Catalan numbers can be written as a sum of Narayana numbers. Athanasiadis
(2005) generalized the Narayana numbers. He showed they enumerated several
types of objects; one of them was the number of dominant Shi regions with a fixed

Key words and phrases. Shi arrangement, partitions.

1



2 SUSANNA FISHEL, ELENI TZANAKI, AND MONICA VAZIRANI

number of separating walls. This led us to investigate separating walls. All of our
work is for type A, although Shi arrangements, Catalan numbers, and Narayana
numbers exist for other types.

In Section 2, we introduce notation, define the Shi arrangement, certain parti-
tions, and the bijection between them which we use to count regions. In Section 3,
we characterize the partitions assigned to the regions which have Hθ,m as separating
wall. In order to enumerate the regions which have other separating walls, we must
use a generating function, which we introduce in Section 4. Finally, in Section 5,
we give a recursion for the generating functions from Section 4, which enables us
to count the regions which have other separating walls Hα,m.

2. Preliminaries

Here we introduce notation and review some constructions.

2.1. Root system notation. Let {ε1, . . . , εn} be the standard basis of Rn and
〈 | 〉 be the bilinear form for which this is an orthonormal basis. Let αi = εi − εi+1.
Then Π = {α1, . . . , αn−1} is a basis of

V = {(a1, . . . , an) ∈ Rn |
n∑
i=1

ai = 0}.

We let αij = αi + . . .+αj , the highest root α1,n−1 = θ, and note that αii = αi and
αij = εi − εj+1.

The elements of ∆ = {εi − εj | i 6= j} are called roots and we say a root α is
positive, written α > 0, if α ∈ ∆+ = {εi − εj | i < j}. We let ∆− = −∆+ and say

α < 0 if α ∈ ∆−. Then Π is the set of simple roots. As usual, we let Q =
⊕n−1

i=1 Zαi
be identified with the root lattice of type An−1 and Q+ =

⊕n−1
i=1 Z≥0αi.

2.2. Extended Shi arrangements. A hyperplane arrangement is a set of hy-
perplanes, possibly affine hyperplanes, in V . We are interested in certain sets of
hyperplanes of the following form. For each α ∈ ∆+, we define its reflecting hyper-
plane

Hα,0 = {v ∈ V | 〈v | α〉 = 0}
and for k ∈ Z, Hα,0’s kth translate,

Hα,k = {v ∈ V | 〈v | α〉 = k}.
Note H−α,−k = Hα,k so we usually take k ∈ Z≥0. Then the extended Shi

arrangement, here called the m-Shi arrangement, is the collection of hyperplanes

Hm = {Hα,k | α ∈ ∆+,−m < k ≤ m}.
This arrangement is defined for crystallographic root systems of all finite types.
Regions of the m-Shi arrangement are the connected components of the hyper-

plane arrangement complement V \
⋃
H∈Hm H.

We denote the closed half-spaces {v ∈ V | 〈v | α〉 ≥ k} and {v ∈ V | 〈v | α〉 ≤ k}
by Hα,k

+ and Hα,k
− respectively. The dominant chamber of V is V ∩

⋂n−1
i=1 Hαi,0

+

and is also referred to as the fundamental chamber in the literature. This paper
primarily concerns regions and alcoves in the dominant chamber.

A dominant region of the m-Shi arrangement is a region that is contained in
the dominant chamber. We call the collection of dominant regions in the m-Shi
arrangement Sn,m.
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Each connected component of

V \
⋃
α∈∆+

k∈Z

Hα,k

is called an alcove and the fundamental alcove is A0, the interior of Hθ,1
− ∩⋂n−1

i=1 Hαi,0
+, where θ = α1 + · · · + αn−1 = ε1 − εn. A dominant alcove is one

contained in the dominant chamber. Denote the set of dominant alcoves by An.
A wall of a region is a hyperplane in Hm which supports a facet of that region

or alcove. Two open regions are separated by a hyperplane H if they lie in different
closed half-spaces relative to H. Please see Athanasiadis (2005) or Humphreys
(1990) for details. We study dominant regions with a fixed separating wall. A
separating wall for a region R is a wall of R which separates R from A0.

2.3. The affine symmetric group.

Definition 2.1. The affine symmetric group, denoted Ŝn, is defined as

Ŝn = 〈s1, . . . , sn−1, s0 | s2
i = 1, sisj = sjsi if i 6≡ j ± 1 mod n,

sisjsi = sjsisj if i ≡ j ± 1 mod n〉

for n > 2, but Ŝ2 = 〈s1, s0 | s2
i = 1〉.

The affine symmetric group contains the symmetric group Sn as a subgroup. Sn

is the subgroup generated by the si, 0 < i < n. We identify Sn as permutations of
{1, . . . , n} by identifying si with the simple transposition (i, i+ 1).

The affine symmetric group Ŝn acts freely and transitively on the set of alcoves.

We thus identify each alcove A with the unique w ∈ Ŝn such that A = w−1A0.
Each simple generator si, i > 0, acts by reflection with respect to the simple root
αi. In other words, it acts by reflection over the hyperplane Hαi,0. The element s0

acts as reflection with respect to the affine hyperplane Hθ,1.
More specifically, the action on V is given by

si(a1, . . . , ai, ai+1, . . . , an) = (a1, . . . , ai+1, ai, . . . , an) for i 6= 0, and

s0(a1, . . . , an) = (an + 1, a2, . . . , an−1, a1 − 1).

Note Sn preserves 〈 | 〉, but Ŝn does not.

2.4. Shi coordinates and Shi tableaux. Every alcove A can be written as

w−1A0 for a unique w ∈ Ŝn and additionally, for each α ∈ ∆+, there is a unique
integer kα such that kα < 〈α | x〉 < kα + 1 for all x ∈ A. Shi characterized the
integers kα which can arise in this way and the next lemma gives the conditions for
type A.

Lemma 2.2 (Shi (1987a)). Let {kαij}1≤i≤j≤n−1 be a set of
(
n
2

)
integers. There

exists a w ∈ Ŝn such that

kαij < 〈αij | x〉 < kαij + 1

for all x ∈ w−1A0 if and only if

kαit + kαt+1,j ≤ kαij ≤ kαit + kαt+1,j + 1,

for all t such that i ≤ t < j.
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From now on, except in the discussion of Proposition 4.3, we write kij for kαij .
These {kij}1≤i≤n−1 are the Shi coordinates of the alcove. We arrange the coor-
dinates for an alcove A in the Young’s diagram (see Section 2.5) of a staircase
partition (n − 1, n − 2, . . . , 1) by putting kij in the box in row i, column n − j.
See Krattenthaler et al. (2002) for a similar arrangement of sets indexed by pos-
itive roots. For a dominant alcove, the entries are nonincreasing along rows and
columns and are nonnegative.

We can also assign coordinates to regions in the Shi arrangement. In each region
of the m-Shi hyperplane arrangement, there is exactly one “representative,” or m-
minimal, alcove closest to the fundamental alcove A0. See Shi (1987b) for m = 1
and Athanasiadis (2005) for m ≥ 1. Let A be an alcove with Shi coordinates
{kij}1≤i≤n−1 and suppose it is the m-minimal alcove for the region R. We define
coordinates {eij}1≤i≤j≤n−1 for R by eij = min(kij ,m).

Again, we arrange the coordinates for a region R in the Young’s diagram (see
Section 2.5) of a staircase partition (n − 1, n − 2, . . . , 1) by putting eij in the box
in row i, column n − j. For dominant regions, the entries are nonincreasing along
rows and columns and are nonnegative.

Example 2.3. For n = 5, the coordinates are arranged
k14 k13 k12 k11

k24 k23 k22

k34 k33

k44

e14 e13 e12 e11

e24 e23 e22

e34 e33

e44

Example 2.4. The dominant chamber for the 2-Shi arrangement for n = 3 is
illustrated in Figure 1 The yellow region has coordinates e12 = 2, e11 = 1, and
e22 = 2. Its 2-minimal alcove has coordinates k12 = 3, k11 = 1, and k22 = 2.

Hα1,0

Hα2,0

Hα1,1

Hα2,1

Hθ,1

Hα1,2

Hα2,2

Hθ,2 Hθ,3 Hθ,4

Figure 1. S3,2 consists of 12 regions

Denote the Shi tableau for the alcove A by TA and for the region R by TR .
Both Richards (1996) and Athanasiadis (2005) characterized the Shi tableaux

for dominant m-Shi regions.
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Lemma 2.5. Let T = {eij}1≤i≤j≤n−1 be a collection of integers such that 0 ≤
eij ≤ m. Then T is the Shi tableau for a region R ∈ Sn,m if and only if
(2.1)

eij =

{
eit + et+1,j or eit + et+1,j + 1 if m− 1 ≥ eit + et+1,j for t = i, . . . , j − 1

m otherwise

Proof. Athanasiadis (2005) defined co-filtered chains of ideals as decreasing chains
of ideals in the root poset

∆+ = I0 ⊇ I1 ⊇ . . . ⊇ Im
in ∆+ such that

(2.2) (Ii + Ij) ∩∆+ ⊆ Ii+j ,
and

(2.3) (Ji + Jj) ∩∆+ ⊆ Ji+j ,
where Ik = Im for k > m and Ji = ∆+ \ Ii. He gave a bijection between co-filtered
chains of ideals and m-minimal alcoves for R ∈ Sn,m. Given such a chain, let
euv = k if αuv ∈ Ik, αuv /∈ Ik+1, and k < m and let euv = m if αuv ∈ Im. Then
conditions (2.2) and (2.3) translate into (2.1). �

Lemma 3.9 from Athanasiadis (2005) is crucial to our work here. He characterizes
the co-filtered chains of ideals for which Hα,m is a separating wall. We translate
that into our set-up in Lemma 2.6, using entries from the Shi Tableau.

Lemma 2.6 (Athanasiadis (2005)). A region R ∈ Sn,m has Hαuv,m as a separating
wall if and only if euv = m and for all t such that u ≤ t < v, eut + et+1,v = m− 1.

2.5. Partitions. A partition is a non-increasing sequence λ = (λ1, λ2, . . . , λn) of
nonnegative integers. λ1, λ2, . . . are called the parts of λ. We identify a partition
λ = (λ1, λ2, . . . , λn) with its Young diagram, that is the array of boxes with coor-
dinates {(i, j) : 1 ≤ j ≤ λi for all λi}. The conjugate of λ is the partition λ′ whose
diagram is obtained by reflecting λ’s diagram about the diagonal. The length of a
partition λ, `(λ), is the number of positive parts of λ.

2.5.1. Core partitions. The (k, l)-hook of any partition λ consists of the (k, l)-box
of λ, all the boxes to the right of it in row k together with all the nodes below it
and in column l. The hook length hλkl of the box (k, l) is the number of boxes in
the (k, l)-hook. Let n be a positive integer. An n-core is a partition λ such that
n - hλ(k,l) for all (k, l) ∈ λ. We let Cn denote the set of partitions which are n-cores.

2.5.2. Ŝn action on cores. There is a well-known action of Ŝn on n-cores which
we will briefly describe here; please see Misra and Miwa (1990), Lascoux (2001),
Lapointe and Morse (2005), Berg et al. (2009), or Fishel and Vazirani (2010), for
more details and history.

The Young’s diagram of a partition λ is made up of boxes. We say the box in
row i and column j has residue r if j − i ≡ r mod n. A box not in the Young’s
diagram of λ is called addable if we obtain a partition when we add it to λ. In
other words, the box (i, j + 1) is addable if λi = j and either i = 1 or λi−1 > λi.
A box in the Young diagram of λ is called removable if we obtain a partition when
we remove it from λ. It is well-known (see for example Fishel and Vazirani (2010)
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or Lapointe and Morse (2005)) that the following action of si ∈ Ŝn on n-cores is
well-defined.

Definition 2.7. Ŝn action n-core partitions:

(1) If λ has an addable box with residue r, then sr(λ) is the n-core partition
created by adding all addable boxes of residue r to λ.

(2) If λ has an removable box with residue r, then sr(λ) is the n-core partition
created by removing all removable boxes of residue r from λ.

(3) If λ has neither removable nor addable boxes of residue r, then sr(λ) is λ.

2.6. Abacus diagrams. In Section 3, we use a bijection, called Ψ, to describe
certain regions. We will need abacus diagrams to define Ψ. We associate to each
partition λ its abacus diagram. When λ is an n-core, its abacus has a particularly
nice form.

The β-numbers for a partition λ = (λ1, . . . , λr) are the hook lengths from the
boxes in its first column:

βk = hλ(k,1).

Each partition is determined by its β-numbers and β1 > β2 > · · · > β`(λ) > 0.
An n-abacus diagram, or abacus diagram when n is clear, is a diagram with

integer entries arranged in n columns labeled 0, 1, . . . , n−1. The columns are called
runners. The horizontal cross-sections or rows will be called levels and runner k
contains the integer entry qn + r on level q where −∞ < q < ∞. We draw the
abacus so that each runner is vertical, oriented with −∞ at the top and ∞ at the
bottom, and we always put runner 0 in the leftmost position, increasing to runner
n−1 in the rightmost position. Entries in the abacus diagram may be circled; such
circled elements are called beads. The level of a bead labeled by qn+ r is q and its
runner is r. Entries which are not circled will be called gaps. Two abacus diagrams
are equivalent if one can be obtained by adding a constant to each entry of the
other.

See Example 2.9 below.
Given a partition λ its abacus is any abacus diagram equivalent to the one with

beads at entries βk = hλ(k,1) and all entries j ∈ Z<0.

Given the original n-abacus for the partition λ with beads at {βk}1≤k≤`(λ), let
bi be one more than the largest level number of a bead on runner i; that is, the
level of the first gap. Then (b0, . . . , bn−1) is the vector of level numbers for λ.

The balance number of an abacus is the sum over all runners of the largest level
of a bead in that runner. An abacus is balanced if its balance number is zero. There
is a unique n-abacus which represents a given n-core λ for each balance number.
In particular, there is a unique n-abacus for λ with balance number 0.

Remark 2.8. It is well-known that λ is an n-core if and only if all its n-abacus
diagrams are flush, that is to say whenever there is a bead at entry j there is also
a bead at j − n. Additionally, if (b0, . . . , bn−1) is the vector of level numbers for λ,

then b0 = 0,
∑n−1
i=0 bi = `(λ), and since there are no gaps, (b0 . . . , bn−1) describes

λ completely.

Example 2.9. Both abacus diagrams in Figure 2 represent the 4-core λ = (5, 2, 1, 1, 1).
The levels are indicated to the left of the abacus and below each runner is the largest
level number of a bead in that runner. The boxes of the Young diagram of λ have
been filled with their hooklengths. The diagram on the left is balanced. The diagram
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on the right is the original diagram, where the beads are placed at the β-numbers
and negative integers. The vector of level numbers for λ is (0, 3, 1, 1).

2 0 0 -2

2

1

0

-1

-2

8

4

0

-4

-8

9

5

1

-3

-7

10

6

2

-2

-6

11

7

3

-1

-5

-1 2 0 0

2

1

0

-1

-2

9

5

1

-3

-7

10

6

2

-2

-6

11

7

3

-1

-5

8

4

0

-4

-8

λ =
9 5 3 2 1

5 1

3

2

1

Figure 2. The abacus represents the 4-core λ.

2.7. Bijections. We describe here two bijections, Ψ and Φ, from the set of n-cores
to dominant alcoves. We neither use nor prove the fact that Ψ = Φ.

2.7.1. Combinatorial description. Ψ is a slightly modified version of the bijection
given in Richards (1996). Given an n-core λ, let (b0 = 0, b1, . . . , bn−1) be the level
numbers for its abacus. Now let p̃i = bi−1n + i − 1, which is the entry of the first
gap on runner i, for i from 1 to n, and then let p1 = 0 < p2 < · · · < pn be the
{p̃i} written in ascending order. Finally we define Ψ(λ) to be the alcove whose Shi
coordinates are given by

kij = bpj+1 − pi
n

c
for 1 ≤ i ≤ j ≤ n− 1.

Example 2.10. We continue Example 2.9. We have n = 4, λ = (5, 2, 1, 1, 1), and
(b0, b1, b2, b3) = (0, 3, 1, 1). Then p̃1 = 0, p̃2 = 13, p̃3 = 6, and p̃4 = 7 and p1 = 0,
p2 = 6, p3 = 7, and p4 = 13. Thus Ψ(λ) is the alcove with the following Shi tableau.

k13 = 3 k12 = 1 k11 = 1

k23 = 1 k22 = 0

k33 = 1
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Proposition 2.11. The map Ψ from n-cores to dominant alcoves is a bijection.

Proof. We first show that we indeed produce an alcove by the process above. By
Lemma 2.2, it is enough to show that kit + kt+1,j ≤ kij ≤ kit + kt+1,j + 1 for all t
such that 1 ≤ t < j.
kij = bpj+1−pi

n c implies that

(2.4) kij =
pj+1 − pi

n
−Bij where 0 ≤ Bij < 1.

Let t be such that 0 ≤ t < j. Using (2.4), we have

kit + kt+1,j =
pt+1 − pi

n
− pj+1 − pt+1

n
−Bij −Bj+1,t+1.

Now let A = Bij +Bj+1,t+1, so that 0 ≤ A < 2. We have

kit + kt+1,j +A =
pj+1 − pi

n
.

Thus

bkit + kt+1,j +Ac = bpj+1 − pi
n

c = kij

or, since kit and kt+1,j are integers,

(2.5) kit + kt+1,j + bAc = kij .

Combining (2.5) with bAc is equal to 0 or 1 shows that the conditions in Lemma 2.2
are satisfied and we have the Shi coordinates of an alcove. Since each kij ≥ 0, it is
an alcove in the dominant chamber.

Now we reverse the process described above to show that Ψ is a bijection. Let
{kij}1≤i≤j≤n−1 be the Shi coordinates of a dominant alcove. Write pi = nqi + ri
for the intermediate values {pi}, which we first calculate. Then p1 = q1 = r1 = 0
and qi = k1,i−1. We must now determine r2, . . . , rn, a permutation of 1, . . . , n− 1.
However, since

(2.6) kij =

{
qj+1 − qi if rj+1 > ri

qj+1 − qi − 1 if rj+1 < ri.
,

we can determine the inversion table for this permutation, using kij for 2 ≤ i ≤
j ≤ n− 1 and q1, . . . , qn. Indeed,

Inv(rj+1) = |{ri | 1 ≤ i < j + 1 and ri > rj+1}|
= |{(k1j , k1,i−1, kij) | k1j = k1,i−1 + kij + 1}|.(2.7)

Therefore, we can compute r2, . . . , rn and therefore p1, p2, . . . , pn. We can now
sort the {pi} according to their residue mod n, giving us p̃1, . . . , p̃n; from this,
(b0, . . . , bn−1). Note that (b0, . . . , bn−1) is a permutation of q1, . . . , qn. �

Example 2.12. We continue Examples 2.9 and 2.10 here. Suppose we are given
that n = 4 and the alcove coordinates k13 = 3,k12 = 1,k11 = 1,k23 = 1,k22 = 0, and
k33 = 1. That is,

TR =
k13 k12 k11

k23 k22

k33

=
3 1 1

1 0

1
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We demonstrate Ψ−1 and calculate (b0, b1, b2, b3) and thereby the 4-core λ. We
have q1 = 0, q2 = 1, q3 = 1, and q4 = 3, and r1 = 0, from k13, k12, and k11. We
must determine r2, r3, r4, a permutation of 1, 2, 3.

Using (2.7), we know Inv(r4) = 2, since k13 = k11+k23+1 and k13 = k12+k33+1.

Inv(r3) = 0, since k12 6= k11 + k22 + 1.

Inv(r2) = 0, always.

Therefore we have r3 = 3, r2 = 2, and r4 = 1, which means b1 = q4 = 3,
b2 = q2 = 1, and b3 = q3 = 1.

Remark 2.13. The column (or row) sums of the Shi tableau of an alcove give us
a partition whose conjugate is (n− 1)-bounded, as in the bijections of Lapointe and
Morse (2005) or Björner and Brenti (1996)

2.7.2. Geometric description. The bijection Φ associates an n-core to an alcove

through the Ŝn action described in Sections 2.5.2 and 2.3. The map Φ : w∅ 7→
w−1A0 for w ∈ Ŝn a minimal length coset for Ŝn/Sn, is a bijection. In Fishel
and Vazirani (2010), it is shown that the m-minimal alcoves of Shi regions in Sn,m
correspond, under Φ, to n-cores which are also (nm+ 1)-cores.

3. Separating wall Hθ,m

Separating walls were defined in Section 2.2 as a wall of a region which separates
the region from A0. Equivalently for alcoves, Hα,k is a separating wall for the alcove
w−1A0 if there is a simple reflection si, where 0 ≤ i < n, such that w−1A0 ⊆
Hα,k

+ and (siw)−1A0 ⊆ Hα,k
−. We want to count the regions which have Hα,m

as a separating wall, for any α ∈ ∆+. We do this by induction and the base case
will be α = θ. Our main result in this section characterizes the regions which have
Hθ,m as a separating wall by describing the n-core partitions associated to them
under the bijections Ψ and Φ described in Section 2.7.

Theorem 3.1. Let Ψ : Cn → An be the bijection described in Section 2.7.1, let
R ∈ Sn,m have m-minimal alcove A, and let λ be the n-core such that Ψ(λ) = A.

Then Hθ,m is a separating wall for the region R if and only if hλ11 = n(m− 1) + 1.

Proof. Let ~b(λ) = (b0, b1, . . . , bn−1) be the vector of level numbers for the n-core λ,
so bo = 0. We first note that h11 = β1 = n(m − 1) + 1 if and only if b1 = m and
bi < m for 1 < i ≤ n− 1.

Now suppose that Hθ,m is a separating wall for the region R. Let {eij} be the
coordinates of R and let {kij} be the coordinates of A. By Lemma 2.6, we know
that e1,n−1 = m and e1t + et+1,n−1 = m − 1, for all t such that 1 ≤ t < n − 1.
Therefore for all eij except e1,n−1, we have eij ≤ m − 1, so that eij = kij . Since
k1t + kt+1,n−1 ≤ k1,n−1 ≤ k1t + kt+1,n−1 + 1, we have that k1,n−1 ≤ m, so indeed
the Shi coordinates of R are the same as the coordinates of A.

Consider the proof of Proposition 2.11 where we describe Ψ−1, but in this sit-
uation. We see that {qi}1≤i≤n−1, a nonincreasing rearrangement of (b1 . . . , bn−1),
is made up of m and n − 2 nonnegative integers strictly less than m. So we need
only show that b1 = m, in view of our first remark of the proof. Combining (2.7)
with the facts that if Hθ,m is a separating wall for a region then eij = kij and, then
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by Lemma 2.6, k1,n−1 = k1,i−1 + ki,n+1 + 1 for all i such that 2 ≤ i ≤ n, we have
Inv(rn) = n− 1. This implies that rn = 1, so that b1 = qn = k1,n−1 = m.

Conversely, suppose that hλ11 = n(m − 1) + 1, so that b1 = m and bi ≤ m − 1
for 1 < i ≤ n− 1. Then p̃2 = nm+ 1 and p̃i = nbi−1 + i− 1 ≤ n(m− 1) + i− 1 ≤
n(m−1)+n−1 = nm−1. Therefore, p1 = 0 and pn = nm+1 and pi ≤ nm−1, so
that q1 = 0, qn = m, rn = 1, and qi ≤ m− 1 and thus k1,n−1 = m and k1i ≤ m− 1.
By specializing (2.6) to j = n− 1, we have

(3.1) ki,n−1 =

{
qn − qi if rn > ri

qn − qi − 1 if rn < ri.
.

Then, by (3.1), ki,n−1 = qn − qi − 1, so that

k1,i−1 + ki,n−1 = qi + qn − qi − 1 = m− 1.

Since kij ≤ m for 1 ≤ i ≤ j ≤ n − 1, kij = eij and the conditions in Lemma 2.6
that Hθ,m be a separating wall are fulfilled. �

We can also look at the regions which have Hθ,m as a separating wall in terms
of the geometry directly. Theorem 3.5 is an alternate version of Theorem 3.1.

Proposition 3.2. Let λ be an n-core and w ∈ Ŝn/Sn be of minimal length such
that λ = w∅. Let k = λ1 + n−1

2 . Let γ = α1,n−1 + α2,n−1 + · · ·+ αn−1,n−1.

(1) Then the affine hyperplane Hγ,k passes through the corresponding alcove
w−1A0. More precisely, 〈w−1( 1

nρ) | γ〉 = k.
(2) Then the affine hyperplane Hγ,λ1

passes through the corresponding alcove
w−1A0. More precisely, 〈w−1(Λr) | γ〉 = λ1, where r ≡ λ1 mod n.

Proof. First, recall that ρ = 1
2

∑
α∈∆+ α = (n−1

2 , n−1
2 − 1, . . . , 1−n

2 ).

Hence 1
nρ ∈ A0 and so w−1( 1

nρ) ∈ w−1A0. Let η =
∑
i εi. Recall V = η⊥ as

for all (a1, . . . , an) ∈ V we have
∑
i ai = 0. Observe that for all v ∈ V , 〈v | γ〉 =

〈v | η − nεn〉 = 〈v | −nεn〉. So it suffices to show 〈w−1( 1
nρ) | εn〉 = − k

n .
Recall we may write w = tβu where β ∈ Q and u ∈ Sn, where tβ is translation

by β. Please see Humphreys (1990) for details. Then w−1 = u−1t−β = tu−1(−β)u
−1

satisfies u−1(−β) ∈ Q+.
Write λ1 = nq − (n − r) with 0 ≤ n − r < n. Then 1 ≤ r ≤ n, q =

⌈
λ1

n

⌉
, and

r ≡ λ1 mod n. Let ai be the level of the first gap in runner i of the balanced
abacus diagram for λ and write ~n(λ) = (a1, a2, . . . , an). It is worth noting that
~n(λ) = w(0, . . . , 0). By (Berg et al., 2009, Prop 3.2.13), the largest entry of ~n(λ)
is ar = q and the rightmost occurrence of q occurs in the rth position. Hence the
smallest entry of −~n(λ) is −q and its rightmost occurrence is also in position r.
Since u−1 ∈ Sn is of minimal length such that u−1(−~n(λ)) ∈ Q+, we have that
u−1(εr) = εn.
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Now we compute

〈w−1(
1

n
ρ) | εn〉 = 〈tu−1(−~n(λ))u

−1(
1

n
ρ) | εn〉

= 〈u−1(−~n(λ)) | εn〉+ 〈u−1(
1

n
ρ) | εn〉

= 〈u−1(−~n(λ)) | εn〉+ 〈 1
n
ρ | u(εn)〉

= −q + 〈 1
n
ρ | εr〉 = −q +

1

n
(
n− 1

2
− (r − 1))

= − 1

n
(nq − n− 1

2
+ r − 1) = − 1

n
(nq − (n− r) + n− 1− n− 1

2
)

= − 1

n
(nq − (n− r) +

n− 1

2
) = − 1

n
(λ1 +

n− 1

2
)

= −k
n
.

For the second statement, note the fundamental weight Λj ∈ V has coordinates
given by

Λj =
1

n
((n− j)(ε1 + · · ·+ εj)− j(εj+1 + · · ·+ εn)).

So Λj ∈ Hαi,0 for i 6= j, Λj ∈ Hαj ,1, and the {Λj | 1 ≤ j ≤ n} ∪ {0} are
precisely the vertices of A0. For the notational consistency of this statement and
others below, we will adopt the convention that Λ0 = 0 (which is consistent with
considering 0 ∈ Hθ,0 = Hα0,1). Hence we have that w−1(Λj) ∈ w−1A0.

As above we compute

− 1

n
〈w−1(Λr) | γ〉 = 〈w−1(Λr) | εn〉

= −q + 〈Λr | εr〉 = −q +
1

n
(n− r)

= − 1

n
(nq − (n− r)) = − 1

n
(λ1).

�

Proposition 3.3. Let λ be an n-core and w ∈ Ŝn/Sn be of minimal length such
that λ = w∅. Let K = `(λ) + n−1

2 . Let Γ = α1,n−1 + α1,n−2 + · · ·+ α1,1.

(1) Then the affine hyperplane HΓ,K passes through the corresponding alcove
w−1A0. More precisely, 〈w−1( 1

nρ) | Γ〉 = K.
(2) Then the affine hyperplane HΓ,`(λ) passes through the corresponding al-

cove w−1A0. More precisely, 〈w−1(Λs−1) | Γ〉 = `(λ), where 1 − s ≡ `(λ)
mod n.

Proof. First note 〈v | Γ〉 = 〈v | nε1〉 for all v ∈ V , so it suffices to compute
〈w−1( 1

nρ) | nε1〉.
Next, note Γ = nε1.

Write `(λ) = nM + (1 − s) with 1 ≤ s ≤ n, so −M = −
⌈
`(λ)
n

⌉
. By Berg et al.

(2009), the smallest entry of ~n(λ) = (a1, a2, . . . , an) is as = −M and the leftmost
occurrence of −M occurs in the sth position. Hence the largest entry of −~n(λ) is
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M and its leftmost occurrence is also in position s. Then for u as above, it is clear
u(ε1) = εs. So, by a similar computation as above,

〈w−1(
1

n
ρ) | Γ〉 = n〈w−1(

1

n
ρ) | ε1〉

= n〈u−1(−~n(λ)) | ε1〉+ n〈u−1(
1

n
ρ) | ε1〉

= nM + 〈ρ | εs〉 = nM +
n− 1

2
− (s− 1)

= `(λ) +
n− 1

2
= K.

Likewise,

〈w−1(Λs−1) | ε1〉 = M + 〈Λs−1 | εs〉 = M +
1

n
(−(s− 1))

=
1

n
(nM + (1− s)) =

1

n
`(λ).

�

Taking subscripts mod n we have 〈w−1(Λλ1
) | γ〉 = λ1 and 〈w−1(Λ−`(λ)) | Γ〉 =

`(λ).

Corollary 3.4. n〈w−1( 1
nρ) | θ〉 = λ1 + `(λ) + n− 1.

Note that when λ 6= ∅, the above quantity is hλ11 +n where hλ11 is the hooklength

of the first box. (One could also set h∅11 = −1.)

Theorem 3.5. Let Φ : Cn → An be the bijection described in Section 2.7.2, let
R ∈ Sn,m have m-minimal alcove A, and let λ be the n-core such that Φ(λ) = A.

Then Hθ,m is a separating wall for the region R if and only if hλ11 = n(m− 1) + 1.

Proof. Let r, s, q, M , and w be as in Propositions 3.2 and 3.3. Suppose that Hθ,m

is a separating wall for R and let i be such that w−1A0 ⊆ Hθ,m
+ and w−1siA0 ⊆

Hθ,m
−. Recall Λj ∈ Hαi,0 for all j 6= i, and Λi ∈ Hαi,1. Hence w−1(Λj) ∈ Hθ,m but

w−1(Λi) ∈ Hθ,m+1. In fact, this configuration of vertices characterizes separating
walls.

Note

(3.2) 〈Λj | εs − εr〉 =


1 if s ≤ j < r

−1 if s > j ≥ r
0 else.

By Propositions 3.2 and 3.3, 〈w−1(Λj) | θ〉 = M + q+ 〈Λj | εs − εr〉. Because Hθ,m

is a separating wall, this yields M + q+ 〈Λj | εs − εr〉 = m+ δi,j . We must consider
two cases. First, M + q = m and 〈Λj | εs − εr〉 = δi,j . In other words, by (3.2)
s ≤ j < r implies j = i. More precisely, r − s = 1, s = i, and εs − εr = αi. In the
second case, M + q− 1 = m and 〈Λj | εs − εr〉 = δi,j − 1. In other words, s > j ≥ r
for all 1 ≤ j < n (and recall 〈Λ0 | εs − εr〉 = 〈0 | εs − εr〉 = 0). More precisely,
r − s = 1− n and εs − εr = −θ.
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Putting this all together for λ 6= ∅,

hλ11 = `(λ) + λ1 − 1

= (nM + 1− s) + (nq − (n− r))− 1

= n(M + q)− n+ (r − s) =

{
nm− n+ 1

n(m+ 1)− n+ (1− n)

= n(m− 1) + 1.

Conversely, if hλ11 = n(m − 1) + 1, then by the computation above n(M + q) −
n + (r − s) = nm − n + 1, which forces n(M + q − 1 −m + 1) = 1 + s − r. Note
2−n ≤ 1+s−r ≤ n. If 1+s−r < n, divisibility forces 0 = 1+s−r = M+q−m. In
other words, εs− εr = αi for i = s, and we compute as above that 〈w−1(Λj) | θ〉 =
M + q+ δi,j showing Hθ,m is a separating wall. If instead 1 + s− r = n, this forces
M + q −m = 1 and εs − εr = θ. Hence 〈w−1(Λj) | θ〉 = M + q − 1 = m for all
j < n, but 〈w−1(0) | θ〉 = M + q = m+ 1, so that Hθ,m is again a separating wall
for w−1A0.

As a side note, similar calculations show that hλ11 = n(m− 1)− 1 if and only if
either M + q = m and r − s = −1, or M + q = m− 1 and r − s = n− 1. In both
cases Hθ,m will not be a separating wall for w−1A0, but will be a separating wall
for w−1siA0 where i = s− 1. One vertex of w−1A0 lies in Hθ,m−1 and the rest in
Hθ,m.

�

We have the following corollary to Theorem 3.1 and Theorem 3.5.

Corollary 3.6. There are mn−2 regions in Sn,m which have Hθ,m = Hα1n−1,m as
a separating wall.

Proof. There are mn−2 vectors of level numbers (b0, b1, . . . , bn−1) such that b0 = 0,
b1 = m, and 0 ≤ bi ≤ m− 1 for 2 ≤ i ≤ n− 1. �

There are direct explanations for Corollary 3.6, but we need Theorem 3.1 and
Theorem 3.5 to develop our recursions, where we need to know more than the
number of regions which have Hθ,m as a separating wall. We use the number of
hyperplanes which separate each region from the origin.

4. Generating functions

We use hnαk to denote the set of regions in Sn,m which have Hα,k as a separating
wall. See Figure 3. In the language of Athanasiadis (2005), these are the regions
whose corresponding co-filtered chain of ideals have α as an indecomposable element
of rank k.

In this section, we present a generating function for regions in hnαk. In Section 5,
we discuss a recursion for regions. The recursion is found by adding all possible first
columns to Shi tableaux for regions in Sn−1,m to create all Shi tableaux for regions
in Sn,m. The generating function keeps track of the possible first columns and rows.
We use two statistics r() and c() on regions in the extended Shi arrangement. Let
R ∈ Sn,m and define

r(R) = |{(j, k) : R and A0 are separated by Hα1j ,k and 1 ≤ k ≤ m}|
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Hα1,0

Hα2,0

Hα1,1

Hα2,1

Hα12,1

Hα1,2

Hα2,2

Hα12,2

Figure 3. There are three regions in h3α12

and

c(R) = |{(i, k) : R and A0 are separated by Hαin−1,k and 1 ≤ k ≤ m}|.

r(R) counts the number of translates of Hα1j ,0 which separate R from A0, for
1 ≤ j ≤ n− 1. Similarly for c(R) and translates of Hαi,n−1,0.

The generating function is

fnαijm(p, q) =
∑

R∈hnαijm

pc(R)qr(R).

Example 4.1. f3
α12(p, q) = p4q2 + p4q3 + p4q4.

We let [k]p,q =
∑k−1
j=0 p

jqk−1−j and [k]q = [k]1,q. We will also need to truncate
polynomials and the notation we use for that isj=n∑

j=0

ajq
j


≤qN

=

j=N∑
j=0

ajq
j .

The statistics are related to the n-core partition assigned by Φ to the m-minimal
alcove for the region.

Proposition 4.2. Let λ be an n-core with vector of level numbers (b0, . . . , bn−1)

and suppose Ψ(λ) = R and R ∈ hnθm. Then r(R) = m +
∑n−1
i=2 bi = `(λ) and

c(R) = m+
∑n−1
i=2 (m− 1− bi) = λ1.

Proof. Let λ, (b0, . . . , bn−1), and R be as in the statement of the claim. Let {eij}
be the region coordinates for R and {kij} be the coordinates of R’s m-minimal
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alcove, and let {pi} and {p̃i} be as in the definition of Ψ. Then

r(R) = e1,n−1 + e1,n−2 + . . .+ e11

= k1,n−1 + k1,n−2 + . . .+ k11

= bpn
n
c+ . . .+ bp1

n
c

= b p̃n
n
c+ . . .+ b p̃1

n
c

=

n−1∑
i=0

bi

The second part of the claim follows since c(R) = k1,n−1 + k2,n−1 + . . .+ kn−1,n−1

and ki,n−1 = (m− 1)− k1,i−1 for R ∈ hnθm and 2 ≤ i ≤ n− 1. �

We can also relate the statistics r() and c() to the n-core partition corresponding
under Φ to the m-minimal alcove of the region R.

For now, let kw,α be the Shi coordinate of w−1A0. Note kw,α < 〈w−1( 1
nρ) | α〉 <

kw,α + 1, so kw,α =
⌊
〈w−1( 1

nρ) | α〉
⌋
.

Proposition 4.3. Let λ be an n-core and w ∈ Ŝn/Sn be of minimal length such
that λ = w∅.

(1) Then
∑
i kw,αi,n−1

= λ1.
(2) Then

∑
j kw,α1,j

= `(λ).

Proof. Consider

〈w−1(
1

n
ρ) | αi,n〉 = 〈u−1(−β) | αi,n〉+ 〈u−1(

1

n
ρ) | αi,n〉

= 〈u−1(−β) | αi,n〉+ 〈 1
n
ρ | εu(i) − εu(n)〉.

= 〈u−1(−β) | αi,n〉+ 〈 1
n
ρ | εu(i) − εr〉.

Note 〈u−1(−β) | αi,n〉 ∈ Z and
⌊
〈 1
nρ | εu(i) − εr〉

⌋
= 0 if u(i) < r, but

⌊
〈 1
nρ | εu(i) − εr〉

⌋
=

−1 if u(i) > r. Hence ∑
i

⌊
〈u−1(

1

n
ρ) | αi,n〉

⌋
= −(n− r).

We then compute∑
i

kw,αi,n = r − n+
∑
i

〈u−1(−β) | αi,n〉

= r − n+ 〈u−1(−β) | γ〉 = r − n+ qn

= λ1

by the computations in the proof of Proposition 3.2.
Likewise,

⌊
〈u−1( 1

nρ) | α1,j〉
⌋

=
⌊
〈 1
nρ | εs − εu(j)〉

⌋
= −1 if u(j) < s and zero

otherwise. As above,∑
j

kw,α1,j
= −(s− 1) +

∑
j

〈u−1(−β) | α1,j〉

= 1− s+ 〈u−1(−β) | Γ〉 = 1− s+Mn

= `(λ)
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by the computations in the proof of Proposition 3.3. �

We thus obtain another corollary to Theorem 3.1.

Corollary 4.4.
fnθ,m(p, q) = pmqm[m]n−2

p,q .

Proof. Corollary 4.4 follows from Theorem 3.1 or 3.5, Proposition 4.2, and the
abacus representation of n-cores which have the prescribed hook length.

fnθ,m(p, q) =
∑

R∈hnθm

pc(R)qr(R)

=
∑

λ is an n−core
hλ11=n(m−1)+1

pm+
∑n−1
i=2 biqm+

∑n−1
i=2 (m−1−bi)

=
∑

(b2,...,bn−1)
0≤bi≤m−1

pmqm

(
n−1∏
i=2

pbiqm−1−bi

)

= pmqm(pm−1 + pm−2q + · · ·+ pqm−2 + qm−1)n−2

= pmqm[m]n−2
p,q .

�

Corollary 3.6 can be derived from Corollary 4.4 by evaluating at p = q = 1.

5. Arbitrary separating wall

The next few lemmas provide an inductive method for determining whether or
not R ∈ Sn,m is an element of hnα2,n−1m.

Given a Shi tableau TR = {eij}1≤i≤j≤n−1, where R ∈ Sn,m, let T̃R be the tableau

with entries {eij}1≤i≤j≤n−2. That is, T̃R is TR with the first column removed.

Example 5.1. Suppose R ∈ S5,m and

TR =
e14 e13 e12 e11

e24 e23 e22

e34 e33

e44

. Then T̃R =
e13 e12 e11

e23 e22

e33

The next lemma tells us that T̃R is always the Shi tableau for a region in one
less dimension.

Lemma 5.2. If TR is the tableau of a region R ∈ Sn,m and 1 ≤ u ≤ v ≤ n − 1,

then T̃R = TR̃ for some R̃ ∈ Sn−1,m.

Proof. This follows from Lemma 2.5. �

Lemma 5.3. Let TR be the Shi tableau for the region R ∈ Sn,m and let R̃ be defined

by TR̃ = T̃R , where R̃ ∈ Sn−1,m by Lemma 5.2. Then R ∈ hnαi,n−2m if and only if

R̃ ∈ hn−1
αi,n−2m.

Proof. This follows from Lemma 2.6. �
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In terms of generating functions, Lemma 5.3 states:

fnαi,n−2m(p, q) =
∑

R∈hnαi,n−2m

pc(R)qr(R)(5.1)

=
∑

R1∈hn−1
αi,n−2m

∑
R∈Sn,m
R̃=R1

pc(R)qr(R)

If R1 ∈ hn−1
αi,n−n and R ∈ Sn,m are such that R̃ = R1, then, since ei,n−2 = m in

the Shi tableau for R1, r(R) = r(R1) + m and c(R) = c(R1) + k, for some k. We
need to establish the possible values for k.

We will use Proposition 3.5 from Richards (1996) to do this. His “pyramids”
correspond to our Shi tableaux for regions, with his e and w being our n and m+1.
He does not mention hyperplanes, but with the conversion uav = m − eu+1,v his
conditions in Proposition 3.4 become our conditions in Lemma 2.5.

In our language, his Proposition 3.5 becomes

Lemma 5.4 (Richards (1996)). Let µ1, µ2, . . . , µn be non-negative integers with

µ1 ≥ µ2 ≥ . . . ≥ µn = 0 and µi ≤ (n− i)m.
Then there is a unique region R ∈ Sn,m with Shi tableau TR = {eij}1≤i≤j≤n−1 such
that

µj = µj(R) =

n−j∑
i=1

ei,n−j for 1 ≤ j ≤ n− 1

We include his proof for completeness.

Proof. By Lemma 2.5, we have eij ≥ ei+1,j and eij ≥ ei,j−1 for 1 ≤ i < j ≤ n− 1,

which, combined with 0 ≤ eij ≤ m, means that the column sums µj =
∑j
i=1 eij

form a partition such that 0 ≤ µj ≤ m(n− j).
We use induction on n to show that given such a partition µ, there is at most

one region whose Shi tableau has column sums µ. It is clearly true for n = 2. Let
n > 2 and suppose we had two regions R1 with coordinates {eij}1≤i≤j≤n−1 and R2

with coordinates {fij}1≤i≤j≤n−1 such that

µj =

j∑
i=1

eij =

j∑
i=1

fij .

By induction eij = fij for 1 ≤ i ≤ j ≤ n − 2. Let u be the least index such

that eu,n−1 6= fu,n−1 and assume eu,n−1 < fu,n−1. Then since
∑n−1
i=1 ei,n−1 =∑n−1

i=1 fi,n−1, we have that ev,n−1 > fv,n−1 for some v such that u < v ≤ n − 1.
Then since fu,n−1 ≤ fu,v−1 + fv,n−1 + 1 by Lemma 2.5 and fu,v−1 = eu,v−1 by
induction, we have

eu,n−1 < fu,n−1 ≤ eu,v−1 + fv,n−1 + 1 ≤ eu,v−1 + ev,n−1.

This contradicts Lemma 2.5 applied to R1.

However, there are 1
mn+1

(
(m+1)n

n

)
dominant Shi regions by Shi (1997) for m =

1 and Athanasiadis (2004) for m > 1 and it is well-known that there are also
1

mn+1

(
(m+1)n

n

)
partitions µ such that 0 ≤ µi ≤ m(n− i), so we are done. �
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Example 5.5. Consider R1, R2, and R3 in S3,2 with tableaux

2 2 1

2 2

2

2 2 1

2 2

1

2 2 1

2 2

0

respectively. Then R̃1 = R̃2 = R̃2 = R, where R is the region in S2,2 with tableau

2 1

2

Let α = αij , where 1 ≤ i ≤ j ≤ n− 2 in the following. Lemma 5.4 means for all
pairs (R1, k), where R1 ∈ Sn−1,m, TR1 = {eij}1≤i≤j≤n−2, and k is an integer such

that
∑n−2
i=1 ei,n−2 ≤ k ≤ (n − 1)m, there is a region R ∈ Sn,m such that R̃ = R1

and the first column sum of R’s Shi tableau is k. Additionally, by Lemma 5.3, we
have R1 ∈ hn−1

αm if and only if R ∈ hnαm. On the other hand, given R ∈ Sn,m with
Shi tableau TR = {eij}1≤i≤j≤n−1, let k be the first column sum of TR . Then by

Lemma 5.2 and the fact that ei,n−1 ≥ ei,n−2 for 1 ≤ i ≤ n − 2, the pair (R̃, k) is

such that R̃ ∈ Sn−1,m and the first column sum of TR̃ is not more than k. Again,

by Lemma 5.3, we have R̃ ∈ hn−1
αm if and only if R ∈ hnαm.

We continue (5.1), keeping in mind that c(R1) is the first column sum for TR1 .
For ease of reading, write α for αi,n−2 in the following calculation.

fnαm(p, q) =
∑

R∈hnαm

pc(R)qr(R)

=
∑

R1∈hn−1
αm

∑
R∈Sn,m
R̃=R1

pc(R)qr(R)

=
∑

R1∈hn−1
αm

∑
k

c(R1)≤k≤n(m−1)

pkqr(R1)+m

=
∑

R1∈hn−1
αm

∑
k′

0≤k′≤n(m−1)−c(R1)

pc(R1)+k′qr(R1)+m

=

 ∑
R1∈hn−1

αm

∑
k′

0≤k′≤n(m−1)

pc(R1)+k′qr(R1)+m


≤p(n−1)m

=

 ∑
R1∈hn−1

αm

∑
k′

0≤k′≤n(m−2)

pc(R1)+k′qr(R1)+m


≤p(n−1)m

since c(R1) ≥ m

=

qm
 ∑
R1∈hn−1

αm

pc(R1)qr(R1)


 ∑

k′

0≤k′≤n(m−2)

pk
′



≤p(n−1)m

=
(
qm[(n− 2)m+ 1]pf

n−1
αm (p, q)

)
≤p(n−1)m .
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The result of the above calculation is that

(5.2) fnαm(p, q) =
(
qm[(n− 2)m+ 1]pf

n−1
αm (p, q)

)
≤p(n−1)m

when α = αi,n−2.
The next proposition will provide a method for determining whether or not

Hα1n−j ,m is a separating wall for R. Given a Shi tableau T = {eij}1≤i≤j≤n−1

for a region in Sn,m, let T ′ be its conjugate given by T ′ = {e′ij}1≤i≤j≤n−1, where
e′ij = en−j,n−i.

Example 5.6.

By Lemma 2.5, T ′ will also be Shi tableau of a region in Sn,m. Additionally, by
Lemma 2.6, we have the following proposition.

Proposition 5.7. Suppose the regions R and R′ are related by

(TR)′ = TR′ .

Then R ∈ hnαijm if and only if R′ ∈ hnαn−j,n−im.

In terms of generating functions, this becomes the following:

(5.3) fnαijm(p, q) = fnαn−j,n−im(q, p).

We will now combine Theorem 3.1, Proposition 5.3, and Proposition 5.7 to pro-
duce an expression for the generating function for regions with a given separating
wall.

Given a polynomial f(p, q) in two variables, let φk,m(f(p, q)) be the polynomial

(qm[m(k − 2) + 1]pf(p, q))≤p(k−1)m

and let ρ(f) be the original polynomial with p and q reversed: f(q, p). Then (5.2)
is

fnαijm(p, q) = φn,m(fn−1
αijm(p, q))

for j = n− 2 and (5.3) is

fnαijm(p, q) = ρ(fnαn−j,n−im(p, q)).

Finally, the full recursion is

Theorem 5.8.

fnαuvm(p, q) = φn,m(φn−1,m(. . . φv+2,m(ρ(φv+1,m(. . . (φv−u+3,m(pmqm[m]v−up,q ) . . .).

The idea behind the theorem is that, given a root αuv in dimension n − 1, we
remove columns using Lemma 5.4 until we are in dimension (v + 1) − 1, then we
conjugate, then remove columns again until our root is α1,v−u+1 and we are in
dimension (v − u+ 2)− 1.

Example 5.9. We would like to know how many elements there are in h7
α242; that

is, how many dominant regions in the 2-Shi arrangement for n = 7 have Hα24,2 as
a separating wall. In order to make this readable, we omit the m subscript, since it
is always 2 in this calculation.
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f7
α242(p, q) =

(
q2[11]pf

6
α24

(p, q)
)
≤p12

=
(
q2[11]p

(
q2[9]pf

5
α24

(p, q)
)
≤p10

)
≤p12

=
(
q2[11]p

(
q2[9]pf

5
α13

(q, p)
)
≤p10

)
≤p12

=

(
q2[11]p

(
p2[9]p

(
q2[7]qf

4
α13

(q, p)
)
≤q8

)
≤q10

)
≤q12

=

(
q2[11]p

(
p2[9]p

(
q2[7]q

(
p2q2[2]2p,q

))
≤q8

)
≤p10

)
≤p12

After expanding this polynomial and evaluating at p = q = 1, we see there are 781
regions in the dimension 7 2-Shi arrangement which have Hα24,2 as a separating
wall.

Future work

It would be interesting to expand this problem by considering a given set of
more than one separating walls. That is, given a set H∆′ = {Hα,m, α ∈ ∆′ ⊆ ∆}
of hyperplanes in the Shi arrangement, find the number of regions having all the
hyperplanes in H∆′ as separating walls.

We would again be able to define a similar generation function, use the functions
φk,m and ρ corresponding to truncation and conjugation of the Shi tableaux, but
we should be able to compute the generating function for a suitably chosen base
case.
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