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Abstract

Thomas A. Hogan
June 2019

Mathematics

This dissertation focuses on applications of geometric results inspired by Tverberg’s theorem (so-

called Tverberg-type problems). We study various aspects of partitioning data in such a manner

that the convex hulls of the parts have specified combinatorial intersection patterns. For instance,

Tverberg’s theorem says that sufficiently many points in Rd can always be partitioned into m sets

so that the convex hulls of the m parts all intersect. This dissertation contains new results and

applications on three main variants of this theorem:

• Tverberg theorems with altered nerves: Given sufficiently many points in Rd and a desired

intersection pattern (specified by a simplicial complex K with m vertices), can those points

be partitioned into m sets in such a way that the convex hulls of the parts have the desired

intersection pattern (so the nerve of the convex hulls of the parts is isomorphic to K)?

• Stochastic Tverberg theorems: Given sufficiently many points in Rd, do “most” partitions

of those points into m sets have the property that the convex hulls of the parts all intersect?

In other words, if we randomly color each point with uniform probability 1/m are we likely

to obtain a partition with the m convex hulls intersecting?

• S-Tverberg problems: Given a subset S of Rd and an integer m ≥ 2, what is the smallest

positive integer n with the following property: Any multiset of n points in S admits a

partition into m subsets A1, A2, . . . , Am with

(
m⋂

i=1

conv(Ai)

)
∩ S 6= ∅?

-2-

We also introduce and explore applications of these new results in optimization, statistics and
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computing. The work we present here is based on papers coauthored with Jesús A. De Loera,

Frédéric Meunier, Nabil Mustafa, Déborah Oliveros, and Dominic Yang.
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CHAPTER 1

Introduction

This thesis is about partitioning data sets into classes in such a way that the convex hulls of the

classes intersect in structured ways. The genesis of this field of study can be attributed to J. Radon,

who proved the following remarkable result.

Theorem 1 (J. Radon 1923 [Rad21]). Every set S with at least d+2 points in Rd can be partitioned

into two subsets S1 and S2 such that the convex hulls of S1 and S2 share a point in common.

This result, now known as Radon’s lemma, is one of the most fundamental results in discrete geom-

etry. It has a beautiful proof, and has cemented itself as a key lemma for important developments

in discrete and computational geometry over the years. For proofs and more details about Radon’s

lemma and the introductory results that follow see [Mat02].

In 1959, B.J. Birch discovered that, in dimension two, Radon’s lemma was a special case of an even

more remarkable result: Any 3m− 2 points in the plane can be split into m groups in such a way

that the m convex hulls share a point in common [Bir59]. He conjectured that this result could be

extended further to any dimension. This beautiful conjecture, proved by H. Tverberg and known as

Tverberg’s theorem, serves as the central inspiration for the work in this thesis. However, we look

at it from several new perspectives with applications to computing, optimization, and statistical

learning in mind.

Figure 1.1. Two examples of Radon’s theorem in dimension two.
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Figure 1.2. An example Tverberg partition where d = 2 and m = 3.

Figure 1.3. A set of nine points in dimension two with no Tverberg four-partition.

Theorem 2 (H. Tverberg 1966 [Tve66]). Every set S with at least (d + 1)(m − 1) + 1 points in

Euclidean d-space Rd can be partitioned into m parts P = S1, . . . , Sm such that all the convex hulls

of these parts have nonempty intersection.

Such a partition, as depicted in Figure 1.2, is called a Tverberg partition. The number of points

in this result is optimal, which is illustrated by the following example: Take a non-degenerate d-

simplex embedded in Rd, and consider a set S consisting of m− 1 points very close to each vertex

of the simplex. See Figure 1.3 for an example of such an S for m = 4, d = 2. Then S has a total

of (d+ 1)(m− 1) points, but no Tverberg m-partition. Indeed, for each point p in Rd we can find

a half-space containing p and at most m − 1 points in S. Thus, for every point p in Rd, and any

m-partition S of S, we can find a separating hyperplane between p and at least one of the subsets

of S.

In fact, examples showing the optimality of Tverberg’s theorem are much more common than one

might expect, as shown by a “dimension-counting” argument [BS18]. Observe that for generic

affine subspaces S1, S2 of Rd, we have codimension(S1∩S2) = codimension(S1) + codimension(S2).

Inductively, we see that for generic affine subspaces S1, . . . , Sm, we have codimension(∩i∈[m]Si) =

2



∑
i∈[m](codimension(Si)). With this observation in mind, it is easy to show the following. If S is in

general enough position, and in the partition S = S1∪· · ·∪Sm, we have 1 ≤ |Sj | ≤ (d+1) for every

j, then the m-fold intersection of the affine hulls of the Sj is a single point if |S| = (m−1)(d+1)+1,

and is empty if |S| ≤ (m− 1)(d+ 1).

One consequence of this is that for (m − 1)(d + 1) points randomly sampled from a continuous

probability distribution, with probability one, we can expect there to be no Tverberg m-partition.

But as soon as we add just one more point, Tverberg’s theorem guarantees that there is always

(not just with probability one!) a Tverberg m-partition. This strange phenomena motivates the

new results presented in this thesis, as we will touch upon related concepts including probabilistic

aspects and threshold phenomena of Tverberg partitions, as well as other induced intersection

patterns with special constraints.

Overall our theoretical focus in this dissertation will be on Tverberg-type problems: exploring the

partitions of data sets in Rd and the combinatorial properties exhibited by the convex hulls of their

subsets. We prove a variety of new results contributing to the vast literature of generalizations (see

also [BS18,DLGMM19]) around Tverberg’s theorem. Here are three main avenues we explore:

• Tverberg’s theorem with altered nerves: A generalization of Tverberg’s theorem to different

specified nerves- or intersection patterns of the convex hulls of the subset. See Figure 1.4

for an example of a nerve of a partitioned set.

Figure 1.4. A partitioned point set on the left and its induced nerve on the right.

• Stochastic Tverberg theorems: versions of Tverberg’s theorem where not just one- but

most partitions of a large data set have that the convex hulls of each subset intersect. See

Figure 1.5 for an example of a randomly partitioned data set.
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Figure 1.5. A three-color random set of 60 points from the Gaussian distribution.

• Tverberg’s theorem over discrete sets: Versions of Tverberg’s theorem where all points lie

within a subset S ⊂ Rd and the intersection of convex hulls is required to have a non-

empty intersection with S. See Figure 1.6 for an example of such a Tverberg partition in

the case that S = Z2.

Figure 1.6. A partition of red, green, and blue lattice points such that the convex
hulls of the three colors intersect at a lattice point

The first, natural as it may seem, was only introduced by De Loera et. al. [DLHOY18] in 2018.

The story behind the second actually begins before Tverberg’s theorem, when T.M. Cover (in

1964) [Cov65] and others started studying combinatorial properties of random bi-partitions of

data. Finally, the third is somewhat classical, with its roots in J.P. Doignon’s thesis [Doi75] from

1975.

We will also present applications of these results to optimization, statistics, and computing.

Before stating our contributions carefully, we introduce some preliminaries.

1.1. Convex geometry preliminaries

We begin with a short introduction to the topic of combinatorial convex geometry (more compre-

hensive surveys can be found in [Mat02] and [Bal97])- the study of combinatorial properties of

convex geometric objects. Before stating the foundational combinatorial convex geometry results,

we fix notation and terminology to be used throughout. An affine subspace of Rd has the form

4



x + L, where x ∈ Rd is some vector and L is a linear subspace of Rd. An affine combination of

points {x1,x2, . . . ,xn} ⊂ Rd is an expression of the form

a1x1 + a2x2 + · · ·+ anxn,

where a1, a2, . . . an ∈ R and a1 + a2 + · · · + an = 1. The affine hull of a set X ⊂ Rd is the

intersection of all affine subspaces containing X, or equivalently the set of all affine combinations

of X. Having defined “affine” subsaces, the other “affine” notions are constructed by imitating the

“linear” notions. For example a set of points is affinely independent if no point in the set is an

affine combination of the other points.

Given n points x1,x2, . . . ,xn ∈ Rd, and y in Rd, we say that y is a convex combination of the xi

if y can be written as a linear combination of the xi using non-negative coefficients that sum to

one. A set S is convex if every convex combination of elements in S is contained in S. Given a set

A ⊂ Rd, we define the convex hull of A, denoted by conv(A), as the set of all convex combinations

of sets of points of A. A set of points A ∈ Rd is said to be in convex position if x∩ conv(A \x) = ∅
for any x ∈ A.

A hyperplane is the set {x ∈ Rd|aTx = b}, where a ∈ Rd \ 0 and b ∈ R. A (closed) half-space

is the set {x ∈ Rd|aTx ≥ b}, where a ∈ Rd \ 0 and b ∈ R; the hyperplane {x ∈ Rd|aTx = b} is

its boundary. The notion of general position will be important throughout this thesis. Intuitively

general position means that no “unlikely coincidences” happen in the considered configuration. The

precise definition is not fully standard, but here we mean that a set S of points in Rd is in general

position as long as every subset R ⊂ S of d+ 1 or fewer points is affinely independent.

A basic but important result about convex sets is the separability of disjoint convex sets by a

hyperplane.

Theorem 3 (separation theorem). Let C,D ⊂ Rd be convex sets with C ∩ D = ∅. Then there

exists a hyperplane h such that C lies in one of the closed half-spaces determined by h, and D lies

in the opposite closed half-space. In other words, there exist a unit vector a ∈ Rd and a number

b ∈ R such that for all x ∈ C we have aTx ≥ b and for all x ∈ D we have aTx ≤ b. If C and D

are closed and at least one of them is bounded, they can be separated strictly; in such a way that

C ∩ h = D ∩ h = ∅.
5



Figure 1.7. An example of Helly’s theorem in two dimensions. Image credit: Wikipedia

Now we introduce some foundational theorems about convex sets that accompany Radon’s lemma

and Tverberg’s theorem.

1.1.1. Helly’s Theorem. Helly’s theorem and its extensions are extremely important to com-

putational and discrete geometry. See [BO16,ADLS17] for many interesting generalizations and

applications.

Theorem 4 (E. Helly 1913 [Hel23]). Let F be a finite family of convex sets in Rd. If
⋂K 6= ∅ for

all K ⊂ F of cardinality at most d+ 1, then
⋂F 6= ∅.

For example, in two dimensions Helly’s theorem implies that if every three convex sets in a larger

collection intersect, then all the convex sets intersect. This scenario is depicted in Figure 1.7. In

fact, Helly’s theorem is sharp for all d. For example, consider the collection G of all of the facets of a

non-degenerate d-simplex Sd = conv(x1, . . . ,xd+1). Denote the d+ 1 members of G as G1, . . . Gd+1

where Gi = conv(x1, . . .xi−1,xi+1 . . .xd+1). Any d members of G share a common vertex, but the

(d+ 1) members have empty intersection since no point in Sd is contained in every facet.

1.1.2. Carathéodory’s Theorem. Carathéodory’s theorem, proved by C. Carathéodory in

1911, is a classic result in combinatorial convex geometry. In essence, this useful theorem says that

convex hull membership is a very finite property. For example given a set of blue points in the

plane, and red point inside the convex hull of the blue points, Carathéodory’s theorem says that

there is always a set of at most three blue points whose convex hull contains the red point. This

scenario is depicted in Figure 1.8. Here is the formal statement.
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Figure 1.8. An example of Carathéodory’s theorem in two dimensions.

Theorem 5 (C. Carathéodory 1911 [Car07]). Let S be any subset of Rd. Then each point in the

convex hull of S is a convex combination of at most d+ 1 elements of S.

1.1.3. Centerpoint Theorem. The centerpoint theorem, originally due to R. Rado, has

proved to be an indispensable consequence of Helly’s theorem, and is crucial in many applications

- as it guarantees that every data set has a higher dimensional analog of a median. See Chapter 2

for further discussion.

Theorem 6 (R. Rado 1947 [Rad47]). For every set S of n points in Rd, there exists a point p ∈ Rd

such that every closed half space containing p contains at least n
d+1 points of S.

With these preliminaries and related results in mind, we proceed to the main theoretical results of

this dissertation.

1.2. Unavoidable patterns in big data classification

Tverberg’s theorem says that sufficiently many points can always be partitioned into overlapping

classes. Here “sufficiently many” means that there is a constant depending on the number of classes

and the dimension of the points. But what if we want a different intersection pattern? For example,

what if we want to partition a data set in such a way that there is one large data class whose convex

hull intersects with all the other classes, but we want the convex hulls of the other classes to be

pairwise disjoint. Does there exist a similar constant?

From this viewpoint, the intersection pattern (nerve) of the convex hulls in Tverberg’s theorem

is very specific, a simplex; In Chapter 3 we will investigate other possible intersection patterns.
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Informally, the main results of Chapter 3 demonstrate that, given sufficiently many points, many

other kinds of nerves can always be induced by a suitable partition of the point set. In particular,

we show that any tree or cycle - special one-dimensional simplicial complexes - can be induced as

the nerve.

Our geometric results are naturally motivated from Ramsey theory (see [GRS90]) where one

studies how every sufficiently large system must contains a large well-organized subsystem. Here

“sufficiently large” is governed by geometric Ramsey numbers.

Perhaps the most well known example of Ramsey theory is the following consequence: Among any

group of six people, there is either a subgroup of three people who have never met each other, or

there is a subgroup of three people who have all met each other.

This is a consequence of F.P. Ramsey’s classic theorem:

Theorem 7 (F.P. Ramsey 1929 [Ram29]). Given any integer c and integers n1, . . . , nc, there is a

number R(n1, . . . , nc), such that if the edges of a complete graph of order R(n1, . . . , nc) are colored

with c different colors, then for some i between 1 and c, it must contain a subgraph of order ni

whose edges are all color i.

The example above is a consequence of the case c = 2 and n1 = n2 = 3, since it is known that

R(3, 3) = 6.

In geometry, another classical example of a Ramsey-type theorem is the famous Erdős-Szekeres

theorem- another key result related to Tverberg’s theorem. It was born out of the “happy ending

problem” (so named by P. Erdős because it lead to the marriage of G. Szekeres and E. Klein)

which states the following: Any set of five points in the plane in general position has a subset of

four points that form the vertices of a convex quadrilateral. E. Klein’s discovery of this fact was

one of the original results leading to the development of Ramsey theory. P. Erdős and G. Szekeres

generalized this result as follows.

Theorem 8 (P. Erdős, G. Szekeres 1935 [ES35]). For any positive integer N , there exists a number

ES(N) such that any set of at least ES(N) points in the plane contains a subset of N points that

form the vertices of a convex N -gon.
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Figure 1.9. E. Klein showed that among any five points in general position there
is a subset of four that forms a quadrilateral. The three cases (how many points are
in the convex hull of the others) are shown here.

We stress that Tverberg’s theorem is also of Ramsey-type, although in this case the constant is

explicit. Our results proved in Chapter 3 are new Ramsey-Tverberg-type results, where nerve

structures are shown to arise once we have sufficiently many points. Our results are also a kind of

universality result, in the spirit of A. Por [Por18]. A. Por’s result is very interesting as it explores

how we can control the structure of Tverberg partitions in large data sets. It says that given a big

enough data set, we can select a smaller subset whose Tverberg partitions are exactly of a certain

type - so called rainbow partitions. This is an impressive result because the Tverberg partitions

of a data set are not uniquely determined by the order type of the data set, see Figure 1.15. In

fact, there is a more sophisticated semi-algebraic predicate that determines whether an m-partition

of (m − 1)(d + 1) + 1 points is a Tverberg partition. Por’s result was conjectured in a related

paper about understanding the structure of Tverberg partitions due to B. Bukh, P.-S. Loh, and

G. Nivasch [BLN17]. They exhibited (using the semi-algebraic predicate machinery mentioned

above) an infinite family of configurations of (m− 1)(d+ 1) + 1 points whose Tverberg partitions

are exactly the rainbow partitions, as well as a family of interesting related Ramsey-type results

on the structure of Tverberg partitions.

While similar, our results are not constraints on the partition itself, but instead constraints on

the intersection pattern of the convex hulls of the subsets in the partition. We will see our results

depend on some universal Ramsey-like constants too and we use Ramsey numbers of hypergraphs

for our geometric estimates.

To state our results precisely we begin with some terminology and notation typical of geometric

topological combinatorics (see [Mat02,Tan13] for details, especially on simplicial complexes dis-

cussed here). Let F = {F1, . . . , Fm} be a family of convex sets in Rd. The nerve N (F) of F
9



Figure 1.10. A partitioned point set on the left and its induced nerve on the right.

Figure 1.11. A partitioned set of eight points in the plane with the four-cycle as
its induced nerve.

is the simplicial complex with vertex set [m] := {1, 2 . . . ,m} whose faces are I ⊂ [m] such that

∩i∈IFi 6= ∅.

Given a collection of points S ⊂ Rd and an n-partition into n color classes P = S1, . . . , Sn of S, we

define the nerve of the partition, N (P) to be the nerve complexN ({conv(S1), . . . , conv(Sn)}), where

conv(Si) is the convex hull of the elements in the color class i. For an example, see Figure 1.10.

Similarly, given a partition P, we define the intersection graph of the partition, denoted N 1(P), as

the 1-skeleton of the nerve of P.

Given a simplicial complex K, and a finite set of points S in Rd, we say that K is partition induced

on S if there exists a partition P of S such that the nerve of the partition is isomorphic to K.

We say that K is d-partition induced if there exists at least one set of points S ⊂ Rd such that

K is partition induced on S. For example, as depicted in Figure 1.11, the four-cycle is 2-partition

induced. However, it is not 1-partition induced.
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Figure 1.12. The barycentric subdivision of the complete graph on five vertices is
a 1-dimensional simplicial complex which is not 2-partition induced.

It was shown by G. Y. Perelman [Per85] that every d-dimensional simplicial complex is (2d +

1)-partition induced on some point set. This result is in fact optimal, because the barycentric

subdivision of the d-skeleton of a (2d + 2)-dimensional simplex is not 2d-partition induced, see

[Weg67] and [Tan11] for details. See Figure 1.12 for an example of a graph which is not 2-

partition induced.

Motivated by Tverberg’s theorem, we introduce another property of simplicial complexes that is

much stronger than being d-partition induced because it has to hold in all point sets once they

have sufficiently many points.

Definition 9. A simplicial complex K is d-Tverberg if there exists a constant Tv(K, d) such that

K is partition induced on all point sets S ⊂ Rd in general position with |S| > Tv(K, d). The

minimal such constant Tv(K, d) is called the Tverberg number for K in dimension d.

Let us briefly examine the definition of d-Tverberg complexes. First of all, note one can re-state

the classical Tverberg’s theorem as follows:

Theorem 10 (Tverberg’s theorem rephrased). The (m − 1)-simplex is a d-Tverberg complex for

all d ≥ 1, with Tverberg number (d+ 1)(m− 1) + 1.

Definition 9 can be compared with earlier work by J.R. Reay and others [Rea79], [Rou09], [PS16],

who asked what happens when we only demand that each k of the convex hulls intersect. They

looked for the smallest number n of points sufficient so that some partition induces a nerve which

contains the (k−1)-skeleton of a simplex. In fact, Reay’s conjecture says for every n ≤ (d+1)(m−1)

11



Figure 1.13. Tverberg’s theorem says that there is a Tverberg numbers Tv(Km, d)
so that the m−1 simplex on m vertices is partition realizable from any configuration
of at least Tv(Km, d) := (m− 1)(d+ 1) + 1 points in Rd.

there exists an n point set X ⊂ Rd such that no partition of X induces the complete graph Km

as its intersection graph. M. A. Perles and M. Sigron have results in this direction [PS16], but

mention the following special case as evidence that the conjecture is false: Given 1, 000, 000 points

in R1000, Tverberg’s theorem shows you can partition them into 1, 000 parts whose convex hulls all

have a point in common. Is there a set of 999, 999 points in R1000 that cannot be partitioned into

1000 parts whose convex hulls intersect pairwise? This seems implausible.

In contrast to Reay’s conjecture, we are not studying a relaxed intersection pattern, but instead

we are studying sufficient conditions to induce an exact nerve of general kind.

Figure 1.14. A 2-partition induced simplicial complex that is not 2-Tverberg.

Definition 9 is most interesting for sets S ⊂ Rd in general position. The reason is that for collinear

points the only type of nerve complexes possible are those whose graphs are interval graphs. Interval

graphs have been classified [LB62] and in particular are chordal . With Definition 9 the 4-cycle

graph is not 1-Tverberg, because it is not chordal, but we will show later that it is d-Tverberg for
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all d ≥ 2. Similarly, while every d-Tverberg complex K is clearly d-partition induced, the converse

is not true. The complex in Figure 1.14 is a graph that is partition induced on some planar point

sets, but not for points in convex position, regardless of how many points we use. Thus it is not a

2-Tverberg complex. Details are presented in Section 3.3.

The key contribution of Chapter 3 is to generalize the classical Tverberg’s theorem by showing

that similar theorems exist where other simplicial complexes -not just simplices- are d-Tverberg

complexes too. Before stating our first result, recall that the k-hypergraph Ramsey number Rk(m) is

the least integer N such that every red-blue 2-coloring of all k-subsets of an N -element set contains

either a red set of size m or a blue set of size m, where a set is called red (blue) if all k-subsets

from this set are red (or respectively blue). See [CFS10] and references therein.

Theorem 11. All trees and cycles are d-Tverberg complexes for all d ≥ 2.

(A) Every tree Tn on n nodes, is a d-Tverberg complex for d ≥ 2. The Tverberg number

Tv(Tn, d) exists and it is at most Rd+1((d+ 1)(n− 1) + 1). More strongly, Tv(Tn, 2) is at

most
(

4n−4
2n−2

)
+ 1.

(B) Every n-cycle Cn with n ≥ 4 is a d-Tverberg complex for d ≥ 2. The Tverberg number

exists and Tv(Cn, d) is at most nd+ n+ 4d.

The proof of Theorem 11 relies on several powerful non-constructive tools such as the Ham-Sandwich

theorem (see Section 1.3 [Mat02]), a characterization of oriented matroids of cyclic polytopes

[CD00], and the multi-dimensional version of Erdős-Szekeres theorem (this is due to B. Grünbaum

[Grü67] and R. Cordovil and P. Duchet [CD00], see also Chapter 9 of [BLVS+93], and the

survey [MS16]). These tools are enough to show the existence of a Tverberg number Tv(Tn, d),

but the bounds are far from tight. Details are presented in Section 3.1.

We can also prove the following general lower bound for the Tverberg numbers (see Section 3.3 for

the argument).

Lemma 1. For any connected simplicial complex K with n ≥ 2 vertices, if it exists, then Tv(K, d) ≥
2n.

In addition to this general lower bound, we show that the upper bounds of Theorem 11 can indeed

be improved by giving better bounds on the Tverberg numbers of caterpillar trees. Caterpillar
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trees are those in which all the vertices are within distance one of a central path; these include

paths and stars. See Section 3.2.

Theorem 12. If a tree Tn is a caterpillar tree with n nodes, then Tn is d-Tverberg complex for all

d, and its d-Tverberg number Tv(Tn, d) is no more than (d+ 1)(n− 1) + 1.

In terms of intersection properties caterpillar graphs have been shown to be precisely the trees that

are also interval graphs by J. Eckhoff [Eck93]. In other words, the previous theorem implies that

a tree Tn is also 1-Tverberg if and only if Tn is a caterpillar tree.

Furthermore, in dimension two we can give some exact Tverberg numbers for trees:

Theorem 13.

(A) The 2-Tverberg numbers Tv(Sn, 2) for a star tree with n nodes equals 2n.

(B) The 2-Tverberg numbers of the path and cycle with four nodes are Tv(P4, 2) = 9 and

11 ≤ Tv(C4, 2) ≤ 13.

The proof of Theorem 13 (B) requires exhaustive computer enumeration of all possible partitions,

over all possible order types of point sets with fewer than ten points. Luckily, these order types

were classified in [AAK02]. For more details see Appendix A.

Recall that for an ordered set of points S = (p1,p2, . . . ,pn) the order type (see 9.3 [Mat02]) of

S is defined as the mapping assigning to each (d + 1)-tuple (i1, i2, . . . , id+1) of indices, 1 < i1 <

i2 < · · · < id+1 ≤ n, the orientation of the (d + 1)-tuple (pi1 ,pi2 , . . . ,pid+1
) (i.e., the sign of the

determinant of the corresponding matrix). The order type of S is encoded by the chirotope of S

which is the sequence of resulting
(
n
d+1

)
signs of possible determinants. This is a vector of +1’s and

−1’s, with
(
n
d+1

)
entries.

The proof of Theorem 13 (B) also uses the following lemma to ensure that it suffices to check one

representative configuration of points from each order type, reducing calculations to finitely many

cases. See details in the Appendix.

Lemma 2. Suppose S1 and S2 are two point sets in Rd with the same order type, and let σ be

a bijection from S1 to S2 that preserves the orientation of any (d + 1)-tuple in S1. Then any

partition P = (P1, P2, . . . , Pn) of S1 and the corresponding partition of S2 via σ, denoted σP =

{σ(P1), σ(P2), . . . , σ(Pn)}, have the same intersection graph N 1(P).
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Lemma 2 cannot be extended to arbitrary nerve complexes as we see in the example of Figure 1.15.

Despite the fact that the chirotope-preserving bijections do not preserve the higher-dimensional

skeleton of the nerve of a partition we can still make use of Lemma 2 throughout Chapter 3

because our results are only about triangle-free simplicial complexes, thus their nerve complexes

equal their 1-skeleton.

Figure 1.15. Only the 1-skeleton of the nerve is preserved by order-preserving bijection.

1.3. Patterns in the classification of random data sets

The focus of Chapter 4 is to develop probabilistic theorems inspired by Tverberg’s theorem for use

in the foundations of data science. In particular, we give bounds on the probability that m random

data classes all contain a point in common in their convex hulls. See Chapter 2 for a discussion of

the many applications of these theorems.

We also study probabilistic aspects of another parameter in Tverberg partitions: Tolerance is a

notion of “robust” intersection in the sense that the convex hulls of the various data classes intersect

in such a way that points from any class can be removed without destroying their intersection. See

Figure 1.16 for an example of such a partition. Here is the formal definition of the central geometric

object we study:

Definition 14. Given a set S ⊂ Rd, a Tverberg m-partition of S with tolerance t is a partition

of S into m subsets S1, . . . Sm with the property that all m convex hulls of the Si intersect after any

t-points are removed. In other words, for all {x1, . . . , xt} ∈ S, we have

⋂

i∈[m]

conv(Si \ {x1, . . . , xt}) 6= ∅.
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Figure 1.16. A Tverberg three-partition with tolerance one. All three convex hulls
intersect even if any one point is removed.

The notion of “tolerant Tverberg theorems” was pioneered by D. Larman [Lar72] and refined over

the years, such as in the following result due to P. Soberón and R. Strausz [SS12].

Theorem 15 (P. Soberón, R. Strausz [SS12]). Every set S with at least (t+ 1)(m− 1)(d+ 1) + 1

points in Rd has at least one Tverberg m-partition with tolerance t.

More recently, P. Soberón proved the following bound [Sob18]. Let N denote the smallest positive

integer such that a Tverberg m-partition with tolerance t exists among any N points in dimension

d. Then N = mt + O(
√
t) for fixed m and d. The proof of this result relies on the probabilistic

method and, as Soberón remarked, can in fact be used to prove a Stochastic Tverberg-type result,

which we will revisit later.

Motivating our geometric probability results, we have Cover’s theorem, which is a probabilistic

version of Radon’s lemma.

Theorem 16 (T.M. Cover 1964 [Cov65]). Consider n ≥ (d+ 1) points in general position in Rd.

Suppose the each of the n points are colored red or blue according to independent fair coin flips.

Then the probability that the convex hull of the red points intersects the convex hull of the blue

points is

1− 2−n+1
d∑

i=0

(
n− 1

i

)
.

For example, consider a set of six points in the plane in general position. By applying Cover’s

theorem above, we see that if we color each point red or blue independently with uniform probability,

then the convex hulls of the resulting (possibly empty) sets of red and blue points intersect with

probability 1/2.
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This is actually a generalization of Radon’s lemma when the points are in general position. It

implies that for (d + 2) points in Rd, the probability that a random bi-partition of the points is

a Radon partition is strictly positive. Thus there exists at least one such partition! But with

sufficiently points, Cover’s result shows that in fact “most” bi-partitions of the data set are Radon

partitions.

Geometric Probability: Stochastic Tverberg theorems. Before stating our main results,

we introduce two models for random partitioned data point sets. In both models will use the

term colors instead of subsets, for ease of presentation. Hereafter, when we refer to a continuous

distribution on Rd, we mean continuous with respect to the Lebesgue measure on Rd. Proofs of

the new results stated are in Chapter 4.

Our first model is a so-called random equi-partition model i.e., we ensure that every color has the

same number of points. More specifically, given integers m and n and a continuous probability

distribution D on Rd, we let Em,n,D denote a random equi-partitioned point set with mn points,

consisting of m colors, and n points of each color, distributed independently according to D.

Our second model is a random allocation model : Given integers k and m and a continuous proba-

bility distribution D on Rd, we let Rm,k,D denote a random point set with k points i.i.d. according

to D, which are randomly colored one of m colors with uniform probability (1/m for each color).

For example, using these models we can state T.M. Cover’s result as follows:

Theorem 1 (T.M. Cover 1965). If D is a continuous probability distribution on Rd, then

P(R2,k,D is Radon) = 1− 2−m+1
d∑

k=0

(
m− 1

k

)
.

In particular, we have

P(R2,2(d+1),D is Radon) = 1/2.

Furthermore, for any ε > 0 and any sequence of continuous probability distributions {Di}, i ∈ Z+

where each Dd is a distribution on Rd, we have

lim
i→∞

P(R2,(1+ε)2i,Di
is Radon) = 1
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and

lim
i→∞

P(R2,(1−ε)2i,Di
is Radon) = 0.

To the best of our knowledge, the first generalization of Cover’s 1964 result to more than two colors

appeared only recently:

Theorem 17 (Soberón [Sob18]). Let N, t, d,m be positive integers and let ε > 0 be a real number.

Given N points in Rd, a random allocation of them into m parts is a Tverberg partition with

tolerance t with probablility at least 1− ε, as long as

t+ 1 ≤ N/m−
√

1

2

[
(d+ 1)(m− 1)N ln(Nm) +N ln

(
1

ε

)]
.

This result is quite remarkable. For any fixed m, d, and δ, it shows that the probability of a random

allocation of of N points in Rd in m colors having tolerance at least (1− δ)N/m approaches one as

N goes to infinity. On the other hand, by the pigeonhole principle, any allocation of N points into

m colors must have one color with at most N/m points. Thus, for a fixed number of colors m, the

tolerance of a random partition is asymptotically as high as it could possibly be!

Our new stochastic geometric theorems. Our first result is a geometric probability result

similar to P. Soberón’s and T.M. Cover’s. It yields a stochastic Tverberg theorem for equi-partitions

(without tolerance).

Theorem 18 (stochastic Tverberg theorem for equi-partitions). Suppose D is a probability distri-

bution on Rd that is balanced about some point p ∈ Rd, in the sense that every hyperplane through

p partitions D into two sets of equal measure. Then

(
1−

(
1

2n−1

d−1∑

k=0

(
n− 1

k

)))m
≤ P(Em,n,D is Tverberg ) ≤

(
2(1− 2−n)m − (1− 2−n+1)m

)d
.

In fact, the previous theorem is asymptotically tight in the number of colors m. This is shown by

our next theorem, which establishes an interesting threshold phenomenon for Tverberg partitions.

As it is standard in the literature, we say that a sequence of events Xn, n ≥ 1, occurs with with

high probability if limn→∞ P (Xn) = 1.
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Theorem 19 (Tverberg threshold phenomena for equi-partitions). Let D be a continous prob-

ability distribution in Rd balanced about some point p ∈ Rd. Consider the sequence of random

equi-partitioned point sets Em,f(m),D, where m ∈ N, and n = f(m) depends on m. Then Em,f(m),D

is Tverberg with high probability if f(m) > log2(m), and Em,f(m),D is not Tverberg with high prob-

ability if f(m) < log2(m).

Remark: It is also interesting to consider the same problem from the “box convexity” setting

where the convex hull of a set of points is defined to be the smallest box (with sides parallel to the

coordinate axes) enclosing those points. Since checking convex hull membership is easier in the box

convexity setting, this set up may be more relevant in certain applications. Our method of proof

of Theorem 18 also works in box convexity setting, and we obtain the same bounds.

We note that the number of points needed to reach the conclusion in Theorem 19 is independent

of the dimension, as in the aforementioned result of P. Soberón [Sob18].

The next two theorems adapt both T.M. Cover’s result and Theorem 18 to the setting of tolerance.

Theorem 20 (stochastic Tverberg with tolerance for equi-partition). Suppose D is a probability

distribution on Rd that is balanced about some point p ∈ Rd.

P(Em,n,D is Tverberg with tolerance t) ≥
(

1− 2−bn/2dc
t∑

i=1

(bn/2dc
i

))m
.

For the case of random bi-partitions, we can adapt Cover’s result to obtain a stochastic Radon

theorem with Tolerance.

Theorem 21 (stochastic Radon with tolerance for random allocation). If D is a continuous

probability distribution on Rd, then

P(R2,k,D is Radon with tolerance t) ≥ 1−
(

2−bk/(2d+2)c
t∑

i=0

(bk/(2d+ 2)c
i

))
.

In particular, we have

P(R2,k,D is Radon with tolerance bk/(4d+ 4)c) ≥ 1/2.
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Remark: The preceding result yields a weaker expected tolerance than Soberón’s result, but the

proof is shorter and more elementary.

For random allocations with more than two colors, we will use some developments on random

allocation problems, including the following notation. Let P(Nn(m)) ≤ k) denote the probability

that, after throwing k balls into m urns uniformly and independently, there are n balls in every

urn.

Corollary 1 (stochastic Tverberg for random allocation). Suppose D is a probability distribution

on Rd that is balanced about some point p ∈ Rd. Then

(1)

P(Rm,k,D is Tverberg with tolerance t) ≥ P(Nn(m) ≤ k)

(
1− 2−bn/2dc

t∑

i=1

(bn/2dc
i

))m
.

(2) For the case of Tverberg without tolerance, we also have

P(Rm,k,D is Tverberg) ≥ P(Nn(m) ≤ k)

(
1−

(
2−n+1

d−1∑

k=0

(
n− 1

k

)))m
.

(3) Lastly, we also have the following asymptotic result:

Consider the sequence of random partitioned point sets Rm,f(m),D, m ∈ N, where

n = f(m) depends on m. Then Rm,f(m),D is Tverberg with high probability if f(m) >

m log2(m) ln(ln(m)).

These results are improvements on Soberón’s bound when the number of colors is large relative to

the desired tolerance. In particular, given a suitably distributed data set of n points, this result

shows that a random allocation of the data into less than n
log2(n) ln(ln(n)) subsets is likely to be a

Tverberg partition.

1.4. Patterns in the classification of discrete and categorical data

In Chapter 5 we focus on new versions of Tverberg-type theorems where some of the coordinates

of the points are restricted to discrete subsets of a Euclidean space. The associated discrete Tver-

berg numbers are much harder to compute than their classical real-version counterparts (see for
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instance the complexity discussion of [Onn91]). These results are important for work in statistics

and optimization, where researchers wish to compute centerpoints. We will see this in detail in

Chapter 2. For now we introduce the geometric tools needed in those applications.

We begin our work remembering the following unpublished Tverberg-type result of J.P. Doignon.

Consider n points with coordinates in Z2 and a positive integer m ≥ 3. If n ≥ 4m − 3, then

the points can be partitioned into m subsets whose convex hulls contain a common point in Z2.

According to J. Eckhoff [Eck00] this result was stated by J.P. Doignon in a conference.

A partition of points where the intersection of the convex hulls contains at least one lattice point

is called an integer m-Tverberg partition and such a common point is an integer Tverberg point

for that partition. Regarding the case m = 2, the integer 2-Tverberg partitions are called integer

Radon partitions. Any configuration of at least six points in Z2 admits an integer Radon partition.

This was proved by J.P. Doignon in his PhD thesis [Doi75] and later discovered independently

by S. Onn [Onn91]. All these values for Z2 are optimal as shown by following examples. The

5-point configuration {(0, 0), (0, 1), (2, 0)(1, 2), (3, 2)}, exhibited by Onn in the cited paper, has

no Radon partition. See Figure 1.17. To address the optimality when m ≥ 3, consider the set

{(i, i), (i,−i + 1): i = −m + 2,−m + 3, . . . ,m − 2,m − 1}. The case where m = 4 is depicted in

Figure 1.18. (According to J. Eckhoff [Eck00], this set was proposed by J.P. Doignon during the

aforementioned conference.) This set has 4m− 4 points but cannot have an integer m-partition, as

any lattice point is contained in a half-space with less than m points from the set. So regardless

of the partition, by the pigeonhole principle each point can always be separated by a line from at

least one of the subsets.

More generally, one can define the Tverberg number Tv(S,m) for any subset S of Rd and an integer

m ≥ 2 as the smallest positive integer n with the following property: Any multiset of n points in

S admits a partition into m subsets A1, A2, . . . , Am with

(
m⋂

i=1

conv(Ai)

)
∩ S 6= ∅.

(Here, by “partition of a multiset”, we mean that each element of a multiset A is contained in a

number of submultisets A1, . . . , Am so that the sum of its multiplicities in the Ai is equal to its

multiplicity in A.) If no such number exists, we say that Tv(S,m) = ∞. Note that Doignon’s
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Figure 1.17. Five lattice points with no integer Radon partition.

theorem, together with the discussion that follows, allows us to say

Tv(Z2,m) =





6 if m = 2,

4m− 3 otherwise.

The first theorem we prove in Chapter 5 generalizes Doignon’s theorem. We determine the exact

m-Tverberg number (when m is at least three) for any discrete subset S of R2, as considered

in [DLLHRS17]. Before stating this result we recall the Helly number H(S) of a discrete subset S

of Rd as the smallest positive integer with the following property: Suppose F is a finite family of

convex sets in Rd, and that ∩G intersects S in at least one point for every subfamily G of F having

at most H(S) members. Then ∩F intersects S in at least one point. If no such integer exists, we

say that H(S) =∞. Then we have the following theorem. (The theorem is stated for S with finite

Helly number, as any S ⊂ Rd with H(S) =∞ has Tv(S,m) =∞ for all m ≥ 2 [Lev51].)

Theorem 22. Suppose S is a discrete subset of R2 with H(S) <∞. If m ≥ 3, then

Tv(S,m) = H(S)(m− 1) + 1.

Regarding the case m = 2, if H(S) ≤ 3, then

Tv(S, 2) = H(S) + 1,

and if H(S) ≥ 4, then

H(S) + 1 ≤ Tv(S, 2) ≤ H(S) + 2,
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Figure 1.18. An example of twelve points without an integer Tverberg four-
partition. The bottom picture shows that for any lattice point, we can find some
half plane containing that point and only three points of the set.

and both values are possible.
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In particular we present a proof of Doignon’s theorem, the special case of Theorem 22 where

S = Z2.

Remark: Theorem 22 shows that S-Tverberg numbers of planar sets are very closely related

to S-Helly numbers (see [Ave13, AGS+17] and the references there). However, for the case

H(S) = 4, the bounds on Tv(S, 2) given above cannot be improved. For example, S′ =

{(0, 0), (0, 1), (1, 0), (1, 1)} and Z2 both have Helly number four, but Tv(Z2, 2) = 6, while the

pigeonhole principle implies that Tv(S′, 2) = 5. Our second main result in Chapter 5 improves the

upper bound on the integer Tverberg numbers for the three-dimensional case S = Z3.

Theorem 23. The following inequality holds for all m ≥ 2:

Tv(Z3,m) ≤ 24m− 31.

Our third main result in Chapter 5 is an inequality that will be used to derive improved bounds on

S-Tverberg numbers when S is a product of a Euclidean space with some subset S′ of a Euclidean

space.

Theorem 24. Let S′ ⊂ Rj be a subset of a Euclidean space. Then for all positive integers k and

all m ≥ 2, we have

Tv(S′ × Rk,m) ≤ Tv(S′,Tv(Rk,m)).

For example, choosing S of the form Zj ×Rk leads to the “mixed integer” case. Then Theorem 24

implies that, for all positive integers j, k and all m ≥ 2, we have

Tv(Zj × Rk,m) ≤ Tv(Zj ,Tv(Rk,m)).

Moreover, we will use Theorem 24 to obtain the following bound:

(1.1) 2j(m− 1)(k + 1) + 1 ≤ Tv(Zj × Rk,m) ≤ j2j(m− 1)(k + 1) + 1.

Our fourth main result is a generalization of J. Pach’s positive-fraction selection lemma [Pac98]

(see [KKP+15] for related bounds). Here is J. Pach’s result:

Theorem 25 (J.Pach [Pac98]). Given an integer d, there exists a constant cd such that for any set

P of n points in Rd, there exists a point q ∈ Rd, and (d+1) disjoint subsets of P , say P1, . . . , Pd+1,
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such that |Pi| ≥ cd ·n for all i and the simplex defined by every transversal of P1, . . . , Pd+1 contains

q. (By “transversal”, we mean a set containing exactly one element from each Pi.)

For example, in the case of the plane, it is known that c2 = 12; Given n red points, n white

points, and n blue points, we can select n
12 red, n

12 white, and n
12 blue points in such a way that all

red-white-blue triangles for the resulting sets have a point q in common.

Unfortunately the point q need not be an integer point; furthermore, the proof uses the so-called

“second selection lemma” that currently does not exist for integer points (see Pach [Pac98] and

Matoušek [Mat02, Chapter 9]). In Section 5.4, we strengthen the above theorem, such that, as a

consequence, the theorem now extends to the integer case—indeed, to any scenario where one has

points of high half-space depth in the following sense:

Given a finite set P of points in Rd and a point q ∈ Rd, we say that q is of half-space depth t with

respect to P if any half-space containing q contains at least t points of P (when the context is clear,

we will simply say that q is of depth t). Then here is our theorem, proved in Section 5.4.

Theorem 26. For any integer d ≥ 1 and real number α ∈ (0, 1], there exists a constant cd,α such

that the following holds. For any set P of n points in Rd and any point q ∈ Rd of half-space depth

at least α · n, there exist (d+ 1) disjoint subsets of P , say P1, . . . , Pd+1, such that

• |Pi| ≥ cd,α · n for i = 1, . . . , (d+ 1), and

• every simplex defined by a transversal of P1, . . . , Pd+1 contains q.

Remark: Our proof yields a constant cd,α whose value is exponential in the dimension d.

Note that the existence of integer points of high half-space depth (Lemma 9) together with Theo-

rem 26 implies the following integer version of the positive-fraction selection lemma.

Corollary 2. Let P be a set of n ≥ (d+ 1) points in Zd. Then there exists a point q ∈ Zd, and

(d+ 1) disjoint subsets of P , say P1, . . . , Pd+1, such that |Pi| ≥ cd,2−d · n for all i = 1, . . . , (d+ 1),

and the simplex defined by every transversal of P1, . . . , Pd+1 contains q.

Remark: In particular, this implies that q belongs to at least
(
dcd,2−d · ne!

)d
distinct Tverberg

partitions, with each such Tverberg partition containing
⌈
cd,2−d · n

⌉
sets.
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CHAPTER 2

New applications of Tverberg-type theorems

In this chapter we discuss several applications and implications of Tverberg-type theorems. Helly’s,

Radon’s, and Carathéodory’s theorems are three important but basic theorems in the theory of

convexity. Though each of these theorems has found applications in numerous topics in mathematics

[DLGMM19], the applications of Helly’s and Carathéodory’s theorem have historically been more

prominent than those of Radon’s lemma and other Tverberg-type results. The goal of this chapter is

to demonstrate some of the important consequences of Radon and Tverberg-type theorems. Much

of machine learning aims to partition data in a way to gain insight in the form of prediction or

inference, and Tverberg-type theorems can be used to understand those partitions.

Our first application is in logistic regression. Linear classifiers form an important class of predictive

models. A consequence of the separating hyperplane theorem for convex sets is that two sets

of points are linearly separable if and only if their convex hulls do not intersect. This natural

relationship between convexity properties of partitions and linear classifiers is especially fruitful in

the theory of maximum likelihood estimation.

2.1. Performance guarantees for maximum likelihood estimation

Logistic regression is perhaps the most widely used non-linear model in multivariate statistics and

supervised learning [MN89]. Statistical inference for this model relies on the theory of maximum

likelihood estimation. In the binary classification case, given n independent observations (xi, yi), i =

1, . . . , n, logistic regression links the response yi ∈ {−1, 1}, i = 1, . . . , n to the covariates xi ∈ Rd

via the logistic model

P(yi = 1|xi) = σ(xTi b), σ(t) :=
et

1 + et
;

here b ∈ Rp is the unknown vector of regression coefficients. In this model, the log-likelihood is

given by

l(b) =

n∑

i=1

− log(1 + exp(−yixTi b))
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and, by definition, the maximum likelihood estimate (MLE) is any maximizer of this functional.

One difficulty arising in machine learning is that the MLE does not exist in all situations. In fact,

given two data sets, say one of red points (where yi = 1), and one of blue points (where yi = −1),

it is well-known that an MLE exists if and only if the convex hulls of the blue points intersects the

convex hull of the red points [AA84, Sil81]. Although an appealing criterion for existence, this

geometric characterization leads to another question: How much training data do we need (as a

function of the dimension of the covariates of the data) before we expect an MLE to exist with high

probability?

The seminal work of T.M. Cover [Cov65] (adapting a technique originally due to L.

Schläfli [Sch50]) provides an answer in a special case. When applied to logistic regression, Cover’s

main result states the following: assume that the xi’s are drawn i.i.d. from a continuous proba-

bility distribution F and that the class labels are independent from xi, and have equal marginal

probabilities; i.e., P(yi = 1|xi) = 1/2. Then Cover shows that as d and n grow large in such a

way that d/n → k, the convex hulls of the data points asymptotically overlap - with probability

tending to one - if k < 1/2, whereas they are separated - also with probability tending to one - if

k > 1/2. (When the class labels are not independent from the xi, the problem is more difficult and

was recently addressed by E. J. Candès and P. Sur [SC18].)

One can view Cover’s result as a stochastic analogue of Radon’s lemma in combinatorial geome-

try [Rad21]. Radon’s lemma says that any (d+ 2)-point set A in Rd can be partitioned into two

subsets A1, A2 with conv(A1) ∩ conv(A2) 6= ∅. Cover’s result shows that with more points, the

conclusion of Radon’s lemma can be reached with high probability from a random partition: For

large d and ε > 0, given a set A of (1 + ε)2d points, one can obtain subsets A1 and A2 of A with

conv(A1) ∩ conv(A2) 6= ∅ by simply assigning each x ∈ A to A1 or A2 by flipping a fair coin.

In Chapter 4, we develop the connection between geometric probability (Cover’s result), discrete

geometry (Tverberg-type results), and the conditions for the existence of MLEs. Tverberg-type

results are natural generalizations of “Stochastic Separation Theorems”, i.e., the case of two colors

such as treated by Cover [Cov65]. Cover’s result has since become the first of a whole family

of “stochastic separability” results arising in many topics such as maximum likelihood estima-

tion [FGM18,SC18,AA84,Sil81], error correction in machine learning [XLJ18], and computa-

tional geometry [GBRT19, SMdBM17], to name a few. Chapter 4 develops the generalization
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of this stochastic separation problem to more than two colors, and adds an additional parameter

called tolerance.

Given a binary classification algorithm, there are two common approaches to extend it multi-

class classification: “one-vs-rest” and “one-vs-one”. In “one-vs-rest”, we train C separate binary

classification models. Each classifier fc for c ∈ {1, . . . , C} is trained to determine whether or not an

example is part of class c or not. To predict the class for a new sample x, we run all C classifiers

on x and choose the class with the highest score: ŷ = arg maxc∈{1,...,C} fc(x). In “one-vs-one”

regression, we train
(
C
2

)
separate binary classification models, one for each possible pair of classes.

To predict the class for a new sample x , we run all
(
C
2

)
classifiers on x and choose the class with

the most “votes.”

To apply “one-vs-one” multinomial logistic regression, we would like to ensure that the MLE exists

between the data corresponding to every pair of labels. Our stochastic Tverberg theorem implies

this.

Theorem 27 (stochastic Tverberg theorem applied to multinomial regression). Fix ε > 0. Assume

that the xi’s are drawn i.i.d. from a continuous probability distribution F which is balanced about

some point p ∈ Rd and that the class labels are independent from xi, and have equal marginal

probabilities; i.e., P(yi = k|xi) = 1/m for all k ∈ {1, . . . ,m}.
Letting the number of data points f(m) grow as a function of the number of labels m, the MLE

exists between the data corresponding to every pair of labels with high probability as long as

f(m) > (1 + ε)m log2(m) ln(ln(m)).

The same bound applies to “one-vs-rest” logistic regression, since MLE existence in that case is

a weaker condition. The parameter of tolerance is also significant in studying MLE existence. A

natural observation is that Tverberg partitions with tolerance t correspond to robust MLE existence,

in the sense that any t points (possibly corrupted or outlier data) can be removed and still the

convex hulls of the data with each label intersect. The various special cases of Stochastic Tverberg

theorems are thus useful in different kinds of classification problems, and these observations are

summarized in Table 2.1.
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In fact, the parameter of tolerance is also similar to an important parameter used to guarantee to

the convergence speed of first order methods for finding MLEs. Recently, when studying binomial

logistic regression, Freund, Grigas and Mazumunder [FGM18] introduced the following notion to

quantify the extent that a dataset is non-separable (where a− denotes the negative part of a):

DegNSEP* := min
b∈Rp

1

n

n∑

i=1

[yib
Txi]

−

s.t. ‖b‖ = 1

DegNSEP* is thus the smallest (over all normalized models b) average misclassification error of the

model b over the n observations. They showed that the condition number DegNSEP* informs the

computational properties and guarantees of the standard deterministic first-order steepest descent

solution method for logistic regression. Let us now briefly discuss how the parameter of tolerance

for Radon partitions (Tverberg 2-partitions) can be viewed as a discrete analogue of DegNSEP*.

Define PertSEP* as the smallest (or more precisely, the infimum thereof) perturbation ∆X of the

feature data X which will render the perturbed problem intstance (X+∆X,y) separable. Namely,

PertSEP* := inf
∆X

1

n
‖∆‖·,1

s.t. (X + ∆X,y) is separable.

In Proposition 2.4 of [FGM18] it is shown that DegNSEP* = PertSEP*.

We introduce another parameter PertSEP*0 simply defined as the L0 norm of the smallest per-

turbation of the feature data X which will render the perturbed problem instance (X + ∆X,y)

separable. Namely,

PertSEP*0 := inf
∆X

1

n
‖∆‖·,0

s.t. (X + ∆X,y) is separable.

The following theorem shows that the tolerance of a Radon partition is given by PertSEP*0:

Theorem 28. Suppose that X = X1 ∪X2, |X| = n is a Radon partition with tolerance precisely

equal to t. Then viewing X as a labeled dataset (with (X,y) = {(x,−1) : x ∈X1} ∪ {(x, 1, ) : x ∈
X2}), we have that

PertSEP*0 = t/n.
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Proof. Let M denote the minimal number of points perturbed among any perturbation that

makes (X,y) separable, and N denote the minimal number of points needing to be removed from

(X,y) to make (X,y) separable. Then PertSEP*0(X,y) is equal to M/n, and the tolerance t of

X1, X2 is equal to N . It suffices to show that M = N . To see that M ≥ N , note if x1, . . . ,xM in X

are moved so that the resulting set (X ′,y′) is separable, then (X\{x1,x2, . . . ,xN},y\{y1, . . . , yN})
is also separable. To see that M ≤ N , suppose that (X \ {x1,x2, . . . ,xM},y \ {y1, . . . , yM}) is

separable by a hyperplane. Then moving x1, . . . ,xM to the appropriate sides of the hyperplane

determined by h, we can construct a separable dataset (X ′,y′), obtained from moving M points

from (X,y). �

Theorem 28, combined with a result of Soberón, implies Corollary 3, which roughly says that

PertSEP*0 of a randomly bi-partitioned point set asymptotically approaches 1/2.

Corollary 3. For any sequence {R(2,k,d)}, k ∈ N of partitioned point sets, and any ε > 0, we have

|PertSEP*0(R(2,k,d))− 1/2| < ε with high probability.

In fact, for fixed d and m, Corollary 3 can be extended to the multi-class setting. In other words,

for a large randomly m-partitioned data set, we expect PertSEP*0 of every pair of data points to

be close to 1/2 :

Theorem 29. Fix ε > 0. For any sequence {R(m,k,d)}, k ∈ N of m-partitioned point sets R(m,k,d) =

{X1, . . . , Xm},

we have

lim
k→∞

(
min

Xi,Xj∈R(m,k,d)

PertSEP*0(Xi ∪Xj) = 1/2

)

with high probability.

These results show how Tverberg’s theorem is related to prediction problems in machine learning,

but Tverberg’s theorem is also helpful in inference problems in machine learning.

Most inference problems are unsupervised learning problems: For every observation i = 1, . . . , n

we observe a vector of measurements xi but no associated response yi. So the situation is called

unsupervised because we lack a respond variable that can supervise our analysis. What sort of

30



Deterministic Stochastic Likely MLE Existence
Radon [Cov65] pair of datasets
Tverberg Thms 18,19 all pairs of datasets
Radon with tolerance Thm 21 pair of datasets with outliers removed
Tverberg with tolerance Thms 1,20, [Sob18] all pairs of datasets with outliers removed

Table 2.1. Stochastic analogues of Tverberg’s theorem and their implications for
existence of MLEs. By “Likely MLE Existence”, we mean that one can bound below
the probability of MLE existence as a function of the amount of input data according
to the corresponding theorems in the “Stochastic” column.

statistical analysis is possible? We can seek to understand the relationships between the variables

or between the observations using cluster analysis or topological data analysis. Nerves of partitions

are a useful object of study in both of these fields.

2.2. Topological data analysis and clustering

A motivation for studying which nerves are induced by sufficiently large data sets comes from clus-

tering and data classification [CM13,DMW17]. Clustering algorithms aim to “color” or “label”

data points by groups that share common characteristics (see [GMW07, Jai10] and references

there). Classification is then a partitioning of the data set. Two sets of points will intersect if they

share members with both characteristics. When doing a classification researchers face the question,

is the proposed partition of data showing intrinsic data properties, unique to the particular input

data points, or is this a mere artifact appearing in all data sets after having a sufficiently large

data set? Tverberg-type theorems with altered nerves are relevant to data science when analyzing

the statistical significance of a proposed classification in large-scale data sets. For example, the

Mapper algorithm proposed by G. Carlsson, F. Mémoli, and G. Singh, [SMC07] is a method for

topological summarization which studies a special nerve complex constructed from a point cloud.

The idea behind Mapper can be summarized as follows. Suppose we have point cloud data X ⊂ Rn

representing a shape, for example a circle. We fix some filter function, which is a function f : X →
R. Then we choose an open cover C = U1, U2, . . . , Uk of the image f(X). For each Ui with i ∈ [k],

we consider the pullbacks Xi = f−1(Ui). Since C is a cover of f(X), we have
⋃
i∈[n]Xi = X but

the Xi are not necessarily disjoint. Now for each Xi, we apply a clustering algorithm to split it

into subsets Xik. The Mapper algorithm then outputs the nerve complex of the convex hulls of

31



Figure 2.1. Example of the mapper algorithm applied to a circular point cloud.
From left to right:
1. We choose the projection onto the first coordinate as the filter function.
2. Take the pullback of the green, orange, and blue cover of the image.
3. Cluster the orange points into yellow and red clusters.
4. Construct the resulting nerve complex.

the Xik. For an example of this process, see Figure 2.1. We refer the reader to [Sin08,Car09] for

more details.

The result is a combinatorial object encoding some of the structure of the data, and can be useful

for dimensionality reduction of the data. Remarkably, this algorithm can be applied to a point cloud

representing a human hand, and recover a tree with one root, and five “branches” corresponding

to each finger. But the results of Chapter 3 show that every tree is a Tverberg complex, so every

sufficiently large data set can be partitioned in such a way that the nerve is a tree with one root

and five “branches”. On the other hand, the main results of Chapter 4 show that such a nerve

arising randomly is unlikely if the data set is large. Combined, these two notions can be used to

give a better idea of the statistical significance of the result from Mapper.

In cluster analysis, the k-means algorithm is ubiquitous in industry due to its O(n) runtime, simple

interpretability, and easy implementation. The k-means clustering algorithm aims to partition n

points into k clusters so that each point belongs to the cluster with the nearest mean. A common

approach to reach this objective is to start by randomly partitioning the points into k clusters, and

then iteratively move the points to the cluster whose mean they are closest to (updating the cluster

means after each iterate).

Let us consider what happens to the nerve of the partitions generated by this algorithm. If this

algorithm runs until no more improvement is possible, the resulting partition of points corresponds

to a partition of the data space into Voronoi cells. Voronoi cells are a decomposition of the data
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space into regions corresponding to the set of points closest to a given point. See Figure 2.2 for an

example. If we are using the Euclidean metric, Voronoi cells are convex, and thus the nerve of the

resulting partition consists of just k vertices. On the other hand, applying the stochastic Tverberg

theorems of Chapter 4, we see that for large data sets the nerve of the original random partition

is likely the k − 1 simplex. All together the iterative process of moving points from one subset to

another in the k-means algorithm induces a sequence of simplicial complexes on k vertices using the

nerve map, and this perspective may be useful for understanding the convergence of the k-means

algorithm.

A major motivation for further study of the k-means algorithm is that the resulting clusters may

be sensitive to the original random cluster at the start of the algorithm. An improvement would

be to aim to find a k-clustering that minimizes the average distance from each point to its cluster

mean. Unfortunately, it is not well understood when the iterative algorithm reaches this globally

optimal partition. Studying nerves of partitions is another way to understand the state space of

possible partitions. This may be of interest to study this convergence of the k-means algorithm or

other iterative clustering algorithms.

2.3. Computing centerpoints in optimization

The problem of finding Tverberg partitions is of interest applied toward finding centerpoints. A

centerpoint of an n-point data set S ⊂ Rd is a point p such that every half space containing p

has at least n
d+1 points in S. Centerpoints are useful in a variety of contexts, such as in “divide

and conquer” schemes for optimization. See [DLGMM19] for further discussion. Unfortunately,

obtaining a centerpoint is difficult, and the current best randomized algorithm constructs a center-

point in time O(nd+1 +n log n) [Cha04]. Thus finding an approximate centerpoint of a set is useful.

We define a point of half-space depth k in S as a point p such that every half-space containing p

contains at least k points in S.

Tverberg’s theorem implies that every data set has a centerpoint, as the Tverberg point of a

Tverberg partition must be a point of half-space depth one in each of the m = d n
d+1e color classes.

Hence an effective version is desirable as a method to obtain centerpoints. The proof of Radon’s

lemma is constructive and, in fact, one of the most notable randomized algorithms for computing

approximate centerpoints works by repeatedly replacing subsets of d + 2 points by their Radon
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Figure 2.2. Output of K-means algorithm and corresponding Voronoi decomposi-
tion. Image credit: Wikipedia

point [CEM+96]. In contrast, no known polynomial time algorithm exists for computing exact

Tverberg points. Thus, fast algorithms for approximate Tverberg points have been introduced

in [MW13,RS16].

If one is interested in non-deterministic algorithms for finding Tverberg partitions, the main results

of our paper can be used to give expected performance of algorithms where we obtain Tverberg

partitions by random choice.

In particular, Theorem 19 suggests a trivial algorithm for finding a Tverberg partition among a

set of suitably distributed points. According to Theorem 19, a random equipartition of m points

into less than m/log2(m) sets should produce a Tverberg partition with high probability. This

trivial non-deterministic algorithm was also suggested by Soberón, except using a random allocation

rather than equi-partition. Our asymptotic results improve the bounds on expected performance
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of Soberón’s proposed algorithm (random allocation) as well, though our performance bounds for

Random equi-partitions are still better. We summarize the performance and time complexity of

various algorithms for obtaining Tverberg partitions below.

Table 2.2. Approximate Tverberg Partitions.

Method Number of Colors Time complexity
Tverberg b(m+ 1)/(d+ 1)c PPAD (Unknown if polynomial)

Mulzer and Werner [MW13] m/(4d+ 1)3 dO(log d)m
Random equi-partition O( m

log2(m)) O(m)

Random Allocation O( m
log2(m)(ln(ln(m)))) O(m)

Obtaining centerpoints in discrete sets is even more desirable, since discrete optimization prob-

lems are almost always more difficult than their continuous counterparts. The same motivations

in optimization appear, especially since integer valued and binary variables appear in many classic

optimization problems. Our Tverberg type results over discrete sets in Chapter 5 can be applied

to obtain centerpoint theorems in these contexts. It also shows that rather than looking for center-

points directly, one can instead seek Tverberg partitions instead, since they are guaranteed to exist

over these sets. For example, applying Theorem 22, we see that any discrete subset of the plane

with Helly number three and cardinality n has a center point of depth dn/3e and such a centerpoint

is in fact witnessed by at least one Tverberg partition into dn/3e sets.
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CHAPTER 3

Tverberg-type theorems with altered nerves

The main results of this chapter demonstrate that, Tverberg’s theorem is but a special case of

a more general situation where other intersection patterns can be induced as the nerve of the

convex hulls of a partition of any sufficiently large set of points. In particular, we prove that, given

sufficiently many points, all trees and cycles, can also be induced by at least one partition of a

point set. We also discuss how some complexes cannot be achieved this way, even for arbitrarily

large sets of point sets.

3.1. A Tverberg theorem for trees and cycles

3.1.1. Proof of Theorem 11 (A) in the plane. Because the case of dimension two exem-

plifies the key ideas very well and because we can provide a better bound, we first give the proof

of Theorem 11 (A) in the plane. To summarize the proof, first, we show in Theorem 30 that the

result holds if the points are arranged as the vertices of a convex polygon. Second, given any set S̄

with at least
(

4n−4
2n−2

)
+ 1 points in the plane, we apply the Erdős-Szekeres theorem to deduce that

S̄ has a sub-configuration S of 2n points in convex position. Then we apply Theorem 30 to obtain

a partition of S whose nerve is the tree Tn, and finally, in Lemma 3, we prove we can extend the

partition of S to the rest of S̄ while preserving the nerve. Later in Subsection 3.1.2 we present the

general case in Rd following a similar strategy, but some of the key steps are different.

Theorem 30. Let Tn be a tree with n nodes, and let S ⊂ R2 be any 2n point set in convex position.

Then S admits a partition P such that its nerve N (P) is isomorphic to Tn.

Proof. The proof is by induction on n, the number of vertices in Tn. For an example of the

construction see Figure 3.1.
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For n = 1, the tree consists of a single node and S is a set of two points in R2. Coloring both points

with color 1 will trivially satisfy the theorem. When n = 2, the only tree with two vertices is K2.

By Radon’s theorem any set of four points in S, say s1, s2, s3, s4 in counterclockwise order, can be

partitioned with intersection graph K2. Note that in this case, coloring the points in S = S1 ∪ S2

with two alternating colors s1 = 1, s2 = 2, s3 = 1, s4 = 2 will yield the required partition.

For performing the induction step, we can assume Tn was obtained from a tree Tn−1 by adding the

leaf node vn to a node vr ∈ Tn−1 such that {vn, vr} is an edge of Tn. Note that in our labeling of

the n nodes, r may not be n− 1, but all trees are constructed by a sequence of leaf additions.

By the induction hypothesis, for any set S′ with exactly 2n − 2 points in convex position in R2,

there exists a partition P ′ of S′ into n− 1 color classes, where each color i ∈ {1, 2, . . . n− 1} is used

twice, such that Tn−1 = N (P ′). Thus, we may assume that there exists a two-to-one “coloring

function” C : S′ → [n− 1] that associates two points in S′ with a color i, (the color of node vi).

Let S be a set of 2n points in convex position in R2, ordered in a clockwise manner, say S =

{s1, s2, . . . , s2n}, and assume without loss of generality that s1 is at twelve o’ clock. Next, consider

the set S′ := S \ {s2, s2n}. To this set S′ we can apply the induction hypothesis, it is properly

colored and gives Tn−1. Now we show how to add color n to the remaining points in S to give Tn.

There are two cases.

Case 1 If C(s1) = r, then extend P ′ to a partition P of S by assigning color n to the points s2 and

s2n. Thus P = P ′ ∪ {s2, s2n}. Let Ln be the line through s2 and s2n. Observe that on

one side of Ln, say L+
n , there is only s1. Then the other points in S′ are contained in the

other open half plane L−n . In particular, one point, say sj , is such that C(sj) = r. Thus s1

and sj have color r. Then conv(s2, s2n) and conv(s1, sj) intersect so N (P) contains the

edge (r, n). Furthermore, for any i 6= n, r, we have that N (P) does not contain the edge

(i, n), since the points with color i are contained in L−n and so their convex hull cannot

intersect conv(s2, s2n). Thus the nerve of P is Tn.

Before starting Case 2 consider the relabeling of S′ := S \ {s2, s2n} = {x1 = s1,x2 =

s3, . . . ,x2n−2 = s2n−1}.
Case 2 If C(s1) 6= r, then we know that on one side of the line Ln (through s2 and s2n) there

are two points in S′, say xi,xi+k (as above) such that C(xi) = C(xi+k) = r for i ≥ 3 and

1 < k ≤ (2n − 2) − i. Apply to S′ the following new coloring C̄ : S′ → [n − 1] defined as
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C̄(xj) = C(x(j+2n−i−1)) mod(2n − 2). That is, the rotation that sends the corresponding

color in xi to x1. Observe that this rotation preserves all the intersection patterns that

existed before (by Lemma 2), and thus N (P ′) is Tn−1. Lastly, we are now in the position

to apply Case 1 again, so the theorem follows.
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Figure 3.1. Example of a tree with seven nodes and shown as partition induced
on a set S of 14 points in convex position.

This completes the proof that any set S of 2n points in convex position in the plane have a partition

whose nerve is isomorphic to any given tree Tn. �

To extend our result to the case that the points are in general position, we will use a famous theorem

in combinatorial geometry, the Erdős-Szekeres theorem. This theorem says that every sufficiently

large set of points in general position contains a subset of k points in convex position. The fact

that this number N = N(k, 2) exists for every k was first established in a seminal paper of Erdős

and Szekeres, [ES35] who proved the following bounds on N(k, 2).

2k−2 + 1 ≤ N(k, 2) ≤
(

2k − 4

k − 2

)
+ 1.

A handful of recent papers have improved the upper bound (see for instance [MS16] for an excellent

survey and a very recent paper by A. Suk [Suk17] showing that N(k, 2) = 2k+o(k)).
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By the Erdős-Szekeres Theorem we know that
(

4n−4
2n−2

)
+ 1 points always contain a 2n-gon. Then,

we can use Theorem 30. Finally we explain how to extend the partition (or coloring) given by

Theorem 30 to the rest of the points in S̄.

Definition 31. Let S be a set of points in Rd and let P = S1, . . . , Sn be an n-partition of S into n

color classes that yields a specific nerve N (P). We say that a P is extendable if for all S̄ containing

S, there is a partition P̄ = S̄1 . . . S̄n of S̄ extending P (meaning Si ⊂ S̄i for all i) such that N (P̄)

isomorphic to N (P).

Observe that in general, such an extension is not necessarily possible, for example, Figure 3.2 shows

a set of six vertices, and a partition in three color classes (see left side of the figure), that is not

extendable. Note that any extension that includes the midpoint will change the intersection pattern

(see right side of the figure). Surprisingly, in the case of the nerves of the partitions obtained in

Theorem 30 and (Theorem 32 in the next subsection), this extension is possible.

Figure 3.2. An example of a non-extendable partition.

Lemma 3. Let Tn be a given tree on n nodes and let S be a set of 2n points in convex position in

the plane. Then the partition P obtained in proof of Theorem 30 is extendable.

Proof. Let S̄ be an arbitrary finite set of points in Rd, such that S ⊂ S̄. We begin by assuming

that the “color partition function” C : S → [n] is the one given in Theorem 30. It yields a partition

P of S with nerve N (P) isomorphic to Tn and n is the last color added. Recall that we denoted

by vr the node in Tn−1 such that {vn, vr} is the leaf of Tn in which we added vn.

The extension of P of S will be given through induction on n, by a “color partition function”

C̄n : S̄ → [n] as follows:
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a) For n = 1, let C̄1(x) = 1 for every point in S̄.

b) For the induction step, the extension C̄n−1 : S̄ → [n− 1] exists by induction hypothesis. Here is

how we obtain the extension C̄n:

Let Sj denote the set of points in S of color vj , or j for simplicity. Consider the line Ln through

Sn (it is given by points s2 and s2n in Theorem 30), and recall that this line leaves only one

element of Sr in one side, say L+
n , and the rest of the points of S in the other side L−n . We

define C̄ : S̄ → [n] as follows: C̄n(x) = C̄n−1(x) when x ∈ L−n , C̄n(x) = r when x ∈ conv(Sr),

and, finally, C̄n(x) = n when x ∈ cl(Ln)+ but x /∈ conv(Sr). Here cl(Ln)+ denotes the closed

half-plane at the right of Ln.
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Figure 3.3. The extension of the partition obtained in Figure 3.1. The left figure,
is the extension up to n = 4, the central figure is the extension up to n = 6, and the
right figure is up to n = 7.

Observe that, by the induction process, the intersection pattern of S̄1, . . . S̄n−1 are the same in Ln
−

by construction. Furthermore, cl(Ln)+ does not intersect any other element in the partition, so no

new intersections occur. �

3.1.2. Proof of Theorem 11 (A) in Rd. Next, we will show a general dimension version of

Theorem 30. The pattern of the proof is very similar to the planar case, but we will need to use

properties of cyclic polytopes and their oriented matroids. A parametrized curve α : R −→ Rd is a

d-order curve (sometimes called alternating) when no affine hyperplane H in Rd meets the curve in

more than d points. An example is the famous moment curve. See [Stu87], [CD00], [BLVS+93].

In what follows we will use ordered cyclic d-polytopes Cm(d) which are obtained as the convex hull of

m vertices S := {x1,x2, . . .xm} along a d-order curve in Rd and thus, we may order the vertices of

this polytope in an increasing sequential manner, say α(t1) = x1 < α(t2) = x2 < · · · < α(tm) = xm.

Ordered cyclic polytopes are very special because every subpolytope is also cyclic with respect to
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the same vertex order, i.e., the corresponding oriented matroid is alternating. Alternating means

the chirotope has all positive signs. See Section 9.4 in the book [BLVS+93].

Theorem 32. Let Tn be any tree with n nodes, and let S be the vertices of an ordered cyclic d-

polytope Cm(d) with m = (n − 1)(d + 1) + 1 vertices in Rd. Then, there exists a partition P of S

such that the nerve N (P) is isomorphic to Tn.

Proof. Let Cm(d) be an ordered cyclic d-polytope, with m vertices and assume as before

S := {x1,x2, . . .xm} along the curve. As in the case of the plane, the proof will be given by

induction on n the number of nodes of the tree Tn.

If n = 1, again there is nothing to prove. If n = 2, the only tree with two vertices is K2. Then by

Radon’s theorem, any set of d+ 2 points in S can be partitioned in S = S1 ∪ S2 with 2 ≤ |Si| ≤ d
for i ∈ {1, 2} and intersection graph K2, see Figure 3.4 on the left.
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Figure 3.4. Two examples, on the left, we show a tree on two nodes shown as a
partition in a set S of five vertices of the cyclic polytope C5(3). On the right side we
represent a tree on three nodes as a partition of the nine vertices of another cyclic
polytope in R3, this time C9(3).

For the induction step, suppose Tn was obtained from Tn−1 by adding the node vn to a node

vr ∈ Tn−1 such that {vn, vr} is a leaf of Tn, and assume that Tn−1 is the nerve of some set N (P ′)
where the set S′ are the vertices of the ordered cyclic polytope with exactly (n − 1)(d + 1) − d
vertices in Rd and P ′ = {S′1, S′2, . . . , S′n−1} are the color classes with color 1, 2, . . . n−1 respectively,

via a “coloring function” C′ : S′ → [n− 1].
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Let k the maximum number in [n] such that xk is in S′r. Next in Cm(d) consider the subpolytope

Q of (n − 1)(d + 1) − d vertices, obtained as the convex hull conv(x1,x2, . . . ,xk,xk+d+2, . . .xm),

and R is the polytope consisting of the convex hull of the complement of Q and xk, thus R =

conv({xk,xk+1, . . . ,xk+d+1}). Note both Q and R are ordered cyclic polytopes and Q∩R = {xk}.
Thus by the induction hypothesis there exists a partition of the vertices of Q into n−1 color classes

whose nerve is isomorphic to Tn−1 as before. Next, by Radon’s Lemma there exists a partition into

two color classes A and B of the d+ 2 vertices of R.

Say xk ∈ A, then define a “coloring function” C : S → [n] in the following way: C(x) = C′(x) if

x is a vertex of Q, C(x) = r if x ∈ A, and, finally, C(x) = n if x ∈ B. That is Sn ∩ Sr 6= ∅ and

no further intersections occur. By the construction the parts of P consist of the n color classes

determined by the coloring C. The nerve N (P) is isomorphic to Tn. �

In dimension two, we relied on Erdős-Szekeres to build a convex polygon. For the general case in

Rd, we need a multi-dimensional version of Erdős-Szekeres theorem that follows from an application

of the hypergraph Ramsey theorem [CFS10]. The theorem we need was first given by Grünbaum

(Exercise 7.3.6 in [Grü67]) and Cordovil and Duchet [CD00] using oriented matroid methods. See

Proposition 9.4.7 of [BLVS+93] for a short proof. The theorem shows the existence of a number

N = N(k, d) such that every set of N points in general position in Rd contains the vertices of an

ordered cyclic d-polytope. N is bounded from above by the hypergraph Ramsey number Rd+1(m)

(see the Introduction) ensuring the existence of an alternating oriented matroid (hence an ordered

cyclic polytope with m vertices).

According to [Stu87] when the oriented matroid is alternating, then its cyclic d-polytope is on a

d-order curve in Rd and every subpolytope of it is also cyclic. This is quite a useful fortuity, since

it is well known, that in odd dimensions there exist combinatorial cyclic polytopes with that some

subpolytopes which are not cyclic (see page 104 of the same paper). By these facts, we know that

if S̄ is a set of points in general position in Rd with at least Rd+1((n− 1)(d+ 1) + 1) points, then

S̄ contains a set S consisting of the m = (n− 1)(d+ 1) + 1 vertices of an ordered cyclic d-polytope

Cm(d).

To finish the proof we just need to “extend”, as we did in the case of the plane, the partition given

in Theorem 32 (for the vertices of Cm(d)) to a partition P̄ of S̄ in such a way that the nerve N (P̄)
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is preserved. Lemma 4 below guarantees that this is always possible, finishing the proof of Theorem

11 (A).

Lemma 4. Let Tn be a given tree and let S be the vertices of an ordered cyclic polytope with

m = (n − 1)(d + 1) + 1 vertices in Rd. Then the specific partition P obtained in Theorem 32 is

extendable.

Proof. Let S̄ be an arbitrary finite set of points in Rd, such that S ⊂ S̄. Let Sj denote the

set of points in S of color vj , or j for simplicity. Let us begin by assuming that the “color partition

function” C : S → [n], given in Theorem 32, yields a partition P of S with nerve N (P) isomorphic

to Tn. The extension of P of S will be given by induction on the number of nodes n.

a) In the case n = 1 assign C̄1(x) = 1 for every point in S̄.

b) For the induction step note that the induction hypothesis guarantees the extension C̄n−1 : S̄ →
[n− 1] exists.

To begin observe that polytopes Q and R defined in Theorem 32 satisfy that Q ∩ R = {xk} so

(Q \ {xk}) ∩ (R \ {xk}) = ∅. Therefore, there exists a (d − 1)-hyperplane H that separates these

two sets and leaves points of color r in both sides of the hyperplane. Furthermore, R is completely

contained in the closure of one of the sides of this hyperplane, say H−n . The “color partition

function” C̄n : S̄ → [n] is given as follows:

C̄n(x) = C̄n−1(x) if x ∈ H−n , C̄n(x) = r if x ∈ Sr, and C̄n(x) = n if x ∈ cl(H+
n ) and x /∈ Sn.

As before cl(H+
n ) is the closed half-hyperplane containing only points in R of color n and color r.

Observe that by the induction process the intersection pattern of S̄1, . . . S̄n−1 is the same in Hn
−

by construction, and cl(H+
n ) ∩ Sr 6= ∅ yields the leaf {vr, vn}. Furthermore Sn ⊂ cl(H+

n ) does

not intersect any other elements in the partition since they are contained in H−n , so no further

intersections occur.

�

3.1.3. Proof of Theorem 11 (B). Suppose that S̄ is a set of at least nd+ n+ 4d points in

general position in Rd. We start by projecting the points onto a generic 2-plane H where we can
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assume, without loss of generality, that the points of S̄ have distinct projections onto it. Let S be

the projection of S̄, now planar points.

Lemma 5. There exists a circle C containing all these projected planar points in S, and a subdi-

vision C ′ of C into n sectors such that:

(i) Each sector contains at least d+ 1 points.

(ii) No two adjacent sectors form a combined angle of more than π radians.

Proof. We start by picking a line L1 with at least bnd+n+4d
2 c points on both sides of L1.

Denote by L−1 and L+
1 respectively, the open half-spaces defined by L1 and M+

1 ,M
−
1 the points of

S on the two half-spaces of L1. Applying the Ham Sandwich Theorem (see Section 1.3 in [Mat02])

to the sets M−1 and M+
1 , we can find a line L2 so that L1 and L2 together separate the plane into

four regions, say R1, R2, R3 and R4 with at leastbnd+n+4d
4 c projected points in each region. Note

that bnd+n+4d
4 c ≥ d+ 1 points.

Denote by p the point in the plane where L1 and L2 intersect, and let C be a circle centered at p

that contains all the projected points. Now we choose arcs emanating from p to subdivide each of

the four regions R1,R2,R3, and R4 into as many subregions, containing at least d+ 1 points (note

that each of the Ri have at least d+1 points in them by construction). This can be done as follows:

If R′i has at least 2d + 2 points, then take a line emanating from p and rotate it until it divides

Ri into two regions, one with d+ 1 points denoted Ri1, and the other with the remaining (at least

d + 1) points in Ri denoted R′i. Otherwise do nothing. Repeating this process as many times as

possible, we will obtain a subdivision of each Ri into subregions, all but one of which have exactly

d + 1 points, and none of which have more than 2d + 1 points. We call the final regions of this

recursive process sectors.

Since the original four regions R1, R2, R3, R4 satisfy property claim (ii) of the lemma, and process

of subdivision is made to show claim (i) holds after subdividing the four regions, all we have left

to do is to check there are n sectors. For this, let k1, k2, k3, and k4 denote the respective number

of sectors formed from each of the four regions, and j1, j2, j3 and j4 denote the number of points in

each region. It suffices to show that k1 + k2 + k3 + k4 ≥ n because we can always merge adjacent

sectors within the same region Ri, while preserving claims (i) and (ii).

44



Our procedure for generating subdivisions guarantees that ji ≤ ki(d + 1) + d for all i = 1, 2, 3, 4.

Summing these inequalities we get j1 + j2 + j3 + j4 ≤ (k1 + k2 + k3 + k4)(d+ 1) + 4d, so

nd+ n+ 4d ≤ (k1 + k2 + k3 + k4)(d+ 1) + 4d,

which implies that (k1 + k2 + k3 + k4) ≥ n. This completes the proof of the lemma. �

Now we will use the the subdivision C ′, whose existence is guaranteed by Lemma 5, to find our

desired partition of the data points whose partition nerve is an n-cycle.

We construct a partition one sector at a time. In the first step, we notice that one of the n sectors,

say Q1, has at least d+ 2 points by the pigeonhole principle.

Use Radon’s Lemma to partition the points in Q1 into two sets S1 and S2 so that the convex hulls

of S1 and S2 intersect.

From left to right: Illustration of the construction at steps 1 and 2, and the resulting partition.

In the second step, we denote the slice counterclockwise to Q1 as Q2.

By Radon’s Lemma, any point x2 in S2 from step 1, combined with the (at least) d + 1 points

in Q2 can be partitioned into two sets S′2 and S3 so that the convex hulls of S2 and S3 intersect.

Without loss of generality we can assume that x2 ∈ S′2, and then set S2 = S2∪S′2. In step k, where

3 ≤ k ≤ n− 1, we continue in the same way. We denote the slice counterclockwise to Qk−1 as Qk.

By Radon’s Lemma, any point xk in Sk from step (k−1), combined with the (at least) d+1 points

in Qk+1 can be partitioned into two sets S′k and Sk+1 so that the convex hulls of S′k and Sk+1

intersect. Without loss of generality we can assume that xk−1 ∈ S′k−1, and then set Sk = Sk ∪ S′k.
Finally, in step n− 1 we set S1 = S1 ∪ Sn.

We claim that the nerve of the resulting partition P = {S1, S2, . . . , Sn} is the n-cycle.

This is a consequence of two facts: We used Radon’s Lemma to guarantee that any two subsets
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appearing in the same sector have intersecting convex hulls. Each subset appears in at most

two sectors, and since two adjacent sectors have a combined angle of at most π radians there

is a line separating any two subsets that do not appear in the same sector. Thus we have that

conv(Si) ∩ conv(Sj) 6= ∅ if and only if there is some sector containing points from both Si and Sj .

If we let vi denote the vertex of the nerve corresponding to subset Si, we see that the edges of

N (P) consist precisely of (vn,v1) and (vi,vi+1) where i ∈ [n− 1]. This completes the proof.

3.2. Improved Tverberg numbers of special trees and in low dimensions

3.2.1. Proof of Theorem 12: Better bounds for Tverberg numbers of caterpillar

trees. To make the notation easier, we adopt the following convention throughout the proof of

Theorem 12: All point sets S ⊂ Rd are indexed in increasing order with respect to their first

coordinate. That is, if S = x1,x2, . . . ,xn, with xi = (xi1, xi2, . . . , xid), then we assume that

x11 ≤ x21 ≤ · · · ≤ xn1. Furthermore, by rotating the axes, we can assume that no two points have

the same first coordinate and that the previous inequalities are strict.

We first prove the special case of stars in Theorem 12 as a lemma. A caterpillar is a sequence of

stars, thus we can later use induction again.

Lemma 6. For any (d + 1)(n − 1) + 1 points in Rd, we can find a partition of those points with

nerve Stn, the star tree on n vertices (i.e., with (n− 1) spokes).

Proof of Lemma 6. We prove this by induction on n. For n = 1, the partition of one point

to get St1 is obvious. Now assume the result is true for some n. We need to show that any

(d + 1)n + 1 points can be partitioned with partition nerve Stn+1. Let M = (n − 1)(d + 1) + 1.

By induction hypothesis, the subset {x1, . . . ,xM} ⊂ S admits a partition P = {A1, . . . , An} with

N (P) ' Stn. Without loss of generality, assume that A1 is the central vertex of the star graph.

Let x ∈ S be some point in A1. By Radon’s lemma, there is a way to partition the d + 2 points

x,xM ,xM+1, . . .xM+d+1 into two sets X,Y with conv(X)∩ conv(Y ) 6= ∅, and we can assume that

x ∈ X. The set Y intersects A1 ∪ X but does not intersect any of Ai, 2 ≤ i ≤ n, because every

point in Y has larger first coordinate than any point in Ai. Then we see {A1 ∪X,A2, . . . , An, Y }
is a partition which will induce the star graph Stn. �
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Proof of Theorem 12. Now we prove that for every caterpillar tree Tn with at most n

nodes, every set S with at least (d + 1)(n − 1) + 1 points in Rd admits a partition P with

N (P) ' Tn. An illustration of the partition constructed in the proof is given in the Figure 3.6.

The proof is by induction on the length of the central path in Tn, which we will denote by m. The

induction hypothesis says that for every m ∈ N and any caterpillar tree Tn with n vertices and a

central path of length m the following two statements hold:

(1) Every set S of (d+ 1)(n− 1) + 1 points in Rd admits a partition P with N (P) ' Tn
(2) Denote by v the last vertex of the central path, and denote by Stk+1 the star subgraph induced

by v and its k neighbors. Then the subsets in P corresponding to vertices in Stk+1 are comprised

of the (d+ 1)k + d+ 1 points in S with largest first coordinate.

If the length of the central path is one, both parts of the induction hypothesis follow by applying

Lemma 6. Assume the result holds if the central path is of length m. We consider caterpillar graphs

which have central paths of length m+ 1. Let G be such a graph with n vertices. We consider the

endpoint of the path vm+1 and the vertex prior vm. If we consider the subgraph of G consisting

of the path v1, . . . , vm and all vertices adjacent to it except vm+1, this is a caterpillar graph with

a path of length m. Let p denote the number of vertices of this graph. By induction hypothesis,

we can represent this graph using the (d+ 1)(p− 1) + 1 points x1, . . . ,x(d+1)(p−1)+1. We will have

the partition {A1, . . . , Ap} where we take A1 to be the set corresponding to vm. Then take a point

x ∈ A1 and the next d + 1 points x(d+1)(p1)+2, . . . ,x(d+1)(p1)+d+2 to have a Radon partition X,Y

with x ∈ X. Our new partition will be {A1 ∪X,A2, . . . , Ap, Y }. Y will correspond to the vertex

vm+1 and will not intersect any of the other sets due to having larger first coordinate. In addition,

A1 ∪X will not intersect any new sets by how we have arranged the points due to the induction

hypothesis. Now as in the proof of the lemma, we can add new sets by considering (d+ 1) points

in iteration for each of the other vertices adjacent to vm+1. Since there were n− p vertices and we

used (d+ 1) points for each, in total we used (d+ 1)(n− 1) + 1 + (d+ 1)(n− p) = (d+ 1)(n− 1) + 1

points. This is the desired number.

Thus we have proved the induction hypothesis. To complete the proof of the theorem, we note that

if we have more than (d+ 1)(n− 1) + 1 points, we can apply the induction hypothesis to find the
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desired partition of the (d+ 1)(n− 1) + 1 points x1,x2, . . .x(d+1)(n−1)+1, then add any remaining

points to the subset corresponding to the endpoint of the central path in the caterpillar graph. �

Figure 3.5. An example caterpillar graph G with 9 vertices.

Figure 3.6. An example of how a set of points can be partitioned with nerve G.
The vertical lines indicate how we start with a Radon partition of the leftmost d+ 2
points, then partition the points from left to right, considering d+ 1 more points at
each step. Notice there are extra points on the right, which are added to the subset
corresponding to the last vertex on the central path.

3.2.2. Proof of Theorem 13: Tverberg numbers of trees in dimension two. Now we

focus on the situation in two dimensions.

Lemma 7. Let S ∈ R2 be a set of 2n points in the plane. Let Lp1p2
denote the line segment between

points p1 and p2. Suppose that there exists p1,p2 ∈ X such that Lp1p2
divides the remaining points

into two sets A,B each of size n−1 and such that for any a ∈ A, b ∈ B, we have that Lab intersects

Lp1p2
. Then it is possible to pair off elements ai ∈ A, bi ∈ B, such that for i, j = 1, . . . , n − 1,

i 6= j, Laibi does not intersect Lajbj .

Proof. Suppose we have points p1 and p2 as hypothesized and partition the remaining points

into A and B. Let L be the line between p1 and p2. To pair off the points, we consider the vertices

of conv(A ∪ B). Since L separates the points of A and B, we must have that there are a pair of

adjacent vertices of conv(A ∪B) such that one, a1, is a member of A and the other b1, a member

of B. The segment between this pair cannot intersect the segment between any other pair of points

as this segment forms the boundary of the convex hull. We pair off these two points and then

consider conv(A \ {a1} ∪ B \ {b1}). We see that L separates A \ {a1} and B \ {b1}, so we can

repeat this argument to pair off a2 and b2. Continuing in this fashion until we have paired off all

the elements, we will have a pairing (a1, b1), (a2, b2), . . . , (an, bn) where Laibi does not intersect

Lajbj for i 6= j. �
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Proof of Theorem 13 part (A). Let A ∈ R2 be a collection of 2n points in general position

in the plane. Our goal will be to find a pair of points which can separate the remaining points into

two sets of equal size so we can apply the above lemma. This will not always be possible, so we

will try to make the size of the two sets as close as possible.

To do this, we will consider the vertices of the convex hull of A. We pick arbitrarily a vertex p1

of conv(A) and order the remaining vertices p2, . . . ,pk in counter-clockwise order where k is the

number of vertices. For i = 2, . . . , k, we divide the remaining vertices of A into two sets Bi, Ci

where Bi is the set of vertices in A to the left of Lp1pi
and Ci is the set of vertices to the right

of Lp1pi
. We note that the size of Bi decreases from 2n − 2 to 0 as i increases and the size of Ci

increases from 0 to 2n− 2.

We consider two cases. The first case is that there exists i such that |Bi| = |Ci| = n− 1 and then

we can apply the above lemma as the line segment between every pair of points in Bi×Ci intersects

Lp1pi
since Lp1pi

separates Bi and Ci and p1,pi are vertices of conv(A). Then we have a pairing

(b1, c1), . . . , (bn−1, cn−1) where for any two pairs the segments do not intersect, but each intersects

Lp1pi
. Then the partition {{b1, c1}, . . . , {bn−1, cn−1}, {p1,pi}} is a partition which induces the star

graph Sn. For an example of this case and how to partition the points, see Figure 3.7.

Figure 3.7. In the first case, there is a partition which divides the remaining
points into two sets of equal size. Then we can pair off points such that the segment
connecting them intersects the dividing line, but no other segment.

The second case is that there does not exist such an i. In this case, we find i such that |Bi| > |Ci|
and |Bi+1| < |Ci+1|. Set D = {p1,pi,pi+1} and notice that conv(D) must contain at least one

point of S in it’s interior. D will form the center vertex of our star graph. See Figure 3.6 for a

depiction of this central triangle.
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Figure 3.8. In the second case, we find a central dividing triangle of a given point
configuration. Then we pair off as many points on opposite sides of the triangle as
possible using Lemma 7, and make points in the interior of the triangle singletons
until we have n subsets. Any extra points are added to the subset containing the
central dividing triangle.

Now, using the above lemma, pair off points from Bi+1 and Ci to form disjoint segments which will

intersect conv(D), and let every point in the interior of D be a singleton (which will not intersect

any of the segments since the points are in general position). Denote this partition as P.

N (P) is clearly a star graph, so it suffices to show N (P) has at least n nodes (we can merge the

subsets corresponding to any extra nodes with D, as conv(D) already intersects every subset). To

see this, first note that average number of points in each subset of P is at most two, since P has

one subset of size three, at least one singleton, and the rest of the subsets are either singletons or

pairs. On the other hand, the average number of points in each subset is equal to 2n divided by

the number of subsets, so there must be at least n subsets in P. Thus N (P) has at least n nodes,

as was to be shown.

�

Now we move to the proof of Theorem 13 part (B): As a consequence of Lemma 2, when enumerating

partition induced graphs it is enough to consider the partitions of combinatorial types of point sets.

We can check whether a given simplex complex is 2-partition induced on a representative for each

order type.

To complete part (B) we relied on an explicit computer enumeration of all order types on small

points set provided by [AAK02]. There exists exactly one point configuration for which it is

impossible to generate P4. This point configuration is displayed in Figure 3.9. Its specific coordina-

tization is A(222, 243), B(238, 13), C(131, 50), D(154, 105), E(166, 145) ,F (134, 106) G(174, 188),

H(18, 51). For every other point configuration, we found a partition which induced the path graph

P4. From this we assert that Tv(P4, 2) ≥ 9. Since we also found a partition inducing P4 for every
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single order type on nine points we are sure that Tv(P4, 2) = 9 because in the case 10 or more

points, we can use the weaker bound given in the proof of Theorem 12 part (B).

Similarly for the cycle C4 we have the configuration with coordinates A(0, 0), B(8, 5), C(18, 3),

D(7, 4), E(14, 5), F (10, 8), G(11, 7), H(14, 17), I(11, 6), J(12, 12), which gives the desired lower

bound. The upper bound is given by following the proof of Theorem 11 part (B), except starting

with any set of 13 points (the bound given in the theorem is higher since it accounts for divisibility

issues that can occur in certain cases).

Figure 3.9. Two point configurations which cannot be partitioned to induce, re-
spectively, P4 (top on eight points) nor C4 (bottom on ten points).

3.3. An important example and some auxiliary results

Proof of Lemma 1. Suppose by contradiction Tv(K, d) < 2n. Let S ⊂ Rd be a set of points

in convex position with |S| = Tv(K, d). By the pigeonhole principle, if we partition S into n

disjoint subsets, there must be at least one subset that is a singleton {x}. Since K is connected,

the node corresponding to the singleton {x} is connected, by an edge, to at least one other node,

implying that {x} is in the convex hull of another subset. However, this is a contradiction as the

points are in convex position. �

Proof of Lemma 2. To show that N 1(P) = N 1(σ(P)) it suffices to show that conv(Pi1) ∩
conv(Pi2) 6= ∅ if and only if conv(σ(Pi1))∩ conv(σ(Pi2)) 6= ∅ for all i1, i2 ∈ [n]. Suppose conv(Pi1)∩
conv(Pi2) 6= ∅. Then they contain respectively P ′i1 and P ′i2 which are an inclusion minimal Radon

partition of S1. Since σ is an order-preserving bijection, σ is an isomorphism between oriented
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Figure 3.10. Example of a graph
K which is not 2-Tverberg.

Figure 3.11. Partitioned point
set with nerve K.

matroids (see, for instance [RGZ97]) determined by S1 and S2. The minimal Radon partitions in

S1 correspond to the circuits of the oriented matroids and therefore are preserved under σ. Thus

conv(σ(P ′i1)) ∩ conv(σ(P ′i2)) 6= ∅. The reverse implication is shown by the reasoning applied to

σ−1. �

As we mentioned in the Introduction, the graphK in Figure 3.10 is 2-partition induced (in particular

by the partitioned point set in Figure 3.11), but not 2-Tverberg, as implied by the following lemma:

Lemma 8. Suppose S is any set of points in convex position in R2. Then the graph K in Figure 3.10

is not partition induced on S.

Proof. We note that since K is a triangle free graph, it suffices to show that it is not the

intersection graph of any partition of points in convex position. We argue by contradiction. Suppose

that there is a set of points in convex position partitioned so that they have the graph above as

their intersection graph. By Lemma 2 we may assume the points are arranged on the boundary of

a disc D. Denote the convex hull of the points corresponding to each node i by region i. In the

rest of the proof of Lemma 8, we will rely on the following.

Claim 33. Consider the independent set of nodes {A,B,C} in Figure 3.10. Up to exchanging their

labels (note that the graph is symmetric about A,B,C), there are two possible arrangements of the

regions A,B, and C, pictured in Figures 33 and 33.
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of the claim. The region M− B has two connected components. If regions A and C lie

in different connected components of M− B, then regions A,B, and C must be arranged as in

Figure 33. Otherwise, A and C lie in the same connected component, say N , ofM−B. If we walk

clockwise around the boundary of N , we can only alternate twice between being in regions A and

C, reducing to the two possibilities shown. �

By the claim, we see that A,B, and C must be arranged (up to symmetry) as in one of the two

cases pictured above. If they are arranged as in Figure 33, note that regions E and F both intersect

regions A,B, and C. In that case it is easy to see that regions E and F must intersect, which is a

contradiction.

If the regions are arranged as in Figure 33, consider that regions D,F,G, and H. Note that region

D intersects regions A,B,C. Also, region F is disjoint from all the regions B through H, while

intersecting region A. Similarly, region G is disjoint from all the regions A through H except

B. Also region H is disjoint from all the regions A through H except C. Considering the two

cases: F,G,H lie in the same connected component ofM−D, or F,G,H lie in different connected

components of M− D, it is easy to see that, in both cases, F,G, and H must be arranged as

A,B, and C are in Figure 33. Then I, J are disjoint but both intersect F,G and H, which is a

contradiction by the argument above. Thus K cannot be the nerve of a set of points in convex

position. �
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CHAPTER 4

Stochastic Tverberg theorems

The main results proved in this chapter provide bounds on the probability that a randomly par-

titioned point set has the property that the convex hulls of each subset have at least one point in

common. In particular, we show that in the case of a distribution that is balanced about a point,

there is a threshold phenomena for such an event. In that case, roughly speaking, a partition of

mn random points into m sets of n points each is likely to be a Tverberg partition if n > log2(m),

and unlikely to be a Tverberg partition if n < log2(m).

4.1. Stochastic Tverberg theorems for equi-partitioned points

Proof of the lower bound in Theorem 18. After a possible translation, can assume

without loss of generality that D is balanced about the origin. We will prove that

(
1−

(
2−n+1

d−1∑

k=0

(
n− 1

k

)))m
≤ P(Pm,n,D is Tverberg)

by bounding from below the probability that the origin is a Tverberg point. We may assume

without loss of generality that none of the randomly selected points are at the origin. The origin is

then a Tverberg point as long as the points from each color contain the origin in their convex hull.

This is equivalent to showing no color has all of its points contained in one hemisphere. For a fixed

color, the probability of the n points of that color being contained in one hemisphere was computed

by Wagner and Welzl [WW01]. This result of Wagner and Welzl generalized the celebrated result

of Wendel [Wen62] who addressed the case when D is centrally symmetric. (Moreover, in the

same paper Wagner and Welzl showed that this probability is at least the probability given in

Equation 4.1 below, with equality if and only if D is balanced about the origin.)

(4.1)

(
2−n+1

d−1∑

k=0

(
n− 1

k

))
.
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Using this to compute the probability that none of them color classes is contained in one hemisphere

we obtain the desired bound above.

�

Proof of the upper bound in Theorem 18. Again, we assume without loss of generality

that D is balanced about the origin. We will first treat the case d = 1, and then explain how to

obtain the bound for arbitrary d. To bound the probability of a Tverberg partition from above, we

bound the probability of the complement below. We let E denote the event that the convex hulls

have empty intersection. In dimension one, E is contained in the event that there is at least one

color class with all points less than zero, and at least one color class with all points greater than

zero. Since we assume that the origin equipartitions D, we can rephrase this as the probability

that among m people each flipping n fair coins, there is at least one person with all heads and at

least one person with all tails. In other words, denoting by H and T the events that at least one

person gets all heads or tails respectively, we have P(E) ≥ P(H ∩ T ). We have

P(H ∩ T ) = P(H) + P(T )− P(H ∪ T ) = P(H) + P(T )− (1− P((H ∪ T )c).

Since P(H) = P(T ) = (1− 2−n)m and P((H ∪ T )c) = 1− (1− 2−n+1)m, this yields

P(H ∩ T ) = 1 + (1− 2−n+1)m − 2(1− 2−n)m.

The probability of a Tverberg partition is thus bounded as follows

P(Pm,n,D is Tverberg) ≤ 1− P(E) ≤ 1− P(H ∩ T ) = 2(1− 2−n)m − (1− 2−n+1)m.

This proves the desired bound for dimension 1. For higher dimensions, we note that if we let pi,

denote the projection onto the i-th axis for i ≤ d, we have that the signs of p1(x), . . . , pd(x) are

independent Bernoulli random variables with probability 1/2 (as the hyperplane orthogonal to the

i-th axis equipartitions D by the assumption that D is balanced about the origin). Thus to have a

Tverberg partition, we must have that no pair of the color classes are separated by the origin after

projecting onto the d coordinate axes. Since these d events are independent, the probability of this

happening is bounded as follows.
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P(Pm,n,D is Tverberg) ≤
(
2(1− 2−n)m − (1− 2−n+1)m

)d
.

�

4.2. Threshold phenomena for Tverberg partitions

Proof of Theorem 19. We will show that Pm,f(m),D is Tverberg with high probability if

f(m) > ln(m)/ ln(2). Fix an ε > 0. We set n = (1 + ε) log2(m) and apply the lower bound in

Theorem 18 to deduce that

P(Pm,n,D is Tverberg ) ≥
(

1−
(

2−(1+ε)∗log2(m)+1
d−1∑

k=0

(
n− 1

k

)))m

=

(
1−

(
2m−(1+ε)

d−1∑

k=0

(
n− 1

k

)))m
.

Choosing C so that Cnd ≥ 2
∑d−1

k=0

(
n−1
k

)
, we have

(1− Cndm−(1+ε))m ≤ P(Pm,n,D is Tverberg ).

We will show that the limit as m approaches infinity of the left hand side is bigger than e−δ for any

δ > 0. Fix δ > 0. As nd ∼ O(ln(m)d), there exists an M such that Cndm−ε < δ for all m ≥ M .

Consequently (1− Cndm−(1+ε))m > (1− δm−1)m for all m ≥M . Thus

lim
m→∞

(1− Cndm−(1+ε))m ≥ lim
m→∞

(1− δm−1)m = e−δ.

Since δ was arbitrary, we see that the probability of a Tverberg partition tends to 1.

Now we show that Pm,f(m),D is not Tverberg with high probability if f(m) < log2(m). As before,

we fix an ε greater than zero apply the upper bound in Theorem 18 with n = (1 − ε)log2(m) to

obtain

P(Pm,n,D is Tverberg ) ≤
(
2(1−m−1+ε)m − (1− 2m−1+ε)m

)d
.

For any γ > 0, when m is large, both terms inside the parentheses are smaller than (1− γm−1)m.

Since limm→∞(1− γm−1)m = e−γ , the probability of a Tverberg partition converges to zero as m

approaches infinity.
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Proof of Theorem 20. Again, we assume without loss of generality thatD is balanced about

0. Let S denote the set of points of some fixed color. Then we assume that |S| = n, and we can

partition S into bn/2dc subsets S1, . . . , Sbn/2dc with Si ≥ 2d for each i. By Wagner and Welzl’s

result (Equation 4.1 above), for each i, conv(Si) contains the origin with probability at least 1/2.

By independence, the probability that less than t + 1 of the Si contain the origin is less than

2−bn/2dc
∑t

i=1

(bn/2dc
i

)
. On the other hand, if at least t+ 1 of the conv(Si) contain the origin, then

by pigeonhole principle conv(S \{x1, . . . ,xt}) contains the origin for any x1, . . .xt ∈ S. Thus, with

probability at least 1 − 2−bn/2dc
∑t

i=1

(bn/2dc
i

)
, we have that conv(S) \ {x1, . . . ,xt}) contains the

origin. Since this probability is independent for each of the m colors, the result follows. �

Using a similar strategy combined with Cover’s result, we give the proof of Theorem 21 below.

Proof of Theorem 21. Given k points in Rd colored red and blue by random allocation, we

arbitrarily partition them into bk/(2d+2)c groups of size at least 2d+2. By Cover’s result, for each

fixed group, the convex hulls (of the red and blue points) in that group intersect with probability

at least 1/2. For each of the bk/(2d+2)c groups, we think of the event that the convex hulls in that

group intersect as a “success”. Then the probability that at least t + 1 groups have intersecting

convex hulls is bounded below by the probability that a binomial process with bk/(2d+ 2)c trials

and success probability 1/2 has at least t+ 1 total successes. Computing this binomial probability

yields the theorem. (If at least t+ 1 groups have intersecting convex hulls, then removing at most

t points leaves at least one group with intersecting convex hulls. ) �

4.3. Stochastic Tverberg theorems for randomly allocated points

Proof of Corollary 1. We split the proof according to the three respective parts of the

statement.

(1) The probability that a random allocation of k points into m colors is an m-Tverberg

partition with tolerance t is bounded below by the probability that a random allocation

of k points into m colors has at least n points per color, times the probability that an

equipartition of nm points into m colors is Tverberg with tolerance t. The result for

Tverberg with tolerance then follows from Theorem 20.
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(2) The result for the special case of Tverberg without tolerance then follows the same rea-

soning as part (1), except using Theorem 18 in place of Theorem 20.

(3) To show the asymptotic result, we use a result on urn models due to Erdös and Renyi

[ER61] saying that

lim
n→∞

P
(
Nm(n)

n
< log(n) + (m− 1) log(log(n)) + x

)
= exp

(
− e−x

(m− 1)!

)
.

This implies that for any ε > 0 and sequence of log(log(m)) log2(m)(1+ε) points allocated

into m urns, we have at least log2(m)(1 + ε/2) points in each urn with high probability.

Then we apply Theorem 19, which says that any equi-partition of a point set into m colors

and log2(m)(1 + ε/2) points per color is Tverberg with high probability.

�
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CHAPTER 5

Tverberg-type theorems in discrete sets

In this chapter we prove Tverberg-type results for points in discrete sets. These results build on

prior work in discrete geometry, where much work has been done to extend the classic “pillars of

convexity” - Helly’s, Radon’s, and Carathéodory’s theorems to a wider class of convexity spaces,

see [DLGMM19, QT17]. Among these, Radon’s lemma seems the most difficult to obtain tight

bounds for in other convexity spaces. The more general problem of determining Tverberg numbers

in other convexity spaces is difficult, even if the Radon numbers are known (see [Eck00] and

[Buk10]). Thus we preface the main proofs with a discussion of some of the prior work on the

generalization of Radon’s lemma and Tverberg’s theorem to discrete spaces, as well as introducing

some important related results.

5.0.1. Preliminaries. The problem of computing the Tverberg number for Zd with d ≥ 3

seems to be challenging. It has been identified as an interesting problem since the 1970’s [GS79]

and yet the following inequalities are almost all that is known about this problem: for the general

case, J. A. De Loera et al. [DLLHRS17] proved

(5.1) 2d(m− 1) + 1 ≤ Tv(Zd,m) ≤ d2d(m− 1) + 1, for d ≥ 1 and m ≥ 2.

Two special cases get better bounds:

(5.2) Tv(Z3, 2) ≤ 17 and 5 · 2d−2 + 1 ≤ Tv(Zd, 2) for d ≥ 1.

The left-hand side inequality is due to K. Bezdek and A. Blokhuis [BB03] and the right-hand side

was proved by J. P. Doignon in his PhD thesis (and rediscovered by Onn).

Previously established bounds for the “mixed integer” case include the bounds for the Radon

number (2-Tverberg number) found by G. Averkov and R. Weismantel [AW12].

2j(k + 1) + 1 ≤ Tv(Zj × Rk, 2) ≤ (j + k)2j(k + 1)− j − k + 2.
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Later, J. A. De Loera et al. [DLLHRS17] gave the following general bound for all mixed integer

Tverberg numbers:

Tv(Zj × Rk,m) ≤ (j + k)2j(m− 1)(k + 1) + 1.

Note that (1.1) above is a simultaneous improvement of both of these.

Previous bounds and related work on more general S-Tverberg numbers can also be found in

[DLLHRS17], including the following bound for any discrete S ⊂ Rd:

Tv(S,m) ≤ H(S)(m− 1)d+ 1.

The following lemma about integer points of high half-space depth is used throughout the paper.

See [BO16] for a proof and related results.

Lemma 9. Consider a multiset A of points in Zd. If |A| ≥ 2d(m− 1) + 1 (counting multiplicities),

then there is a point q ∈ Zd of half-space depth m in A.

The proof of this result follows the standard proof of Rado’s centerpoint theorem, except instead

of Helly’s theorem, we use the following version of Helly’s theorem for the integer lattice.

Theorem 34 (J.P. Doignon 1973 [Doi73], D.E. Bell 1976 [Bel76], H.E. Scarf 1977 [Sca77]). Let

F be a finite family of convex sets in Rd. If (
⋂K) ∩ Zd 6= ∅ for all K ⊂ F of cardinality at most

2d, then (
⋂F) ∩ Zd 6= ∅.

For example, in the two dimensional lattice, the integer Helly theorem says that if any four convex

sets in a larger collection contain a lattice point in common, then there must be a lattice point shared

by every convex set in the collection. This beautiful result was discovered independently by J.P.

Doignon, D.E. Bell, and H.E. Scarf. Key applications include fast non-deterministic algorithms for

infeasibility certificates in integer and mixed integer optimization, and a short proof of a centerpoint

theorem for the integer lattice. In our case, it serves as a foundational tool for the extension of

Tverberg’s theorem to discrete sets. For more generalizations, and further details see [ADLS17,

AGS+17,DLLHORP17]

The paper is organized as follows. In Section 5.1, we prove Theorem 22 using a somewhat similar

strategy to B. J. Birch’s proof of the planar case of the original Tverberg theorem [Bir59]. In

Section 5.2, we prove Theorem 23 using techniques reminiscent of those in [DLLHRS17]. In
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Section 5.3, we prove Theorem 24 (adapting an approach by W. Mulzer and D. Werner [MW13,

Lemma 2.3]) and collect some consequences of the main theorems presented above, including (1.1).

Finally, in Section 5.4, we prove Theorem 26 by proving a new lemma and adapting the methods

of J. Pach in [Pac98].

5.1. Tverberg numbers over discrete subsets of the plane

We start with the proof of the special case S = Z2 because it nicely illustrates the techniques of

the more general proof of Theorem 22.

5.1.1. Proof of the special case S = Z2. The theorem will follow easily from the following

two lemmas, the first covering the case m ≥ 3 and the second the case m = 2.

Lemma 10. Consider a multiset A of points in Z2 with |A| ≥ 4m − 3 and m ≥ 3. If p /∈ A is a

point of depth m, then there is an m-Tverberg partition of A with p as Tverberg point.

Lemma 11. Consider a multiset A of points in Z2 with |A| ≥ 6. If p /∈ A is a point of depth two,

then there is a Radon partition of A with p as Tverberg point.

Proof of special case S = Z2. Consider a multiset A of at least 4m − 3 points in Z2. By

Lemma 9, A has an integer point p of depth m. If p is an element of A with multiplicity µ, then

take the singletons {p} as µ of the sets in the Tverberg partition. Then p is a point of depth m−µ
of the remaining 4m− µ− 3 points. If µ ≥ m, we are done, and if µ = m− 1, the point p is in the

convex hull of the remaining points and we take them to be the last set in the desired partition. If

µ ≤ m− 3, according to Lemma 10, there is an (m−µ)-Tverberg partition of the remaining points

with p as Tverberg point. There is thus an m-Tverberg partition of A with p as Tverberg point.

The case µ = m− 2 is treated similarly with the help of Lemma 11 in place of Lemma 10. �

Proof of Lemma 10. Since p is not in A, up to a radial projection, we can assume that the

points of A are arranged in a circle around p. Define q and r to be respectively the quotient and

the remainder of the Euclidean division of |A| by m. Define moreover e to be d rq e.

Suppose first that p is a point of depth m + e. Since qe ≥ r, we can choose ki with i ∈ [q], and

0 ≤ ki ≤ e, such that k1 + k2 + · · ·+ kq = r. Then we arbitrarily select a first point in A, and label
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Figure 5.1. Labeling of the points in the half-plane H−.

clockwise the points with elements in [m] according to the following pattern:

1, 2, . . . ,m, 1, 2, . . . , k1, 1, 2, . . . ,m, 1, 2, . . . , k2, . . . , 1, 2, . . . ,m, 1, 2, . . . , kq.

Each half-plane delimited by a line passing through p contains at least m + e consecutive points

in this pattern and thus has at least one point with each of the m different labels. Partitioning

the points so that each subset consists of all points with a fixed label, we therefore obtain an

m-Tverberg partition with p as Tverberg point.

Suppose now that p is not a point of depth m+ e. There is thus a closed half-plane H+, delimited

by a line passing through p, with |H+ ∩A| < m+ e. The complementary closed half-plane to H+,

which we denote by H−, is such that |H− ∩A| > 4m− 3− (m+ e). Define ` to be |H− ∩A|. Since

e ≤ m
3 , we have ` ≥ 2m. Denote the points in H−∩A by x1, . . . ,x`, where the indices are increasing

when we move clockwise. We label xi with r + i from x1 to xm−r, and then label xm−r+j with j

from xm−r+1 to xm. We then continue labeling the points of A, still moving clockwise, using labels

1, 2, . . . ,m, . . . , 1, 2, . . .m, 1, 2, . . . r. See Figure 5.1 for an illustration of the labeling scheme.

The labeling pattern is such that any sequence of m consecutive points either has all m labels,

or contains the two consecutive points xm and xm+1. Let us prove that any closed half-plane H

delimited by a line passing through p contains at least one point with each label. Once this is

proved, the conclusion will be immediate by taking as subsets of points those with same labels, as

above.

If such an H does not simultaneously contain xm and xm+1, then H contains at least one point

with each label. Consider thus a closed half-plane H delimited by a line passing through p and
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containing xm and xm+1. Note that according to Farkas’ lemma ( [Sch03] Theorem 5.3) , xm+1

cannot be separated from x1 and x` by a line passing through p, since they are all in H−. This

means that either H contains x1,x2, . . . ,xm+1, or H contains xm+1,xm+2, . . . ,x`. In any case, H

contains a point with each label. �

Proof of Lemma 11. As before, we assume that the points in A are arranged on a circle

centered at p. If |A| is even, it clearly suffices to label the points in order, alternating between 1

and 2. We may therefore assume that |A| is odd, and thus |A| ≥ 7. If p is a point of depth three, it

suffices to label the points alternating labels between 1 and 2, except with two consecutive points

labeled 1. If |A| is odd but p is not a point of depth three, then |A| ≥ 7 and there is a half-plane

H+ containing p with |H+ ∩ A| = 2. The complementary half-plane H− has |H− ∩ A| ≥ 5 and

we follow a similar strategy as in the second half of Lemma 10. Namely, we denote the points in

H− ∩ A by x1, . . . ,x`, where the indices are increasing when we move clockwise. Then we label

x1 with 2, x2 with 1, x3 with 1, and x4 with 2. We continue this pattern for α ≥ 5, labeling xα

with 1 if α is odd, and xα with 2 if α is even. For the remaining points in A we continue labeling

clockwise, alternating between the labels 1 and 2.

The labeling pattern is such that any sequence of 2 consecutive points either has both labels, or

contains the two consecutive points x2 and x3. As in Lemma 10 it suffices to show that any closed

half-plane H delimited by a line passing through p contains at least one point with each label.

If such an H does not simultaneously contain x2 and x3, then H contains at least one point with

each label. Consider thus a closed half-plane H delimited by a line passing through p and containing

x2 and x3. Note that according to Farkas’ lemma, x3 cannot be separated from x1 and x4 by a

line passing through p, since they are all in H−. This means that either H contains x1,x2,x3, or

H contains x3 and x4. In any case, H contains a point with each label. �

5.1.2. Proof of the general case.

The proof of the general case is split into three lemmas addressing the lower bound, the upper

bound for H(S) ≥ 4, and the upper bound for H(S) ≤ 3, respectively.

Lemma 12. For any discrete set S ⊂ R2 with finite Helly number H(S), we have Tv(S,m) >

H(S)(m− 1).
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Proof. It suffices to exhibit a subset R ⊆ S, of cardinality |R| = H(S)(m − 1), with the

property that no point in S is of half-space depth m with respect to R. By Lemma 2.6 in [ADLS17],

there exists a set R′ of H(S) points in S in convex position with the property that conv(R′)∩S = R′.

Let R be the multiset given by taking each point in R′ with multiplicity (m−1), so |R| = H(S)(m−
1). No points of S −R are in conv(R). Since R′ was taken to be in convex position, for any point

in R, there exists a line such that one side of that line has at most m − 1 points in R. Thus S

cannot contain a point of half-space depth m with respect to R. �

Lemma 13. For any discrete set S ⊂ R2 with finite Helly number H(S) ≥ 4, we have Tv(S,m) ≤
H(S)(m− 1) + 1 whenever m ≥ 3. For the case m = 2, we have Tv(S, 2) ≤ H(S) + 2.

Proof. The proof of Lemma 13 is the same as the proof of Theorem 1. In particular, we

can use Lemmas 2 and 3 as they are stated, except that we use the following result (Theorem 2

in [BO16] with µ being the uniform probability measure on A) in place of Lemma 9. For any

discrete discrete subset S of a Euclidean space with finite Helly number H(S), and any set A ⊆ S

with |A| ≥ H(S)(m− 1) + 1, there exists a point p ∈ S that is of half-space depth m with respect

to A. �

Lemma 14. For a discrete set S ⊂ R2 with finite Helly number H(S) ≤ 3, we have Tv(S,m) ≤
H(S)(m− 1) + 1.

Proof. The case H(S) = 1 implies that S consists of a single point, so the result trivially

follows. If H(S) = 2, it must be that all points in S are collinear (as any set containing a non-

degenerate triangle has Helly number at least 3), and thus we can take median of any set with at

least 2(m−1)+1 points in S as the desired m-Tverberg point. Thus for the remainder of the proof

we assume that H(S) = 3.

Given any set A of H(S)(m − 1) = 3m − 2 points in S, there exists an m-Tverberg partition, say

P by the classical Tverberg theorem. We denote by K1, . . . ,Km the m convex hulls of the subsets

in P. As
⋂

1≤i≤mKi is a nonempty polygon, say Q, (possibly just a point or line segment) we pick

an arbitrary vertex q of Q.

It suffices to show that q ∈ S. We can assume that q is not a vertex of any Ki, since otherwise

q ∈ A ⊆ S.
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Since q is a vertex of Q, it must be contained in a one dimensional face F1 of at least one Ki. Since

q is not a vertex of any Ki, in fact q is in the relative interior of F1. For q to be a vertex of Q, it

must also be in another one dimensional face, say F2, of some other Ki, such that F1 is not parallel

to F2. Moreover, q must be in the relative interior of F2, and we also have F1 ∩ F2 = {q}.

Denote by {a, b} and {c,d} the vertices of F1 and F2 respectively. We have that

a, b, c,d ∈ S are the vertices of a convex quadrilateral with diagonals intersecting at

q, by the assumption that F1 and F2 are non parallel. Out of the four triangles

conv({a, b, c}), conv({a, b,d}), conv({a, c,d}), conv({b, c,d}), any three have at least one vertex

in common, and therefore intersect in S. Since H(S) = 3, the four triangles therefore all intersect

in S. This intersection point is q, the point where the diagonals of the quadrilateral intersect. �

5.2. Tverberg numbers over the three-dimensional lattice

We state the following lemma without proof; it is a consequence, upon close inspection of the

argument, of the proof of the main theorem in the already mentioned paper by K. Bezdek and A.

Blokhuis [BB03].

Lemma 15. Consider a multiset A of at least 17 points in R3 and a point p of depth 3 in A. There

is a bipartition of A into two subsets whose convex hulls contain p.

Next, we prove the following.

Lemma 16. Consider a multiset A of points in R3 with |A| ≥ 24m− 31 and m ≥ 2. If p /∈ A is a

point of depth 3m− 3, then there is an m-Tverberg partition of A with p as Tverberg point.

Proof. Since p is not an element of A, we assume without loss of generality that the points

of A are located on a sphere centered at p, as in the proof of Theorem 22.

We claim that there exist pairwise disjoint subsets X1, X2, . . . , Xm−2 of A, each having p in its

convex hull and each being of cardinality at most 4. (Here “pairwise disjoint” means that each

element of A is present in a number of Xi’s that does not exceed its multiplicity in A.) We

proceed by contradiction. Suppose that we can find at most s < m−2 such subsets Xi’s. Then, by

Carathéodory’s theorem, p is not in the convex hull of the remaining points in A. Therefore there is

a half-space H+ delimited by a plane containing p such that H+∩A ⊆
⋃s
i=1Xi. On the other hand,
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since each Xi contains p in its convex hull (and we can assume the Xi are minimal with respect to

containing p), we have |H+ ∩Xi| ≤ 3 for all i ∈ [s]. Therefore |H+ ∩A| ≤ |H+ ∩ (
⋃s
i=1Xi)| ≤ 3s <

3(m− 2), which is a contradiction since p is a point of depth 3m− 3 in A. There are thus m− 2

disjoint subsets X1, X2, . . . , Xm−2 as claimed.

Let X denote
⋃m−2
i=1 Xi. Consider an arbitrary half-space H+ delimited by a plane containing p.

Since |H+ ∩ Xi| ≤ 3 for all i, we have |H+ ∩ X| ≤ 3(m − 2). Furthermore |H+ ∩ A| ≥ 3m − 3,

so |H+ ∩ (A \ X)| ≥ 3. Since H+ is arbitrary, p is a point of depth 3 of A \ X. Also, |A \ X| ≥
|A| − 4(m− 2) ≥ 20m− 23 ≥ 17, so Lemma 15 implies that A \X can be partitioned into two sets

whose convex hulls contain p. With the subsets Xi, we have therefore an m-Tverberg partition of

A, with p as Tverberg point. �

From these two lemmas we can now finish the proof of Theorem 23.

Proof of Theorem 23. Consider a multiset A of 24m − 31 points in Z3. The case m = 2

is the already mentioned result by K. Bezdek and A. Blokhuis. Assume that m ≥ 3. Applying

Lemma 9, A has an integer point p of depth 3m − 3. If p is an element of A with multiplicity µ,

then take the singletons {p} as µ of the sets in the Tverberg partition.

If µ ≥ m, we are done. If µ = m− 1, the point p is still in the convex hull of points in A, and thus

we are done. And if µ ≤ m− 2, the point p is still a point of depth 3m− µ− 3 ≥ 3(m− µ)− 3 of

the remaining 24m − µ − 31 ≥ 24(m − µ) − 31 points. Thus, we may apply Lemma 16 to get an

(m − µ)-Tverberg partition of the remaining points, with p as Tverberg point, and conclude the

result. �

5.3. Tverberg numbers over mixed spaces

In this section, we prove Theorem 24. We adapt an approach by W. Mulzer and D. Werner [MW13,

Lemma 2.3] and show how the results of our paper can be combined to improve known bounds and

to determine new exact values for the Tverberg number in the mixed integer case, as well as better

bounds for certain S-Tverberg numbers.
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Proof of Theorem 24. Let t = Tv(Rk,m) = (m − 1)(k + 1) + 1. Choose a multiset A in

S′ × Rk with |A| ≥ Tv(S′, t). It suffices to prove that A can be partitioned into m subsets whose

convex hulls contain a common point in S′ × Rk.

Let A′ be the projection of A onto S′. Since |A′| ≥ Tv(S′, t), there is a partition of A′ into

t submultisets Q′1, . . . , Q
′
t whose convex hulls contain a common point q in S′. The Q′i are the

projections onto S′ of t disjoint subsets Qi forming a partition of A. For each i ∈ [t], we can find a

point qi ∈ conv(Qi) projecting onto q.

The t points q1, . . . , qt belong to {q} × Rk. As t = Tv(Rk,m), there exists a partition of [t] into

I1, . . . , Im and a point p ∈ {q}×Rk such that p ∈ conv
(⋃

i∈I` qi
)

for all ` ∈ [m]. For each ` ∈ [m],

define A` to be
⋃
i∈I` Qi. We have, for each ` ∈ [m]

p ∈ conv


⋃

i∈I`
qi


 ⊆ conv


⋃

i∈I`
conv(Qi)


 = conv(A`)

and the A` form the desired partition. �

Here are the new bounds and exact values we get:

(1) Tv(Z× Rk,m) = 2(m− 1)(k + 1) + 1.

(2) Tv(Z2 × Rk,m) = 4(m− 1)(k + 1) + 1.

(3) Tv(Z3 × Rk,m) ≤ 24(m− 1)(k + 1)− 7.

(4) 2j(m− 1)(k + 1) + 1 ≤ Tv(Zj × Rk,m) ≤ j2j(m− 1)(k + 1) + 1.

(5) If S′ ⊂ R2 with finite Helly number H(S′), then

Tv(S′ × Rk,m) ≤ H(S′)(m− 1)(k + 1) + 1.

The lower bound in (4) is obtained by repeated applications of Proposition 1 below. The upper

bounds follow from Theorem 24, combined with the fact that Tv(Z,m) = 2m− 1, Theorem 22 for

S = Z2, Theorem 23, the upper bound in Equation (5.1), and Theorem 22 respectively.

Proposition 1. Let j and k be two non-negative integers. Then we have

Tv(Zj+1 × Rk,m) > 2 Tv(Zj × Rk,m)− 2.

We prove Proposition 1 by following the idea of the proof of Proposition 2.1 in [Onn91].
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Proof of Proposition 1. Assume toward a contradiction that

Tv(Zj+1 × Rk,m) ≤ 2 Tv(Zj × Rk,m)− 2.

Choose A to be a set of Tv(Zj × Rk,m)− 1 points in Zj × Rk with no m-Tverberg partition. Let

Ai = {(a, i) : a ∈ A, i = {0, 1}}. Since A0∪A1 ⊂ Zj+1×Rk has cardinality 2 Tv(Zj×Rk,m)−2, there

exists an m-Tverberg partition Y1, Y2, . . . , Ym of A0 ∪A1 with p ∈ ⋂i∈[m] conv(Yi). Furthermore p

is in Zj+1×Rk. That implies either p ∈ conv(A0) or p ∈ conv(A1). In either case A0 or A1 has an

m-Tverberg partition, a contradiction with our choice of A. �

5.4. A generalized positive-fraction selection lemma

Our proof relies on the simplicial partition theorem of J. Matoušek, used in a similar manner as

in [MR17], which states the following.

Theorem 35 ( [Mat92]; see also [Cha00]). Given an integer d ≥ 1 and a parameter r, there

exists a constant cd ≥ 1 such that for any set P of n points in Rd, there exists an integer s and a

partition {P1, . . . , Ps} of P such that

• for each i = 1, . . . , s, n
r ≤ |Pi| ≤ 2n

r , and

• any hyperplane intersects the convex hull of less than cd · r1− 1
d sets of the partition.

The constant cd is independent of P and depends only on d.

We now prove the following key lemma.

Lemma 17. For any integer d ≥ 1, there exists a constant cd such that the following holds. For

any set P of n points in Rd and a real number α ∈ (0, 1], there exists a partition P = {P1, . . . , Pr},
r =

⌈(
4cd
α

)d⌉
, of P such that

• n
2r ≤ |Pi| ≤ 2n

r for each i = 1, . . . , r, and

• the convex hull of any transversal Q of P contains all points in Rd of half-space depth at

least α · n.

Proof. Apply the simplicial partition theorem (Theorem 35) to P with r =
⌈(

4cd
α

)d⌉
, and let

the resulting partition be {P ′1, . . . , P ′s}. Note that as n
r ≤ |P ′i | ≤ 2n

r for each i = 1, . . . , s, we have
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r
2 ≤ s ≤ r. Now partition arbitrarily each of r− s biggest sets in {P ′1, . . . , P ′s} into two equal parts,

and let the resulting partition be {P1, . . . , Pr}. Clearly each set of this partition has size in the

interval
[
n
2r ,

2n
r

]
. This proves the first part. Note also that each hyperplane intersects the convex

hull of at most twice as many sets, i.e., less than 2cd · r1− 1
d sets of the partition {P1, . . . , Pr}.

To see the second part, let c be any point of half-space depth at least α · n, and Q any transversal

of P. For contradiction, assume that c /∈ conv (Q). Then there exists a hyperplane H containing

c in one of its two open half-spaces, say H−, and containing conv (Q) in the half-space H+. We

will show that then there exists an index i ∈ {1, . . . , r} such that Pi ⊆ H−. But then Pi ∩Q = ∅,
a contradiction to the fact that Q is a transversal of P.

It remains to show the existence of a set Pi ∈ P such that Pi ⊆ H−. Towards this, we bound

|P ∩H−|. Each point of P lying in H− belongs to a set P ′ ∈ P such that either

• P ′ ⊆ H−, in which case we are done, or

• P ′ is not contained in H−. As H− contains at least one point of P ′, we must have

conv (P ′) ∩H 6= ∅. As argued earlier, there are less than 2cd · r1− 1
d such sets.

Thus we have

∣∣P ∩H−
∣∣ < 2cd · r1− 1

d · 2n

r
=

4cd · n
⌈(

4cd
α

)d⌉ 1
d

≤ α · n.(5.3)

On the other hand, as c has half-space depth at least α · n and c ∈ H−, we have |P ∩H−| ≥ αn,

a contradiction to inequality (5.3). �

Remark: In particular, for r =
⌈(

4cd
α

)d⌉
, there exist at least

(
n
2r

)r
r-sized subsets, each of whose

convex hull contains all integer points of depth at least α · n.

Proof of Theorem 26. Given the point set P in Rd and a point q ∈ Rd of half-space depth

α · n, apply Lemma 17 with P and α to get a partition consisting of r ≥ d + 1 sets, where

r =
⌈(

4cd
α

)d⌉
. By discarding at most n

2 points of P , we can derive a partition on the remaining

points of P , say P = {P1, . . . , Pr}, such that the Pi’s are equal-sized disjoint subsets of P , i.e.,

|Pi| = n
2r for all i = 1, . . . , r. Furthermore, every transversal of P contains all points in Rd of

half-space depth at least αn, and thus q.
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For each transversal Q of P, the point q lies in the convex hull of Q, and by Carathéodory’s theorem,

there exists a (d+1)-sized subset ofQ whose convex hull also contains q. By the pigeonhole principle,

there must exist (d+ 1) sets of P, say the sets P1, . . . , Pd+1, such that at least

(5.4)

(
n
2r

)r
(
r

d+1

) (
n
2r

)r−(d+1)
≥
(
n
2r

)(d+1)

(
er
d+1

)d+1
=

1
(

er
d+1

)d+1
·
d+1∏

i=1

|Pi|.

distinct transversals of {P1, . . . , Pd+1} contain q.

The rest of the proof follows the one of J. Pach [Pac98]. In brief, we view the Pi’s as parts of a

(d+1)-partite hypergraph with vertices corresponding to points in P and a hyperedge corresponding

to each transversal of P containing q. As there are Ω
(
nd+1

)
such transversals by inequality (5.4),

we apply a weak form of the hypergraph version of Szemerédi’s regularity lemma (see [Mat92]

Theorem 9.4.1) to derive the existence of constant-fraction sized subsets P ′1 ⊆ P1, . . . , P
′
d+1 ⊆ Pd+1

such that the following is true, for some constant c′d:

For any P ′′1 ⊆ P ′1, . . . , P
′′
d+1 ⊆ P ′d+1, with |P ′′i | ≥ c′d · |P ′i | for i = 1, . . . , d+ 1, we have the property

that there exists at least one transversal of
{
P ′′1 , . . . , P

′′
d+1

}
whose convex hull contains q.

Then the same-type lemma ( [BV98] Theorem 2) applied to
{
P ′1, . . . , P

′
d+1, {q}

}
gives constant-

fraction sized subsets X1 ⊆ P ′1, . . . , Xd+1 ⊆ P ′d+1 such that each transversal of {X1, . . . , Xd+1} has

the same order type with respect to q.

We can set up the parameters for the same-type lemma and the weak regularity lemma such that

|Xi| ≥ c′d · |P ′i |, for all i = 1, . . . , d + 1. Then the weak regularity lemma implies that there

exists at least one transversal of {X1, . . . , Xd+1} that contains q. However, as each transversal

of {X1, . . . , Xd+1} has the same order type, it must be that each transversal of {X1, . . . , Xd+1}
contains q. These are the required subsets.

The size of each Xi is a constant-fraction of n, say |Xi| ≥ cd,α · n, where the constant cd,α depends

on the constants in inequality (5.4), in the weak regularity lemma and in the same-type lemma.

All of these depend only on α and d. �
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CHAPTER 6

Further remarks and open problems

In this thesis we generalized Tverberg’s theorem in a variety of ways: We showed that many

simplicial complexes, called Tverberg complexes, are always induced as the nerve of some partition

of any sufficiently large set of points in a fixed dimension. We also showed that with enough points,

most partitions into a fixed number of sets are in fact Tverberg partitions. Lastly, we proved new

bounds on the extension of Tverberg’s theorem to spaces with special coordinate constraints. But

there are many more open questions arising from these topics. We conclude with a list of open

questions for each of these three new directions. Here are a few questions arising in the study of

Tverberg complexes in Chapter 3:

(1) What is the exact value of Tv(Tn, d) where Tn is a tree with n nodes? Is (d+ 1)(n−1) + 1

the correct value? What about the case of d = 2?

(2) What is the computational complexity of determining if a point configuration can partition

induce a given graph?

(3) What is the computational complexity of computing the Tverberg numbers of a given

Tverberg complex, such as a tree?

(4) Are there topological versions of Tverberg theorems for other simplicial complexes?

(5) Is there a graph G which is not 3-Tverberg?

(6) Is there a complex K which is not d-Tverberg for any d?

(7) Is there a complex K and i, j ∈ N, i < j so that K is i-Tverberg but not j-Tverberg?

Here are some open problems regarding the Stochastic aspects of Tverberg’s theorem discussed in

Chapter 4:

(1) Is there a stochastic Tverberg theorem which contains our results, as well as the results

of P. Soberón, as a special case?

(2) Is there a threshold phenomena for when the nerve of a random partition is a connected

simplical complex?
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(3) Can we prove stochastic Tverberg theorems for the case that the points in each subset are

sampled from different distributions? This would be desirable for further applications in

maximum likelihood estimation.

(4) Can one obtain convergence results for general steepest descent algorithms based on the

PertSEP*0 parameter we introduced?

(5) Does the same threshold phenomena exhibited in Theorem 19 occur with arbitrary distri-

butions (not just those that are balanced about a point p)?

Lastly, here are some open problems regarding Tverberg’s theorem over discrete sets discussed in

Chapter 5:

(1) What is the Radon number of the three dimensional lattice?

(2) What are the asymptotics of the Tverberg numbers over Zd.

(3) For each d, do the m-Tverberg numbers for Zd have a closed form for large enough m?

For example, for Z2, there is one exceptional case when m = 2, then for higher m we have

that the Tverberg number is equal to 4m− 3. Does this hold in every dimension?

(4) J. A. De Loera conjectured that all integer linear program feasibility problems can be

reduced to the problem of determining whether some set of points admits an integer

Tverberg partition. Is this true?

(5) Can the probabilistic methods in Chapter 4 be used to improve the bounds on integer

Tverberg numbers?

(6) One can also study more general Tverberg complexes over Zd. In that case, it would be

interesting to know if there is a complex that is Tverberg over Zd for some d, but not

over Rd (this may be possible, since working over Zd could allow one to “avoid” certain

undesired intersections to obtain a specific complex).
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APPENDIX A

Computing Tverberg numbers of trees

This appendix contains the code we used to compute the Tverberg number of small trees by

enumerating order types. We also include some example computations for simple trees. The code

was written by Dominic Yang.

We are able to find lower bounds for the Tverberg number of small graphs via an enumeration of all

point sets, and determining for each point set which partitions can be induced. Obviously, as there

are infinitely many point configurations in the plane, an explicit enumeration is impossible; however,

there is a way to classify the combinatorial properties of small point sets (whether line segments

through points cross, possible triangulations, etc.) into a finite number of point configurations.

One way of classifying point configurations is through the order type of a set. For example, on four

points, there are two order types, one with one point contained in the interior of the convex hull of

the other three and the other with all four points in convex position. Its order type can be com-

puted as assigning the triples (1, 2, 3), (1, 3, 4), (1, 4, 2), (2, 3, 1), (2, 1, 4), (2, 3, 4), (3, 4, 2), (3, 1, 2),

(3, 4, 1), (4, 2, 1), (4, 2, 3), and (4, 1, 3) to -1 for counter-clockwise orientation and the remaining

ordered triples to 1 for clockwise orientation.

The order type encodes various combinatorial properties of point sets. If two point sets have the

same order type, then if two segments cross in one set, their corresponding segments in the other

order set should cross. If we have a valid triangulation in one set, it remains valid when mapped

onto the other set. More importantly for our purposes, if two point sets have the same order type,

then the intersection graphs induced by the two sets remain the same.

O. Aichholzer, et. al., have provided a catalog of representative point configurations for all order

types up to n = 10 [AAK02]. Their method of generating each order type is done by generating a

list of candidates of “pseudo order types” and then group these candidates into equivalence classes

based on their order types. Then, they realize an actual point set for each possible class of order
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Number of Points Number of Sets
3 1
4 2
5 3
6 16
7 135
8 3315
9 158817
10 14309547
11 2334512907

Table A.1. Number of Sets with a Given Order Type

type until they reach the required number of order types, which is known from the literature. This

catalog of point configurations can be found in [Aic06].

They have used these point configurations to test small cases for determining questions of isomor-

phisms between triangulations and the number of triangulations as well as the crossing number of

complete graphs and problems related to finding Hamiltonian cycles on complete graphs. As can

be seen in Table A.1, the number of order types grows exponentially, so enumeration of order types

for n > 10 is out of the question (in part because O. Aichholzer has not provided so large a quantity

in his database).

A.1. Partitions

Given a point set of n points we are interested in all the ways which we are able to partition this

point set into m unlabeled subsets. The amount of ways in which we can partition this set in

such a manner is known as the Stirling number of the second kind and we denote this value

by
{
n
m

}
. For example all the ways to partition the set of 4 elements {1, 2, 3} into two parts are

{{1}, {2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}} and so
{

3
2

}
= 3.

One simple property that can be derived regarding this quantity is that

{
n+ 1

m

}
= m

{
n

m

}
+

{
n

m− 1

}
.

To see this, we note that to count the number of ways to partition n + 1 objects, we have two

choices for where to put the n+ 1-th object: we can place it in its own singleton set, in which case

we have to partition the remaining n objects into m− 1 sets, or we partition the n objects into k

sets and then we have m choices for where to include the n+ 1-th object. In the first case we have
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{
n

m−1

}
partitions and in the second we have m

{
n
m

}
partitions. With the base cases

{
0
0

}
= 1 and

{
n
0

}
=
{

0
n

}
= 0 for n > 0, we can define Stirling Numbers for all n,m ≥ 0. We include a table of

all the values up to n = k = 10 in Table A.2.

Table A.2. Stirling Numbers up to n = m = 10. Each row represents a value for
n and each column a value for m.

0 1 2 3 4 5 6 7 8 9 10

0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0

2 0 1 1 0 0 0 0 0 0 0 0

3 0 1 3 1 0 0 0 0 0 0 0

4 0 1 7 6 1 0 0 0 0 0 0

5 0 1 15 25 10 1 0 0 0 0 0

6 0 1 31 90 65 15 1 0 0 0 0

7 0 1 63 301 350 140 21 1 0 0 0

8 0 1 127 966 1701 1050 266 28 1 0 0

9 0 1 255 3025 7770 6951 2646 462 36 1 0

10 0 1 511 9330 34105 42525 22827 5880 750 45 1

As n grows large, it was shown in [MW58] that we have a rough estimate for fixed m that
{
n
m

}
∼ mn

m! . This shows that the growth is exponential for fixed n, so we should expect that the

explicit enumeration of partitions quickly becomes computationally intractable.

A.2. Enumerating partitions over each of the possible order types

Using the classification from [AAK02] of all order types, it is relatively straight forward to de-

termine all possible different graphs which can be induced by partitioning a given point set by

brute force enumeration. It is just a matter of listing all possible partitions into k subsets and

then determining the intersection graph from checking the intersection of convex hulls. An explicit

algorithm for producing the intersection graph of a point set X and a partition σ into k sets is

given in Figure A.1.
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function IntersectionGraph(X,σ, k)
Let A ∈ {0, 1}k×k
for i = 1, . . . , k do

for j = i, . . . , k do
if i = j then

Ai,i = 0
else

if Intersects(σ−1(i), σ−1(j)) then
Ai,j = Aj,i = 1

else
Ai,j = Aj,i = 0

end if
end if

end for
end for

end function

Figure A.1. Algorithm for computing the intersection graph of a given partition
σ of a point set X onto k subsets.

function Intersects(X, Y )
CX ← conv(X), CY ← conv(Y )
if |CX | < |CY | then

Swap CX and CY
end if
if |CX | = 2 and |CY | = 2 then

LX ← Line(CX), LY ← Line(CY )
return SegmentIntersect(LX , LY )

else if |CX | > 2 and |CY | = 1 then
return InPolygon(CY , CX)

else
return EdgeIntersect(CY , CX) or InPolygon(CY , CX) or InPolygon(CX , CY )

end if
end function

Figure A.2. Algorithm for determining if the convex hulls of two given sets X and
Y intersect.

We also present the method used for determining if two given convex sets intersect. The method

used to compute the convex hull and for determining if a point is contained in a polygon or if

polygons intersect are MATLAB routines.

An alternative implementation based on checking the feasibility of the linear program defined

by adjoining the representations of the convex polygons by inequalities was also considered and
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implemented. This was deemed to run slower than the MATLAB functions for determining the

intersection of polygon edges however.

Checking if a graph has a Tverberg number of n now simply is a matter of enumerating all order

types and checking for every single one if there is a single partition which induces that graph.
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Index

S-Helly number, 23, 25

S-Tverberg number, 22

d-Tverberg complex, 12

d-order curve, 43

d-partition induced, 11

k-hypergraph Ramsey number, 13, 45

k-means algorithm, 35

affine combination, 5

affine hull, 5

affine indepedence, 5

affine subspace, 5

algorithms for Tverberg points, 37

box convexity, 20

Carathéodory’s theorem, 7

caterpillar tree, 14, 49

centerpoint, 36

centerpoint theorem, 7, 37

chirotope, 15

chordal graph, 13

clustering, 33

convex combination, 5

convex hull, 5

convex position, 5

convex set, 5

covariates, 28

cyclic polytope, 14

Doignon-Bell-Scarf theorem, 64

Erdős-Szekeres theorem, 9, 41

extendable partition, 42

filter function, 34

general position, 5, 9

half-space, 5

half-space depth, 26, 36

Ham-Sandwich theorem, 14

happy ending problem, 9

Helly’s theorem, 6

hyperplane, 5

integer centerpoint Theorem, 64

integer positive-fraction selection lemma, 27

integer Radon partition, 22

integer Tverberg partition, 22

integer Tverberg point, 22

intersection graph of a partition, 10

interval graph, 13

log-likelihood, 29

logistic regression, 28

Mapper algorithm, 34

mixed-integer Tverberg number, 26, 64, 71

moment curve, 43
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multi-class classification, 30

multi-dimensional Erdős-Szekeres theorem, 45

multinomial regression, 30

nerve, 10

nerve of a partition, 10

order type, 9, 15, 54

ordered cyclic d-polytope, 44

oriented matroid, 14

partition induced, 11

positive-fraction selection lemma, 26, 72

Radon’s lemma, 1

Ramsey theory, 8

Ramsey’s theorem, 8

Reay’s conjecture, 12

same-type lemma, 75

separation theorem, 5

simplicial complex, 10

stochastic Tverberg theorem, 18–21, 58

supervised learning, 28

Szemerédi’s regularity lemma, 75

tolerant Tverberg partition, 16

tolerant Tverberg theorem, 16

Tverberg number for Zd, 63

Tverberg number for a simplicial complex, 12

Tverberg partition, 2

Tverberg theorem for trees and cycles, 14, 39

Tverberg threshold phenomenon, 19, 60

Tverberg’s theorem, 1, 12

Tverberg-type problems, 3

unsupervised learning, 33

Voronoi cells, 35
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