Solutions

20. Recall that a nonempty subset N of an R-module M is a submodule if and only if, for every $x, y \in N$ and every $r \in R$, we have that $x+r y \in N$.

So let $x, y \in N=\cup_{i=1}^{\infty} N_{i}$ and $r \in R$ be given. Then, for some $i, j \in \mathbb{N}$ with $i \leq j$, we have that $x \in N_{i}$ and $y \in N_{j}$. Hence, $x, y \in N_{j}$. Since N_{j} is given to be a submodule, we have that $x+r y \in N_{j}$. Therefore, $x+r y \in N$, completing the proof.
21. Suppose, to get a contradiction, that M is free over the set $\left\{a_{1}, \ldots, a_{n}\right\} \subset$ M. First, we claim that $n=1$. For otherwise we have that

$$
-a_{2} \cdot a_{1}+a_{1} \cdot a_{2}=0 \cdot a_{1}+0 \cdot a_{2}
$$

But then we have that $M=\left\langle a_{1}\right\rangle$, which is impossible because $\langle 2, x\rangle$ is not principle.
22. The main computational tool to use in problems like this is the Chinese Remainder Theorem (see Exercises 10.3.16 and 10.3.17 in Dummit \& Foote). In the particular case of quotient rings of $\mathbb{Q}[x]$, the Chinese Remainder Theorem states that if $a(x), b(x) \in \mathbb{Q}[x]$ have no nonconstant common divisor, then $\mathbb{Q}[x] / a(x) b(x) \cong \mathbb{Q}[x] / a(x) \oplus \mathbb{Q}[x] / b(x)$. Our goal is then to break-up and re-group the summands of V to get expressions in invariant factor and elementary divisor form, all the while using the Chinese Remainder Theorem to guarantee that we still have the same $Q[x]$-module.

In this case, we get

$$
\begin{aligned}
V & \cong \mathbb{Q}[x] /(x+1)^{2} \oplus \mathbb{Q}[x] /(x-1)\left(x^{2}+1\right)^{2} \oplus \mathbb{Q}[x] /(x+1)^{2}(x-1) & & \\
& \cong \mathbb{Q}[x] /(x+1)^{2} \oplus \mathbb{Q}[x] /(x-1) \oplus \mathbb{Q}[x] /\left(x^{2}+1\right)^{2} \oplus \mathbb{Q}[x] /(x+1)^{2} & & \\
& \oplus \mathbb{Q}[x] /(x-1) & & \text { (elementary divisor forn } \\
& \cong \mathbb{Q}[x] /(x+1)^{2}(x-1) \oplus \mathbb{Q}[x] /\left(x^{2}+1\right)^{2}(x+1)^{2}(x-1) & & \text { (invariant factor form) }
\end{aligned}
$$

23. Suppose that R is an integral domain, and let $x, y \in \operatorname{Tor}(M)$ and $r \in R$ be given. Then there exist $r_{1}, r_{2} \in R \backslash\{0\}$ such that $r_{1} x=r_{2} y=0$. Thus, since R is an integral domain (and so commutative), we have that $r_{2} r_{1} \neq 0$ and $r_{2} r_{1}(x+r y)=0$. Thus, $x+r y \in \operatorname{Tor}(M)$, so $\operatorname{Tor}(M)$ is a submodule.
To show that $\operatorname{Tor}(M / \operatorname{Tor}(M))=0$, let $z+\operatorname{Tor}(M) \in \operatorname{Tor}(M / \operatorname{Tor}(M))$ be given. We want to show that $z \in \operatorname{Tor}(M)$. Now, for some $r_{3} \in R \backslash\{0\}$, we have that $r_{3}(z+\operatorname{Tor}(M)) \in \operatorname{Tor}(M)$. Since $\operatorname{Tor}(M)$ is a submodule (as we just proved), this implies that $r_{3} z \in \operatorname{Tor}(M)$, i.e, for some $r_{4} \in$ $R \backslash\{0\}, r_{4} r_{3} z=0$. Since R is an integral domain, $r_{4} r_{3} \neq 0$, so $z \in \operatorname{Tor}(M)$, as desired.

To give a ring R and a module M for which $\operatorname{Tor}(M)$ is not a submodule, we obviously need R to be not an integral domain. In fact, it suffices to take $R=M=\mathbb{Z} / 6 \mathbb{Z}$ and consider M as a module over itself acting by the usual multiplication. Then we have $2,3 \in \operatorname{Tor}(M)$, but $2+3 \notin \operatorname{Tor}(M)$.
24. Let $d=(m, n)$. First, note that

$$
\sum\left(a_{i} \otimes b_{i}\right)=\left(\sum a_{i} b_{i}\right)(1 \otimes 1)
$$

so $\mathbb{Z}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{m}$ is a cyclic group generated by the element $1 \otimes 1$. Moreover, since $m(1 \otimes 1)=n(1 \otimes 1)=0$, the order of $\mathbb{Z}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{m}$ divides d. Thus, to complete the proof, it remains only to show that $1 \otimes 1$ has order at least d.

Note that the map $\varphi: \mathbb{Z}_{n} \times \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{d}$ defined by

$$
\varphi(a \bmod n, b \bmod m)=a b \bmod d
$$

is bilinear over \mathbb{Z}. It therefore follows from the universal property of tensor products that the map $\Phi: \mathbb{Z}_{n} \otimes_{\mathbb{Z}} \mathbb{Z}_{m} \rightarrow \mathbb{Z}_{d}$ given by

$$
\Phi((a \bmod n) \otimes(b \bmod m))=a b \bmod d
$$

is a well-defined \mathbb{Z}-module homomorphism. Since Φ maps $1 \otimes 1$ to an element of order d in $\mathbb{Z}_{d}, 1 \otimes 1$ must have order at least d, as needed.
25. (Recall that an R-module M is a torsion R-module if $\operatorname{Tor}(M)=M$.) Suppose that G is a finite abelian group, and let $g \in G$ be given. We want to show that $g \in \operatorname{Tor}(G)$. Since G is finite, the submodule $\{n g: n \in \mathbb{Z}\}$ is finite. Thus, there exist distinct $m, n \in \mathbb{Z}$ such that $m g=n g$, i.e, $(m-n) g=0$. Since $m-n \neq 0$, this shows that $g \in \operatorname{Tor}(G)$, as desired.
For an example of an infinite abelian group M that is a torsion \mathbb{Z}-module, put $M=\oplus_{i=1}^{\infty} \mathbb{Z} / 2 \mathbb{Z}$, where the \mathbb{Z}-module structure on M is inherited from $\mathbb{Z} / 2 \mathbb{Z}$ in the usual way. Then we have $2 x=0$ for each $x \in M$.
26. $\operatorname{Hom}_{R}\left(\oplus A_{i}, B\right) \simeq \prod_{i} \operatorname{Hom}_{R}\left(A_{i}, B\right)$:

We want to identify a given homomorphism $\varphi: \oplus A_{i} \rightarrow B$ with a tuple $\left(\varphi_{1}, \varphi_{2}, \ldots\right)$ of homomorphisms $\varphi_{i}: A_{i} \rightarrow B$. This may be achieved by setting

$$
\begin{equation*}
\varphi_{i}(a)=\varphi(0, \ldots, 0, a, 0, \ldots), \quad a \in A_{i} . \tag{1}
\end{equation*}
$$

where the a is the i th argument of φ. It is straightforward to verify that this is an group homomorphism. Moreover, if R is commutative, then this map is an R-module homomorphism.
To show that this mapping is moreover an isomorphism, we need to show that, given a tuple $\left(\varphi_{1}, \varphi_{2}, \ldots\right)$, we can recover a unique homomorphism $\varphi: \oplus A_{i} \rightarrow B$ satisfying equation (1). That equation (1) defines a homomorphism $\varphi: \oplus A_{i} \rightarrow B$ follows from the observation that elements of $\oplus A_{i}$ are finite sums of elements of the form $(0, \ldots, 0, a, 0, \ldots)$. Therefore, if we use (1) to define the map φ on elements of the form $(0, \ldots, 0, a, 0, \ldots)$, then there exists a unique way to linearly extend φ to a map on $\oplus A_{i}$.
$\operatorname{Hom}_{R}\left(A, \prod B_{j}\right) \simeq \prod_{j} \operatorname{Hom}_{R}\left(A, B_{j}\right):$

Given a homomorphism $\varphi: A \rightarrow \prod B_{j}$, define a tuple $\left(\varphi_{1}, \varphi_{2}, \ldots\right)$ of maps $\varphi_{j}: A \rightarrow B_{j}$ by setting

$$
\varphi(a)=\left(\varphi_{1}(a), \varphi_{2}(a), \ldots\right)
$$

The reader may verify that this establishes the desired isomorphism.

