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ABSTRACT. These are notes from a two-quarter class on PDEs that are heavily
based on the book Partial Differential Equations by L. C. Evans, together
with other sources that are mostly listed in the Bibliography. The notes cover
roughly Chapter 2 and Chapters 5-7 in Evans. There is no claim to any
originality in the notes, but I hope — for some readers at least — they will
provide a useful supplement.
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CHAPTER 1

Preliminaries

In this chapter, we collect various definitions and theorems for future use.
Proofs may be found in the references e.g. [4, 111, (24} [37, [42], [44].

1.1. Euclidean space

Let R™ be n-dimensional Euclidean space. We denote the Euclidean norm of a
vector x = (x1, Z2,...,Tn) € R™ by
1/2
o = (23 + af + - +a2)"
and the inner product of vectors z = (z1,x2,...,%n), ¥y = (Y1,Y2,---,Yn) by
Ty =21Y1 +T2Y2 + -+ TnYn.

We denote Lebesgue measure on R™ by dz, and the Lebesgue measure of a set
E CR" by |E|.

If E is a subset of R™, we denote the complement by E¢ =R"™\ E, the closure
by E, the interior by E° and the boundary by 0F = E \ E°. The characteristic
function xg : R™ — R of F is defined by

1 ifzeF,
xe(r) = { 0 ifxg¢E.
A set E is bounded if {|x| : « € E} is bounded in R. A set is connected if it is not
the disjoint union of two nonempty relatively open subsets. We sometimes refer to
a connected open set as a domain.
We say that a (nonempty) open set Q' is compactly contained in an open set
Q, written Q' € Q, if &/ € Q and @/ is compact. If Q' € ©, then

dist (Q,0Q) = inf {|z —y| : 2 € Q',y € 9Q} > 0.
1.2. Spaces of continuous functions

Let ©Q be an open set in R™. We denote the space of continuous functions
u: Q — R by C(Q); the space of functions with continuous partial derivatives in
Q of order less than or equal to k € N by C*(2); and the space of functions with
continuous derivatives of all orders by C'*°(£2). Functions in these spaces need not
be bounded even if  is bounded; for example, (1/z) € C*(0,1).

If © is a bounded open set in R™, we denote by C(Q) the space of continuous
functions v : © — R. This is a Banach space with respect to the maximum, or

supremum, norm
l[ulloc = sup [u(z)].
e

We denote the support of a continuous function u : 2 — R" by
suppu = {z € Q: u(z) # 0}.
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2 1. PRELIMINARIES

We denote by C.(€2) the space of continuous functions whose support is compactly
contained in €, and by C2°(Q2) the space of functions with continuous derivatives
of all orders and compact support in 2. We will sometimes refer to such functions
as test functions.

The completion of C.(R™) with respect to the uniform norm is the space Co(R™)
of continuous functions that approach zero at infinity. (Note that in many places the
notation Cy and Cg° is used to denote the spaces of compactly supported functions
that we denote by C, and C°.)

If  is bounded, then we say that a function u : @ — R belongs to C*((Q2)
if it is continuous and its partial derivatives of order less than or equal to k are
uniformly continuous in €2, in which case they extend to continuous functions on
Q. The space C*(Q) is a Banach space with respect to the norm

Jullosay = 3 supfoul

la|<k

where we use the multi-index notation for partial derivatives explained in Sec-
tion [[.8 This norm is finite because the derivatives 0%u are continuous functions
on the compact set €.

A vector field X :  — R™ belongs to C* () if each of its components belongs
to C*(Q).

1.3. Holder spaces

The definition of continuity is not a quantitative one, because it does not say
how rapidly the values u(y) of a function approach its value u(x) as y — . The
modulus of continuity w : [0,00] — [0,00] of a general continuous function u,
satisfying

(@) — ()| < w (e - y)).
may decrease arbitrarily slowly. As a result, despite their simple and natural ap-
pearance, spaces of continuous functions are often not suitable for the analysis of
PDEs, which is almost always based on quantitative estimates.

A straightforward and useful way to strengthen the definition of continuity is
to require that the modulus of continuity is proportional to a power |z — y|* for
some exponent 0 < o < 1. Such functions are said to be Holder continuous, or Lip-
schitz continuous if « = 1. Roughly speaking, one can think of Holder continuous
functions with exponent « as functions with bounded fractional derivatives of the
the order a.

DEFINITION 1.1. Suppose that Q is an open set in R” and 0 < o < 1. A
function u :  — R is uniformly Holder continuous with exponent « in Q if the
quantity

(1.1) [U]p.0 = sup [ulz) - ugy)|
’ T,y € Q |£L' - y|
z#y

is finite. A function u : 2 — R is locally uniformly Holder continuous with exponent
o in Qif [u],, o is finite for every ' € Q. We denote by C**(Q) the space of locally
uniformly Holder continuous functions with exponent a in (2. If 2 is bounded,

we denote by CO (Q) the space of uniformly Holder continuous functions with
exponent « in ().



1.4. L? SPACES 3

We typically use Greek letters such as «, 5 both for Holder exponents and
multi-indices; it should be clear from the context which they denote.

When « and Q are understood, we will abbreviate ‘u is (locally) uniformly
Holder continuous with exponent « in €’ to ‘u is (locally) Holder continuous.” If u
is Holder continuous with exponent one, then we say that v is Lipschitz continu-
ous. There is no purpose in considering Holder continuous functions with exponent
greater than one, since any such function is differentiable with zero derivative and
therefore is constant.

The quantity [u]%Q is a semi-norm, but it is not a norm since it is zero for

constant functions. The space C%® (ﬁ), where €2 is bounded, is a Banach space
with respect to the norm

[ o(g) = Sup |u| + U], o -
full oy = sl + [
EXAMPLE 1.2. For 0 < a < 1, define u(z) : (0,1) = R by u(z) = |z|*. Then
u € 0% ([0,1]), but u ¢ C%P ([0,1]) for a < B < 1.

EXAMPLE 1.3. The function u(x) : (—1,1) — R given by u(x) = || is Lipschitz
continuous, but not continuously differentiable. Thus, u € C%! ([-1,1]), but u ¢
Ct([-1,1)).

We may also define spaces of continuously differentiable functions whose kth
derivative is Holder continuous.

DEFINITION 1.4. If © is an open set in R™, k € N, and 0 < a < 1, then
Ck2(Q) consists of all functions u : Q@ — R with continuous partial derivatives in
of order less than or equal to & whose kth partial derivatives are locally uniformly
Holder continuous with exponent a in €. If the open set ) is bounded, then
Ccke (ﬁ) consists of functions with uniformly continuous partial derivatives in 2
of order less than or equal to k whose kth partial derivatives are uniformly Hoélder
continuous with exponent « in (2.

The space CH (ﬁ) is a Banach space with respect to the norm

lullorog@y = D_ sup|Pul+ > [0%4]

181<k < =

1.4. LP spaces

As before, let Q be an open set in R™ (or, more generally, a Lebesgue-measurable
set).

DEFINITION 1.5. For 1 < p < oo, the space LP(Q2) consists of the Lebesgue
measurable functions f : €2 — R such that

/|f|pd:v<oo,
Q

and L*°(Q) consists of the essentially bounded functions.

These spaces are Banach spaces with respect to the norms

1/p
|f||p—</Q|f|de> -l = ]
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where sup denotes the essential supremum,

sup f =inf {M € R: f < M almost everywhere in Q}.
Q

Strictly speaking, elements of the Banach space L? are equivalence classes of func-
tions that are equal almost everywhere, but we identify a function with its equiva-
lence class unless we need to refer to the pointwise values of a specific representative.
For example, we say that a function f € LP(Q2) is continuous if it is equal almost
everywhere to a continuous function, and that it has compact support if it is equal
almost everywhere to a function with compact support.

Next we summarize some fundamental inequalities for integrals, in addition to
Minkowski’s inequality which is implicit in the statement that || - || » is a norm for
p > 1. First, we recall the definition of a convex function.

DEFINITION 1.6. A set C C R™ is convex if Ax+ (1—\)y € C for every z,y € C
and every A € [0,1]. A function ¢ : C — R is convex if its domain C' is convex and

¢ (Az + (1= Ny) <Ap(x) + (1 = N)d(y)
for every x,y € C and every A € [0, 1].

Jensen’s inequality states that the value of a convex function at a mean is less
than or equal to the mean of the values of the convex function.

THEOREM 1.7. Suppose that ¢ : R — R is a convez function, € is a set in R™
with finite Lebesque measure, and f € L1(Q). Then

1 1
— d — o fdx.
¢’(|ﬂ|/gf ““’>§|ﬂ| R Pofa

To state the next inequality, we first define the Holder conjugate of an exponent
p. We denote it by p’ to distinguish it from the Sobolev conjugate p* which we will
introduce later on.

DEFINITION 1.8. The Hoélder conjugate of p € [1, 00] is the quantity p’ € [1, o]

such that
1 1
- 4 - J— 17
p p

with the convention that 1/c0 = 0.

The following result is called Holder’s inequalityﬂ The special case when p =
p’ = 1/2 is the Cauchy-Schwartz inequality.

THEOREM 1.9. If 1 < p < o0, f € LP(Q), and g € L¥' (), then fg € L*(Q)
and

Ifglly < W11, gl -

Repeated application of this inequality gives the following generalization.

THEOREM 1.10. If1 <p; < oo for 1 <i < N satisfy
N

>, =t

i=1 Pi

n retrospect, it might have been better to use LY/P spaces instead of LP spaces, just as
it would’ve been better to use inverse temperature instead of temperature, with absolute zero
corresponding to infinite coldness.
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and f; € LP(Q) for 1 <i < N, then f =[N, fi € L(Q) and

N
1, < TT sl -
i=1

Suppose that € has finite measure and 1 < ¢ < p. If f € LP(Q), an application
of Holder’s inequality to f =1 - f, shows that f € L(Q2) and

£l < 127922 £

Thus, the embedding L?(Q2) — L%(Q) is continuous. This result is not true if the
measure of 2 is infinite, but in general we have the following interpolation result.

LEMMA 1.11. If1 <p < q <, then LP(Q) N L"(2) — LI(Q) and
1£1lg < IANRNANR°

where 0 < 0 <1 s given by
1 6 1-96
+

qa p r

PROOF. Assume without loss of generality that f > 0. Using Holder’s inequal-
ity with exponents 1/0 and 1/(1 — o), we get

/fq de — /quf(l—G)q dz < (/ foalo dw)(; (/ F=0)a/(1=0) d$>1—a'

Choosing 0/60 = ¢/p, in which case (1 —0o)/(1 —6) = q/r, we get

frave (fra)” (fre)" "

and the result follows. O

It is often useful to consider local LP spaces consisting of functions that have
finite integral on compact sets.

DEFINITION 1.12. The space LY (€2), where 1 < p < oo, consists of functions
f:Q — Rsuch that f € L? () for every open set ' € Q. A sequence of functions
{fn} converges to f in LY (Q) if {f,} converges to f in LP(Q') for every open set

loc
Qe

If p < g, then LL (Q) — LV (Q) even if the measure of Q is infinite. Thus,

Li () is the ‘largest’ space of integrable functions on €.

loc

ExAMPLE 1.13. Consider f : R™ — R defined by
1
/(=)

~Jal

where a € R. Then f € L _(R") if and only if a < n. To prove this, let

loc

o(z) = { f(z) if x| >,

0 if |2] <e.
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Then {f¢} is monotone increasing and converges pointwise almost everywhere to f
as € — 0T. For any R > 0, the monotone convergence theorem implies that

/ fdr = lim fedx
Br(0) 0% JBRr(0)

R
= lim rel gy
e—0t J¢
]| o ifn—a<0,
"l (m—a)"tR" ifn—a>0,

which proves the result. The function f does not belong to LP(R™) for 1 < p < o0
for any value of a, since the integral of f? diverges at infinity whenever it converges
at zero.

1.5. Compactness

Compactness results play a central role in the analysis of PDEs. Typically,
we construct a sequence of approximate solutions of a PDE and show that they
belong to a compact set. We then extract a convergent subsequence of approximate
solutions and attempt to show that their limit is a solution of the original PDE.
There are two main types of compactness — weak and strong compactness. We
begin with criteria for strong compactness.

A subset F' of a metric space X is precompact if the closure of F' is compact;
equivalently, F' is precompact if every sequence in F' has a subsequence that con-
verges in X. The Arzela-Ascoli theorem gives a basic criterion for compactness in
function spaces: namely, a set of continuous functions on a compact metric space
is precompact if and only if it is bounded and equicontinuous. We state the result
explicitly for the spaces of interest here.

_THEOREM 1.14. Suppose that 2 is a bounded open set in R". A subset F of
C (Q), equipped with the maximum norm, is precompact if and only if:
(1) there exists a constant M such that

1flleo <M forall f € F;

(2) for every € > 0 there exists § > 0 such that if z,x +h € Q and |h| < §
then
lf(x+h)— flz)] <e for all f € F.

The following theorem (known variously as the Riesz-Tamarkin, or Kolmogorov-
Riesz, or Fréchet-Kolmogorov theorem) gives conditions analogous to the ones in
the Arzela-Ascoli theorem for a set to be precompact in LP(R™), namely that the
set is bounded, ‘tight,” and LP-equicontinuous. For a proof, see [44].

THEOREM 1.15. Let 1 < p < oo. A subset F of LP(R™) is precompact if and
only if:

(1) there exists M such that
1fller <M for all f € F;

(2) for every e > 0 there exists R such that

1/p
</ |f(l’)|pdz> <e forall f € F.
|z|>R
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(3) for every e > 0 there exists 6 > 0 such that if |h| < 6,

1/p
(/ |f(x+h)— f(z)]? dx) <e foralfeF.

The ‘tightness’ condition (2) prevents the functions from escaping to infinity.

EXAMPLE 1.16. Define f, : R — R by f, = X(nns1)- The set {f, :n € N} is
bounded and equicontinuous in LP(R) for any 1 < p < oo, but it is not precompact
since || fm — fullp = 2 if m # n, nor is it tight since

/ |[ful? dx =1 for all n > R.
R

The equicontinuity conditions in the hypotheses of these theorems for strong
compactness are not always easy to verify; typically, one does so by obtaining a
uniform estimate for the derivatives of the functions, as in the Sobolev-Rellich
embedding theorems.

As we explain next, weak compactness is easier to verify, since we only need
to show that the functions themselves are bounded. On the other hand, we get
subsequences that converge weakly and not necessarily strongly. This can create
difficulties, especially for nonlinear problems, since nonlinear functions are not con-
tinuous with respect to weak convergence.

Let X be a real Banach space and X* (which we also denote by X’) the dual
space of bounded linear functionals on X. We denote the duality pairing between
X*and X by (-,) : X* x X > R.

DEFINITION 1.17. A sequence {x,} in X converges weakly to z € X, written
Ty =z, if (w,z,) = (w,z) for every w € X*. A sequence {w,} in X* converges
weak-star to w € X*, written w,, — w if (wy,z) — (w, ) for every z € X.

If X is reflexive, meaning that X** = X, then weak and weak-star convergence
are equivalent.

ExaMPLE 1.18. If @ C R™ is an open set and 1 < p < oo, then LP(Q)* =
LP' (). Thus a sequence of functions f, € LP(Q) converges weakly to f € LP(Q) if

(1.2) / fngdx — / fgdx for every g € LP ().
Q Q

If p=co and p’ = 1, then L>®(Q)* # L1(Q2) but L>®(Q) = L}(Q)*. In that case,
(2] defines weak-star convergence in L (£2).

A subset E of a Banach space X is (sequentially) weakly, or weak-star, precom-
pact if every sequence in E has a subsequence that converges weakly, or weak-star,
in X. The following Banach-Alagolu theorem characterizes weak-star precompact
subsets of a Banach space; it may be thought of as generalization of the Heine-Borel
theorem to infinite-dimensional spaces.

THEOREM 1.19. A subset of a Banach space is weak-star precompact if and
only if it is bounded.

If X is reflexive, then bounded sets are weakly precompact. This result applies,
in particular, to Hilbert spaces.
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ExAMPLE 1.20. Let H be a separable Hilbert space with inner-product (-, )
and orthonormal basis {e, : n € N}. The sequence {e,} is bounded in H, but it
has no strongly convergent subsequence since ||e,, — e,,|| = v/2 for every n # m. On
the other hand, the sequence converges weakly in H to zero: if z = > z,e, € H
then (z,e,) = x, — 0 as n — oo since [|z[|? = |z,|? < .

1.6. Averages
For x € R™ and r > 0, let
B, (¢) = {y € R" : [z —y| < 1}
denote the open ball centered at  with radius r, and
OB, (x) = {y R : |z —y| = 1}

the corresponding sphere.
The volume of the unit ball in R"™ is given by

27.rn/2

tn = nl(n/2)
where I' is the Gamma function, which satisfies
r1/2) =, ra) =i, I'(z+1) =al(x).

Thus, for example, ag = 7 and ag = 47/3. An integration with respect to polar
coordinates shows that the area of the (n — 1)-dimensional unit sphere is na;,.

We denote the average of a function f € L{ () over a ball B, (z) € §, or the
corresponding sphere 9B, (x), by

1 1
(1.3) ]l fdr = / fdz, ]l fdsS = 7_1/ fds.
B, (z) anT™ JB, (z) 9B, (x) noy " OB, (x)

If f is continuous at z, then

lim fdx = f(x).

r—0t B, ()
The following result, called the Lebesgue differentiation theorem, implies that the
averages of a locally integrable function converge pointwise almost everywhere to
the function as the radius r shrinks to zero.

THEOREM 1.21. If f € LL _(R™) then

loc

(1.4) tm  1f) — ()| dv =0
r— BT(w)

pointwise almost everywhere for x € R™.

A point z € R™ for which (4] holds is called a Lebesgue point of f. For a
proof of this theorem (using the Wiener covering lemma and the Hardy-Littlewood
maximal function) see Folland [11] or Taylor [42].
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1.7. Convolutions

DErFINITION 1.22. If f,g : R — R are measurable function, we define the
convolution f *g:R™ — R by

() /fw— (y) dy

provided that the integral converges for x pointwise almost everywhere in R™.

When defined, the convolution product is both commutative and associative,

frg=gxf,  [x(gxh)=(f*g)xh.
In many respects, the convolution of two functions inherits the best properties of
both functions.
If f,g € C.(R™), then their convolution also belongs to C.(R™) and

supp(f * g) C supp f + supp g.
If f € C.(R") and g € C(R"), then fx g € C(R") is defined, however rapidly
g grows at infinity, but typically it does not have compact support. If neither f
nor g have compact support, then we need some conditions on their growth or
decay at infinity to ensure that the convolution exists. The following result, called
Young’s inequality, gives conditions for the convolution of L? functions to exist and
estimates its norm.

THEOREM 1.23. Suppose that 1 < p,q,r < oo and

11 1
e
T P q

If f € LP (R™) and g € L9 (R™), then f*g € L" (R"™) and
1 *gllr < 1FNzo lgllza -

The following special cases are useful to keep in mind.

EXAMPLE 1.24. If p = g = 2, or more generally if ¢ = p’, then r = co. In this
case, the result follows from the Cauchy-Schwartz inequality, since for all z € R

/f:v— y) dx

Moreover, a density argument shows that f % g € Cy (R™): Choose fi,gr € C.(R™)
such that fr — f, gr — g in L?(R"™), then fi * g1 € C.(R") and fr *gr — f*g
uniformly. A similar argument is used in the proof of the Riemann-Lebesgue lemma
that f € Co(R™) if f € L'(R™).

ExampLE 1.25. If p = ¢ = 1, then r = 1, and the result follows directly from

Fubini’s theorem, since
o < [ 110 =t asty = ( [l as) ([ lat] ay).

J|f e

Thus, the space L'(R") is an algebra under the convolution product. The Fourier
transform maps the convolution product of two L!-functions to the pointwise prod-
uct of their Fourier transforms.

< [Ifllzzllgl 22

EXAMPLE 1.26. If ¢ = 1, then p = r. Thus, convolution with an integrable
function k € L*(R") is a bounded linear map f + kx* f on LP(R™).
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1.8. Derivatives and multi-index notation

We define the derivative of a scalar field u : 2 — R by
pu— (2w Ou Oul
0x1’ Oxo oxy,

We will also denote the ith partial derivative by 0;u, the ijth derivative by 0;;u,
and so on. The divergence of a vector field X = (X1, Xs,...,X,) : Q@ — R" is

0X1 0Xo 0X,
divX =—+—""4+ -+ .
v 8171 8(172 8:1771
Let Ny = {0,1,2,...} denote the non-negative integers. An n-dimensional
multi-index is a vector o € N{j, meaning that
a=(a1,ag,...,05), o; =0,1,2,....
We write
la] = a1+ as + -+ - + an, al =aqlas! .. oy

We define derivatives and powers of order o by

0 = 501 Bgar " Bgan’ =25z
If « = (a1,0,...,0ap) and 8 = (B1,P2,...,0,) are multi-indices, we define the

multi-index (a + ) by
a+fB=(a1+ B0z + B2, .., an + Bn)-
We denote by x,, (k) the number of multi-indices o« € Ny with order 0 < |a| < k,
and by Xn (k) the number of multi-indices with order |a| = k. Then
(n+k)! (n+k—1)!
n(k) = ) n(k) = ————77"
Xn(k) = =5 (k) = =y
1.8.1. Taylor’s theorem for functions of several variables. The multi-
index notation provides a compact way to write the multinomial theorem and the

Taylor expansion of a function of several variables. The multinomial expansion of
a power is

k k o k (e}
(@1 +a2+-+a,) = Z k<041042...01n T Z a)®

a14...ap= la|=k

Qn,
n -

where the multinomial coefficient of a multi-index a@ = (a1, 2, ..., ay) of order

|a| = k is given by
AN k B k!
a)  \ajas...an) aplas!...ap!”

THEOREM 1.27. Suppose that u € C* (B, (x)) and h € B, (0). Then

w@+h) = Lz!@”) he + Ry(x, h)

oo <k—1
where the remainder is given by
0%u(x + 6h)
Rifo.) = 32 L L0,
|a|=k

for some 0 < 0 < 1.
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PROOF. Let f(t) = u(x + th) for 0 <t < 1. Taylor’s theorem for a function of
a single variable implies that
I SRR
= “J! dtﬂ k! dtk
for some 0 < 8 < 1. By the chain rule,

df =Du-h= Zhau

and the multinomial theorem gives

dtk = <Zh a) = g—:k <Z>h°‘8°‘.

Using this expression to rewrite the Taylor series for f in terms of u, we get the
result. O

A function u : Q — R is real-analytic in an open set 2 if it has a power-series
expansion that converges to the function in a ball of non-zero radius about every
point of its domain. We denote by C¥(2) the space of real-analytic functions on
Q. A real-analytic function is C'*°, since its Taylor series can be differentiated
term-by-term, but a C*° function need not be real-analytic. For example, see (L)
below.

1.9. Mollifiers

The function
_f Cexp[-1/(1—|z})] if|z| <1

belongs to C'°(R™) for any constant C. We choose C' so that

/ ndr =1

and for any ¢ > 0 define the function

N 2
(1.6) n (@) = = ().
Then 7€ is a C'°°-function with integral equal to one whose support is the closed
ball B.(0). We refer to (LG) as the ‘standard mollifier.’

We remark that n(z) in (LH) is not real-analytic when |z| = 1. All of its
derivatives are zero at those points, so the Taylor series converges to zero in any
neighborhood, not to the original function. The only function that is real-analytic
with compact support is the zero function. In rough terms, an analytic function
is a single ‘organic’ entity: its values in, for example, a single open ball determine
its values everywhere in a maximal domain of analyticity (which in the case of
one complex variable is a Riemann surface) through analytic continuation. The
behavior of a C°°-function at one point is, however, completely unrelated to its
behavior at another point.

Suppose that f € L{ () is a locally integrable function. For € > 0, let

(1.7) 0° = {x € Q: dist(z, Q) > €}
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and define f€:Q° — R by
(18) fo(@) = /Q 7 (x — )£ (y) dy

where 7€ is the mollifier in ([L6). We define f€ for z € Q€ so that B (z) C  and
we have room to average f. If 2 = R", we have simply (¢ = R™. The function f¢
is a smooth approximation of f.

THEOREM 1.28. Suppose that f € Li, () for 1 < p < oo, and € > 0. Define

fe: 09 = R by (L8). Then: (a) f¢ € C(Q°) is smooth; (b) f¢ — [ pointwise
almost everywhere in Q as € — 07 (¢) f¢— fin LY (Q) ase— 0T,

loc

PrOOF. The smoothness of f¢ follows by differentiation under the integral sign
05 (@) = [ 0@ =) ) dy

which may be justified by use of the dominated convergence theorem. The point-
wise almost everywhere convergence (at every Lebesgue point of f) follows from
the Lebesgue differentiation theorem. The convergence in L  follows by the ap-
proximation of f by a continuous function (for which the result is easy to prove)
and the use of Young’s inequality, since ||n¢||;: = 1 is bounded independently of
€. ([

One consequence of this theorem is that the space of test functions C°(Q) is
dense in LP(Q) for 1 < p < co. Note that this is not true when p = oo, since the
uniform limit of smooth test functions is continuous.

1.9.1. Cutoff functions.

THEOREM 1.29. Suppose that Q' € Q are open sets in R™. Then there is a
function ¢ € C(Q) such that 0 < ¢ <1 and ¢ =1 on Q.

PROOF. Let 6 = dist (£,09) and define
Q' ={z e Q:dist(z,Q) < §/2}.

Let x be the characteristic function of ", and define ¢ = n%/* % y where 7¢ is the
standard mollifier. Then one may verify that ¢ has the required properties. O

We refer to a function with the properties in this theorem as a cutoff function.

EXAMPLE 1.30. If 0 < r < R and € = B, (0), Q@ = Bgr(0) are balls in R",
then the corresponding cut-off function ¢ satisfies

C
<
Dl < R—r

where C' is a constant that is independent of r, R.

1.9.2. Partitions of unity. Partitions of unity allow us to piece together
global results from local results.

THEOREM 1.31. Suppose that K is a compact set in R™ which is covered by
a finite collection {1,Qa,...,Qn} of open sets. Then there exists a collection of
functions {n1,m2,...,nn} such that 0 < n; <1, n; € CX(£;), and Zfil 7, =1 on
K.
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We call {n;} a partition of unity subordinate to the cover {€2;}. To prove this
result, we use Urysohn’s lemma to construct a collection of continuous functions
with the desired properties, then use mollification to obtain a collection of smooth
functions.

1.10. Boundaries of open sets

When we analyze solutions of a PDE in the interior of their domain of definition,
we can often consider domains that are arbitrary open sets and analyze the solutions
in a sufficiently small ball. In order to analyze the behavior of solutions at a
boundary, however, we typically need to assume that the boundary has some sort
of smoothness. In this section, we define the smoothness of the boundary of an open
set. We also explain briefly how one defines analytically the normal vector-field and
the surface area measure on a smooth boundary.

In general, the boundary of an open set may be complicated. For example, it
can have nonzero Lebesgue measure.

EXAMPLE 1.32. Let {¢; : i € N} be an enumeration of the rational numbers
g; € (0,1). For each ¢ € N, choose an open interval (a;,b;) C (0,1) that contains
q;, and let

Q= U (ai, bz)
i€N

The Lebesgue measure of |Q2| > 0 is positive, but we can make it as small as we
wish; for example, choosing b; — a; = €27, we get 2] < e. One can check that
01 =[0,1]\ Q. Thus, if || < 1, then I has nonzero Lebesgue measure.

Moreover, an open set, or domain, need not lie on one side of its boundary (we
say that  lies on one side of its boundary if 0 = Q), and corners, cusps, or other
singularities in the boundary cause analytical difficulties.

EXAMPLE 1.33. The unit disc in R? with the nonnegative z-axis removed,
Q={(z,y) eR*: 2’ +y* <1} \ {(2,0) eR*: 0 <z < 1},
does not lie on one side of its boundary.

In rough terms, the boundary of an open set is smooth if it can be ‘flattened
out’ locally by a smooth map.

DEFINITION 1.34. Suppose that £k € N. A map ¢ : U — V between open sets
U, V in R" is a C*-diffeomorphism if it one-to-one, onto, and ¢ and ¢! have
continuous derivatives of order less than or equal to k.

Note that the derivative D¢(x) : R™ — R™ of a diffeomorphism ¢ : U — V is
an invertible linear map for every z € U, with [D¢(z)]™! = (Do~ 1) (¢(x)).

DEFINITION 1.35. Let 2 be a bounded open set in R™ and k£ € N. We say that
the boundary 99 is C*, or that Q is C* for short, if for every x € € there is an
open neighborhood U C R™ of z, an open set V C R”, and a C*-diffeomorphism
¢ : U — V such that

d(UNQ) =Vniy, >0}, (U NIN) =V N{y, =0}

where (y1,...,yn) are coordinates in the image space R".
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If ¢ is a C*°-diffeomorphism, then we say that the boundary is C°°, with an
analogous definition of a Lipschitz or analytic boundary.

In other words, the definition says that a C* open set in R™ is an n-dimensional
C*-manifold with boundary. The maps ¢ in Definition [[35are coordinate charts for
the manifold. It follows from the definition that 2 lies on one side of its boundary
and that 02 is an oriented (n—1)-dimensional submanifold of R™ without boundary.
The standard orientation is given by the outward-pointing normal (see below).

ExaMPLE 1.36. The open set
Q={(z,y) eR*:2 >0, y>sin(l/z)}

lies on one side of its boundary, but the boundary is not C! since there is no
coordinate chart of the required form for the boundary points {(z,0) : —1 < < 1}.

1.10.1. Open sets in the plane. A simple closed curve, or Jordan curve,
I is a set in the plane that is homeomorphic to a circle. That is, I' = ~(T)
is the image of a one-to-one continuous map v : T — R2 with continuous inverse
4~1:T — T. (The requirement that the inverse is continuous follows from the other
assumptions.) According to the Jordan curve theorem, a Jordan curve divides the
plane into two disjoint connected open sets, so that R2\ T' = Q; U Q. One of
the sets (the ‘interior’) is bounded and simply connected. The interior region of a
Jordan curve is called a Jordan domain.

EXAMPLE 1.37. The slit disc Q in Example [L33is not a Jordan domain. For
example, its boundary separates into two nonempty connected components when
the point (1,0) is removed, but the circle remains connected when any point is
removed, so €2 cannot be homeomorphic to the circle.

ExaMpPLE 1.38. The interior 2 of the Koch, or ‘snowflake,” curve is a Jordan
domain. The Hausdorff dimension of its boundary is strictly greater than one. It is
interesting to note that, despite the irregular nature of its boundary, this domain
has the property that every function in W*?(Q) with k € Nand 1 < p < oo can
be extended to a function in WP (R?).

If v : T — R? is one-to-one, C!', and |Dy| # 0, then the image of v is the
C! boundary of the open set which it encloses. The condition that ~ is one-to-
one is necessary to avoid self-intersections (for example, a figure-eight curve), and
the condition that |D7| # 0 is necessary in order to ensure that the image is a
Cl-submanifold of R2.

EXAMPLE 1.39. The curve 7 : t — (t3,¢%) is not C* at t = 0 where Dy(0) = 0.

1.10.2. Parametric representation of a boundary. If ) is an open set in
R™ with C*-boundary and ¢ is a chart on a neighborhood U of a boundary point,
as in Definition [[.35] then we can define a local chart

O = (P, Py,...,0, 1):UNIVCR” - W Cc R*!

for the boundary 9Q by ® = (¢1, ¢2,...,¢n—1). Thus, IQ is an (n— 1)-dimensional
submanifold of R™.

The boundary is parameterized locally by x; = ¥; (y1,92,...,Yn—1) where 1 <
i<nand W =& 1: W — UnNA9N. The (n — 1)-dimensional tangent space of 95

is spanned by the vectors
ov ov ov

By By Oyna’



1.10. BOUNDARIES OF OPEN SETS 15

The outward unit normal v : 9 — S"~! C R™ is orthogonal to this tangent space,
and it is given locally by

1 _ oV A ov Aen ov
V= = V= —— _— o s
|7 Oy1 Oya OYn—1
6‘1’1/6y1 8\111/8\112 8\1/1/6yn_1
b= 8\I/i71/8y1 8\111;1/8(7;2 e 8\111'71/82%171
! OVi11/0yr O¥it1/0ys ... OViy1/0yn—

ExaMPLE 1.40. For a three-dimensional region with two-dimensional boundary,
the outward unit normal is

(0W/0y1) x (0¥ /Dys2)

(0 /dy1) x (99 Dys)|
The restriction of the Euclidean metric on R™ to the tangent space of the
boundary gives a Riemannian metric on the boundary whose volume form defines
the surface measure dS. Explicitly, the pull-back of the Euclidean metric

The volume form associated with a Riemannian metric Y hy,q dypdy, is

Vdet hdyidys . ..dy,—1.

Thus the surface measure on 0f) is given locally by

ds = \V det (D\IftD\I/) dyldyg . dyn,1

where DV is the derivative of the parametrization,

8\111/8y1 8\111/8y2 N 8\1!1/8%,1
DU — 8\112/8y1 8\112/8y2 N 8\112/8%,1

These local expressions may be combined to give a global definition of the surface
integral by means of a partition of unity.

ExXAMPLE 1.41. In the case of a two-dimensional surface with metric
ds* = Edy} + 2F dy,dys + G dys,

the element of surface area is

ds = vV EG — F?2 dyldyg.
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EXAMPLE 1.42. The two-dimensional sphere
S? ={(z,y,2) e R® : 2> +¢y* + 2> =1}
is a C*° submanifold of R3. A local C*°-parametrization of
U=8*\{(z0,z2) eR®: 2 >0}
is given by ¥ : W C R? — U C S? where
U (0, ¢) = (cos B sin ¢, sin 0 sin ¢, cos ¢)
W={0.¢)eRP:0<0<2m,0<p<m}.
The metric on the sphere is
U* (da? + dy?® + dz?) = sin® ¢ df” + d¢?
and the corresponding surface area measure is
dS = sin ¢ dfd¢.

The integral of a continuous function f(z,y, z) over the sphere that is supported in
U is then given by

/ fds = / f (cos @ sin ¢, sin 0 sin @, cos ¢) sin ¢ dfde.
52 w
We may use similar rotated charts to cover the points with x > 0 and y = 0.

1.10.3. Representation of a boundary as a graph. An alternative, and
computationally simpler, way to represent the boundary of a smooth open set is
as a graph. After rotating coordinates, if necessary, we may assume that the nth
component of the normal vector to the boundary is nonzero. If k& > 1, the implicit
function theorem implies that we may represent a C*-boundary as a graph

Tp =h(x1,22,...,Tn-1)

where h : W C R"~! — Risin C*(W) and Q is given locally by ,, < h(21,...,Zn_1).
If the boundary is only Lipschitz, then the implicit function theorem does not ap-
ply, and it is not always possible to represent a Lipschitz boundary locally as the
region lying below the graph of a Lipschitz continuous function.

If 92 is O, then the outward normal v is given in terms of h by

1 < oh oh oh 1)
V=—F——=— T 9. v . sy o
1+ |Dh? Ory’ Oxo O0%p—1
and the surface area measure on 02 is given by
dsS = \ 1 + |Dh,|2 dIldIQ . dInfl.

EXAMPLE 1.43. Let 2 = B (0) be the unit ball in R™ and 052 the unit sphere.
The upper hemisphere

H={zxed:x, >0}
is the graph of x, = h(2’) where h : D — R is given by

ha)=y1-|[",  D={a'eR"': || <1}
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and we write x = (2/,x,,) with 2/ = (z1,...,2,-1) € R""!. The surface measure
on H is

a5 = —1 v

/1= |2

and the surface integral of a function f(z) over H is given by

/de /f:vh

The integral of a function over 92 may be computed in terms of such integrals by
use of a partition of unity subordinate to an atlas of hemispherical charts.

1.11. Change of variables

We state a theorem for a C' change of variables in the Lebesgue integral. A
special case is the change of variables from Cartesian to polar coordinates. For
proofs, see [11], [42].

THEOREM 1.44. Suppose that Q) is an open set in R™ and ¢ : Q@ — R™ is a
Cl diffeomorphism of Q onto its image ¢(Q). If f : ¢(Q) — R is a nonnegative
Lebesgue measurable function or an integrable function, then

fy)dy = / foo(x)|det Dé(x)| du.
#() Q

We define polar coordinates in R™ \ {0} by = = ry, where r = |z| > 0 and
y € 0B1 (0) is a point on the unit sphere. In these coordinates, Lebesgue measure
has the representation
dx = r""tdrdS(y)

where dS(y) is the surface area measure on the unit sphere. We have the following
result for integration in polar coordinates.

ProroSITION 1.45. If f : R™ — R is integrable, then

/fdx:/ooo /831()f(x+ry) dS(y)] "L dr

:/831(0) [/Ooof(x—i—ry) r"ldr} ds(y).

1.12. Divergence theorem

We state the divergence (or Gauss-Green) theorem.

THEOREM 1.46. Let X : Q — R” be a C1(Q)-vector field, and Q@ C R"™ a
bounded open set with Ct-boundary 2. Then

/dide:vz X -vdS.
Q le)

To prove the theorem, we prove it for functions that are compactly supported
in a half-space, show that it remains valid under a C' change of coordinates with
the divergence defined in an appropriately invariant way, and then use a partition
of unity to add the results together.
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In particular, if u,v € C*(Q), then an application of the divergence theorem
to the vector field X = (0,0,...,uv,...,0), with ith component wv, gives the
integration by parts formula

/ u (0v) dx = —/ (Oiu) vdx —I—/ uvy; dS.
Q Q o0

The statement in Theorem is, perhaps, the natural one from the perspec-
tive of smooth differential geometry. The divergence theorem, however, remains
valid under weaker assumptions than the ones in Theorem For example, it
applies to a cube, whose boundary is not C', as well as to other sets with piecewise
smooth boundaries.

From the perspective of geometric measure theory, a general form of the diver-
gence theorem holds for Lipschitz vector fields (vector fields whose weak derivative
belongs to L>) and sets of finite perimeter (sets whose characteristic function has
bounded variation). The surface integral is taken over a measure-theoretic bound-
ary with respect to (n—1)-dimensional Hausdorff measure, and a measure-theoretic
normal exists almost everywhere on the boundary with respect to this measure
[10, [45].

1.13. Gronwall’s inequality

In estimating some norm of a solution of a PDE, we are often led to a differential
inequality for the norm from which we want to deduce an inequality for the norm
itself. Gronwall’s inequality allows one to do this: roughly speaking, it states that a
solution of a differential inequality is bounded by the solution of the corresponding
differential equality. There are both linear and nonlinear versions of Gronwall’s
inequality. We state only the simplest version of the linear inequality.

LEMMA 1.47. Suppose that u : [0,T] — [0,00) is a nonnegative, absolutely
continuous function such that

d
(1.9) d_z; < Cu, u(0) = wo.
for some constants C, ug > 0. Then
u(t) < upet for0o<t<T.

PROOF. Let v(t) = e~“*u(t). Then

dv —Ct [@ _ Cu(t)} <0.

at -~ © |dt
If follows that
v(t) —u —/t@d8<0
0 — 0 ds =Y,
or e~“*u(t) < ug, which proves the result. O

In particular, if ug = 0, it follows that u(t) = 0. We can alternatively write
([C9) in the integral form

u(t) <wug+ C/o u(s) ds.



CHAPTER 2

Laplace’s equation

There can be but one option as to the beauty and utility of this
analysis by Laplace; but the manner in which it has hitherto been
presented has seemed repulsive to the ablest mathematicians,
and difficult to ordinary mathematical students[]

Laplace’s equation is

Au=20
where the Laplacian A is defined in Cartesian coordinates by
0? 0? 0?

A= T e T T
We may also write A = div D. The Laplacian A is invariant under translations
(it has constant coefficients) and orthogonal transformations of R™. A solution of
Laplace’s equation is called a harmonic function.

Laplace’s equation is a linear, scalar equation. It is the prototype of an elliptic
partial differential equation, and many of its qualitative properties are shared by
more general elliptic PDEs. The non-homogeneous version of Laplace’s equation

—Au=f

is called Poisson’s equation. It is convenient to include a minus sign here because
A is a negative definite operator.

The Laplace and Poisson equations, and their generalizations, arise in many
different contexts.

(1) Potential theory e.g. in the Newtonian theory of gravity, electrostatics,
heat flow, and potential flows in fluid mechanics.

(2) Riemannian geometry e.g. the Laplace-Beltrami operator.

(3) Stochastic processes e.g. the stationary Kolmogorov equation for Brown-
ian motion.

(4) Complex analysis e.g. the real and imaginary parts of an analytic function
of a single complex variable are harmonic.

As with any PDE, we typically want to find solutions of the Laplace or Poisson
equation that satisfy additional conditions. For example, if €2 is a bounded domain
in R™, then the classical Dirichlet problem for Poisson’s equation is to find a function
u: Q — R such that u € C*(Q)NC () and

—Au=f in Q,

(2.1) u=yg on 0f.

Kelvin and Tait, Treatise on Natural Philosophy, 1879

19
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where f € C(Q) and g € C(90Q) are given functions. The classical Neumann
problem is to find a function u : @ — R such that u € C*(Q) N C* () and

—Au=f in €,
2.2
22) % =g on 0.
v

Here, ‘classical’ refers to the requirement that the functions and derivatives ap-
pearing in the problem are defined pointwise as continuous functions. Dirichlet
boundary conditions specify the function on the boundary, while Neumann con-
ditions specify the normal derivative. Other boundary conditions, such as mixed
(or Robin) and oblique-derivative conditions are also of interest. Also, one may
impose different types of boundary conditions on different parts of the boundary
(e.g. Dirichlet on one part and Neumann on another).

Here, we mostly follow Evans [9] (§2.2), Gilbarg and Trudinger [17], and Han
and Lin [23].

2.1. Mean value theorem

Harmonic functions have the following mean-value property which states that
the average value (I3)) of the function over a ball or sphere is equal to its value at
the center.

THEOREM 2.1. Suppose that u € C?(Q) is harmonic in an open set ) and
B, (x) € Q. Then

(2.3) u(x) :][ udx, u(x) :][ udS.
B, (z) OB, (x)

PROOF. If u € C?(Q) and B, (x) € Q, then the divergence theorem (Theo-
rem [[40]) implies that

/ Audr = / % ds
B,(x) OB, (z) ov

=yt / @(x +ry)dS(y)
4]

B (0) 67‘

—r"‘lﬁ u(x +r
= o [/831(0) (z + y)dS(y)]-

Dividing this equation by a,,r", we find that

(2.4) ]l Audx:22 ][ udS| .
B, (x) 7 Or | JaB, (x)

It follows that if u is harmonic, then its mean value over a sphere centered at x is
independent of r. Since the mean value integral at » = 0 is equal to u(z), the mean
value property for spheres follows.

The mean value property for the ball follows from the mean value property for
spheres by radial integration. (I

The mean value property characterizes harmonic functions and has a remark-
able number of consequences. For example, harmonic functions are smooth because
local averages over a ball vary smoothly as the ball moves. We will prove this result
by mollification, which is a basic technique in the analysis of PDEs.
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THEOREM 2.2. Suppose that u € C(2) has the mean-value property (2Z-3). Then
u € C®(Q) and Au=0 in Q.

PRrROOF. Let n°(x) = 71°(|z|) be the standard, radially symmetric mollifier (I.G]).
If B (x) € Q, then, using Proposition[[.45] together with the facts that the average
of u over each sphere centered at x is equal to u(x) and the integral of 1 is one,
we get

(1 ) (z) = /B 7 )y

_ /O ‘ [ /a o 1 = 72)45()

= nan/ ][ wdS| 7 (r)r" " dr
o |JoB,.(x)

= naju(z) /O6 7 (ryr" =t dr
= u(z) / 1°(y) dy

= u(z).

rLdr

Thus, u is smooth since 7° * u is smooth.
If u has the mean value property, then (24) shows that

/ Audx =0
B, (z)

for every ball B, (z) € §2. Since Aw is continuous, it follows that Au =0in Q. O

TheoremsZIHZ 2 imply that any C?-harmonic function is C*°. The assumption
that u € C?(Q) is, if fact, unnecessary: Weyl showed that if a distribution u € D’ (Q2)
is harmonic in Q, then u € C*(Q).

Note that these results say nothing about the behavior of v at the boundary
of Q, which can be nasty. The reverse implication of this observation is that the
Laplace equation can take rough boundary data and immediately smooth it to an
analytic function in the interior.

ExXAMPLE 2.3. Consider the meromorphic function f : C — C defined by

1
f(z) = P
The real and imaginary parts of f
— x — _73/
U(,’E,y) - I2—|—y27 ’U(.’Ii,y) :1:2—|—y2

are harmonic and C*° in, for example, the open unit disc
Q={(z,y) eR*: (z —1)> +y* < 1}
but both are unbounded as (x,y) — (0,0) € 99.
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The boundary behavior of harmonic functions can be much worse than in this
example. If  C R™ is any open set, then there exists a harmonic function in
such that

liminf u(z) = —oo, limsup u(z) = o0
r—E& €
for all £ € 9. One can construct such a function as a sum of harmonic functions,
converging uniformly on compact subsets of 2, whose terms have singularities on a
dense subset of points on 0.

It is interesting to contrast this result with the the corresponding behavior of
holomorphic functions of several variables. An open set @ C C" is said to be a
domain of holomorphy if there exists a holomorphic function f :  — C which
cannot be extended to a holomorphic function on a strictly larger open set. Every
open set in C is a domain of holomorphy, but when n > 2 there are open sets in
C™ that are not domains of holomorphy, meaning that every holomorphic function
on those sets can be extended to a holomorphic function on a larger open set.

2.1.1. Subharmonic and superharmonic functions. The mean value prop-
erty has an extension to functions that are not necessarily harmonic but whose
Laplacian does not change sign.

DEFINITION 2.4. Suppose that € is an open set. A function u € C?(Q) is
subharmonic if Au > 0 in €2 and superharmonic if Au < 0 in .

A function w is superharmonic if and only if —u is subharmonic, and a function
is harmonic if and only if it is both subharmonic and superharmonic. A suitable
modification of the proof of Theorem 2.1l gives the following mean value inequality.

THEOREM 2.5. Suppose that Q2 is an open set, B, (x) @ Q, and u € C*(Q). If
u 18 subharmonic in Q, then

(2.5) u(x) g][ udz, u(x) S][ udS.
B, (z) OB, (x)

If u is superharmonic in ), then

(2.6) u(x) 2][ udx, u(x) 2][ udS.
B, (z) OB, (x)

It follows from these inequalities that the value of a subharmonic (or super-
harmonic) function at the center of a ball is less (or greater) than or equal to the
value of a harmonic function with the same values on the boundary. Thus, the
graphs of subharmonic functions lie below the graphs of harmonic functions and
the graphs of superharmonic functions lie above, which explains the terminology.
The direction of the inequality (—Awu < 0 for subharmonic functions and —Awu > 0
for superharmonic functions) is more natural when the inequality is stated in terms
of the positive operator —A.

EXAMPLE 2.6. The function u(z) = |z|* is subharmonic in R" since Au =
4(n+2)|z|* > 0. The function is equal to the constant harmonic function U(z) = 1
on the sphere || = 1, and u(z) < U(z) when |z| < 1.
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2.2. Derivative estimates and analyticity

An important feature of Laplace equation is that we can estimate the derivatives
of a solution in a ball in terms of the solution on a larger ball. This feature is closely
connected with the smoothing properties of the Laplace equation.

THEOREM 2.7. Suppose that u € C?() is harmonic in the open set Q and
B, (z) € Q. Then for any 1 <i<mn,
n
|Oiu(x)] < — max [u].
T B,(x)
PROOF. Since u is smooth, differentiation of Laplace’s equation with respect
to x; shows that O;u is harmonic, so by the mean value property for balls and the

divergence theorem
1

oiu :][ Oiudr = — / uv; dS.
B,(x) anT" JoB, (z)

Taking the absolute value of this equation and using the estimate

/ uv; dS
OB, (z)

we get the result. ([l

< noyr™ ! max |ul
By()

One consequence of Theorem 2.7 is that a bounded harmonic function on R"
is constant; this is an n-dimensional extension of Liouville’s theorem for bounded
entire functions.

COROLLARY 2.8. If u € C%(R") is bounded and harmonic in R™, then u is
constant.

PRrROOF. If |u| < M on R™, then Theorem [Z7] implies that
Mn
|Oju(z)| < v
for any r > 0. Taking the limit as r — oo, we conclude that Du = 0, so u is
constant. (]

Next we extend the estimate in Theorem [2.7]to higher-order derivatives. We use
a somewhat tricky argument that gives sharp enough estimates to prove analyticity.

THEOREM 2.9. Suppose that u € C?(Q) is harmonic in the open set 2 and
B, (z) € Q. Then for any multi-index oo € Nij of order k = |«
nFeF—1k!
——— max [u.

0%u(x)| <
()] < "

PROOF. We prove the result by induction on || = k. From Theorem [Z7]
the result is true when k = 1. Suppose that the result is true when |a| = k. If
la| = k + 1, we may write 0% = 9;0° where 1 <i <nand |f| =k. For0< 6 <1,
let

p=(1-0)r
Then, since 9°u is harmonic and B, (z) € €2, Theorem 7 implies that

|0%u(x)] < ELnax ‘8ﬁu’.
P Bp(z)
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Suppose that y € B, (z). Then B,_, (y) C B, (z), and using the induction hypoth-
esis we get

nkek—1p| nFeb k!
}8ﬁu(y)| < meax lu| < Shgk  ax lul.
— Br_p(y) Br(@)
It follows that bl k1
Flek—1k!
0°u(@)] < e max [u]

= ’[”k+10k(1 — 0) ET(m)
Choosing 0 = k/(k + 1) and using the inequality

= (1+l>k(k+1)§e(k+1)

0%(1 —0) k
we get
o nFtlek(k +1)!
7)< T ol
The result follows by induction. O

A consequence of this estimate is that the Taylor series of u converges to u near
any point. Thus, we have the following result.

THEOREM 2.10. If u € C?(Q) is harmonic in an open set Q then u is real-
analytic in €.

PROOF. Suppose that = € Q and choose r > 0 such that Bs, (x) € Q. Since
u € C*(9), we may expand it in a Taylor series with remainder of any order k € N
to get

u(x +h) = Z aa%!(x)ho‘—i-Rk(:v,h),

jal<k-1

where we assume that |h| < r. From Theorem [[.27] the remainder is given by
0%u(x + 6h)
(2.7) Ri(x,h) = > ——h
la|=k

for some 0 < 60 < 1.

To estimate the remainder, we use Theorem to get
ko k—1
nt ekl
|0%u(z + 0h)| < ————_max |u].
r B (z+0h)

Since |h| < r, we have B, (x 4+ 0h) C Ba, (z), so for any 0 < § < 1 we have

~max |u| < M, M = max |ul.
B, (v+0h) B, (x)
It follows that
M k kflk!
(2.8) 0% u(x + 0h)| < %

Since |h®| < |h|¥ when |a| = k, we get from (2.7) and (Z8) that

MnFek=1 |h|* k! 1
Ri(o, ) < IR (5 L
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The multinomial expansion

k k!
k k
—(1+1+---+1)F= — i
= (14t 1) Z(a) >
shows that

1771
> =

la|=k

Therefore, we have

2 k
R, ) < (M) .

€ T

Thus Ry(z,h) — 0 as k — oo if
r
Bl < —
Il < n2e’

meaning that the Taylor series of u at any € 2 converges to u in a ball of non-zero
radius centered at x. (]

It follows that, as for analytic functions, the global values of a harmonic function
is determined its values in arbitrarily small balls (or by the germ of the function at
a single point).

COROLLARY 2.11. Suppose that u, v are harmonic in a connected open set
Q C R" and 0%u(z) = 0% (Z) for all multi-indices « € Ny at some point T € €.
Then uw = v in €.

PrOOF. Let
F={zeQ:0%(x)=0%(z) for all « € N} }.
Then F # (0, since T € F, and F is closed in €, since

F= ) @°u-v)]"0)

aeNy

is an intersection of relatively closed sets. Theorem 2.10implies that if x € F, then
the Taylor series of u, v converge to the same value in some ball centered at x.
Thus u, v and all of their partial derivatives are equal in this ball, so F' is open.
Since € is connected, it follows that F' = Q. O

A physical explanation of this property is that Laplace’s equation describes an
equilibrium solution obtained from a time-dependent solution in the limit of infinite
time. For example, in heat flow, the equilibrium is attained as the result of ther-
mal diffusion across the entire domain, while an electrostatic field is attained only
after all non-equilibrium electric fields propagate away as electromagnetic radia-
tion. In this infinite-time limit, a change in the field near any point influences the
field everywhere else, and consequently complete knowledge of the solution in an
arbitrarily small region carries information about the solution in the entire domain.

Although, in principle, a harmonic function function is globally determined
by its local behavior near any point, the reconstruction of the global behavior is
sensitive to small errors in the local behavior.
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EXAMPLE 2.12. Let Q = {(z,y) € R?: 0 <z < 1, y € R} and consider for n €
N the function
un(x,y) = ne” "* sinny,
which is harmonic. Then
k _ ko k41 —n
Oyun(x,1) = (=1)"n"" e " sinnx

converges uniformly to zero as n — oo for any k € Ny. Thus, u,, and any finite
number of its derivatives are arbitrarily close to zero at = 1 when n is sufficiently
large. Nevertheless, u,,(0,y) = nsin(ny) is arbitrarily large at y = 0.

2.3. Maximum principle

The maximum principle states that a non-constant harmonic function cannot
attain a maximum (or minimum) at an interior point of its domain. This result
implies that the values of a harmonic function in a bounded domain are bounded
by its maximum and minimum values on the boundary. Such maximum principle
estimates have many uses, but they are typically available only for scalar equations,
not systems of PDEs.

THEOREM 2.13. Suppose that ) is a connected open set and u € C%(Q). If u
is subharmonic and attains a global mazimum value in 2, then u is constant in €.

PROOF. By assumption, u is bounded from above and attains its maximum in
Q. Let
M = maxu,
Q

and consider
F=ut({M})={recQ:ulx)= M}
Then F' is nonempty and relatively closed in ) since u is continuous. (A subset
F is relatively closed in Q if F' = F N Q where F is closed in R".) If z € F and
B, (z) € Q, then the mean value inequality (Z3]) for subharmonic functions implies
that
f sl ay=f  uw)dy-u) 2o,
B, (z) B, (x)

Since u attains its maximum at z, we have u(y) — u(z) < 0 for all y € Q, and it
follows that u(y) = u(z) in B, (z). Therefore F is open as well as closed. Since
is connected, and F' is nonempty, we must have F' = (), so u is constant in 2. [

If © is not connected, then w is constant in any connected component of €2 that
contains an interior point where u attains a maximum value.

EXAMPLE 2.14. The function u(z) = |z|? is subharmonic in R™. It attains a
global minimum in R™ at the origin, but it does not attain a global maximum in
any open set {2 C R". It does, of course, attain a maximum on any bounded closed
set Q, but the attainment of a maximum at a boundary point instead of an interior
point does not imply that a subharmonic function is constant.

It follows immediately that superharmonic functions satisfy a minimum prin-
ciple, and harmonic functions satisfy a maximum and minimum principle.

THEOREM 2.15. Suppose that Q is a connected open set and u € C?*(Q). If
w is harmonic and attains either a global minimum or maximum in ), then wu is
constant.
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PRrROOF. Any superharmonic function u that attains a minimum in 2 is con-
stant, since —u is subharmonic and attains a maximum. A harmonic function is
both subharmonic and superharmonic. (Il

EXAMPLE 2.16. The function
u(w,y) = 2* —y?
is harmonic in R? (it’s the real part of the analytic function f(z) = 22). It has a

critical point at 0, meaning that Dwu(0) = 0. This critical point is a saddle-point,
however, not an extreme value. Note also that

1 2
]l wdrdy = — / (cos® 6 — sin®0) df =0
B,.(0) 27 Jo

as required by the mean value property.

One consequence of this property is that any nonconstant harmonic function is
an open mapping, meaning that it maps opens sets to open sets. This is not true
of smooth functions such as x — |z|? that attain an interior extreme value.

2.3.1. The weak maximum principle. Theorem [2.13] is an example of a
strong maximum principle, because it states that a function which attains an inte-
rior maximum is a trivial constant function. This result leads to a weak maximum
principle for harmonic functions, which states that the function is bounded inside a
domain by its values on the boundary. A weak maximum principle does not exclude
the possibility that a non-constant function attains an interior maximum (although
it implies that an interior maximum value cannot exceed the maximum value of the
function on the boundary).

THEOREM 2.17. Suppose that §) is a bounded, connected open set in R™ and

u € C?(Q)NC(Q) is harmonic in Q. Then
max u = max u, minu = min u.
Q o0 Q oQ

PROOF. Since u is continuous and Q is compact, u attains its global maximum
and minimum on 2. If v attains a maximum or minimum value at an interior point,
then u is constant by Theorem 2.5l otherwise both extreme values are attained on
the boundary. In either case, the result follows. O

Let us give a second proof of this theorem that does not depend on the mean
value property. Instead, we use an argument based on the non-positivity of the
second derivative at an interior maximum. In the proof, we need to account for the
possibility of degenerate maxima where the second derivative is zero.

PROOF. For € > 0, let
ut(x) = u(z) + ez

Then Au€ = 2ne > 0 since u is harmonic. If u¢ attained a local maximum at an
interior point, then Au€ < 0 by the second derivative test. Thus u¢ has no interior
maximum, and it attains its maximum on the boundary. If |z] < R for all z € €,
it follows that

supu < supu® < supu® < supu + eR>.
Q Q a0 o9
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Letting € — 07, we get that sup, u < supyq u. An application of the same argu-
ment to —u gives infg u > infpq u, and the result follows. [l

Subharmonic functions satisfy a maximum principle, maxgu = maxsgq u, while
superharmonic functions satisfy a minimum principle ming v = mingq u.
The conclusion of Theorem 217 may also be stated as

minu < u(z) < maxwu for all z € Q.
90 a0

In physical terms, this means for example that the interior of a bounded region
which contains no heat sources or sinks cannot be hotter than the maximum tem-
perature on the boundary or colder than the minimum temperature on the bound-
ary.

The maximum principle gives a uniqueness result for the Dirichlet problem for
the Poisson equation.

THEOREM 2.18. Suppose that ) is a bounded, connected open set in R™ and
fecCc), ge CON) are given functions. Then there is at most one solution of
the Dirichlet problem (21)) with u € C%(Q) N C(Q).

PROOF. Suppose that uj,us € C%(Q) N C(Q) satisfy @I). Let v = uy — uz.
Then v € C?(Q)NC(Q) is harmonic in  and v = 0 on JS2. The maximum principle
implies that v = 0 in €, so u; = u9, and a solution is unique. (Il

This theorem, of course, does not address the question of whether such a so-
lution exists. In general, the stronger the conditions we impose upon a solution,
the easier it is to show uniqueness and the harder it is to prove existence. When
we come to prove an existence theorem, we will begin by showing the existence of
weaker solutions e.g. solutions in H*() instead of C?(£2). We will then show that
these solutions are smooth under suitable assumptions on f, g, and €.

2.3.2. Hopf’s proof of the maximum principle. Next, we give an alter-
native proof of the strong maximum principle Theorem 213 due to E. Hopr This
proof does not use the mean value property and it works for other elliptic PDEs,
not just the Laplace equation.

PROOF. As before, let M = maxgu and define
F={zxeQ:ulz)=M}.

Then F' is nonempty by assumption, and it is relatively closed in 2 since u is
continuous.
Now suppose, for contradiction, that F' # €. Then

G=Q\F

is nonempty and open, and the boundary 0F N2 = 0G N is nonempty (otherwise
F, G are open and {2 is not connected).

Choose y € 0G N Q and let d = dist(y, 02) > 0. There exist points in G that
are arbitrarily close to y, so we may choose x € G such that |z — y| < d/2. If

2There were two Hopf’s (at least): Eberhard Hopf (1902-1983) is associated with the Hopf
maximum principle (1927), the Hopf bifurcation theorem, the Wiener-Hopf method in integral
equations, and the Cole-Hopf transformation for solving Burgers equation; Heinz Hopf (1894—
1971) is associated with the Hopf-Rinow theorem in Riemannian geometry, the Hopf fibration in
topology, and Hopf algebras.
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r = dist(x, F), it follows that 0 < r < d/2, so B, () C G. Moreover, there exists
at least one point Z € 9B, (z) N dG such that u (z) = M.

We therefore have the following situation: u is subharmonic in an open set G
where u < M, the ball B, (z) is contained in G, and u(Z) = M for some point
Z € 0B, (x) N 0G. The Hopf boundary point lemma, proved below, then implies
that

du(Z) > 0,
where 9, is the outward unit normal derivative to the sphere 0B, (z).

However, since Z is an interior point of 2 and u attains its maximum value M

there, we have Du (Z) = 0, so

dyu () = Du(Z) -v=0.
This contradiction proves the theorem. ([l
Before proving the Hopf lemma, we make a definition.

DEFINITION 2.19. An open set € satisfies the interior sphere condition at T €
OfY if there is an open ball B, (z) contained in € such that z € B, (x)

The interior sphere condition is satisfied by open sets with a C?-boundary, but
— as the following example illustrates — it need not be satisfied by open sets with
a C'-boundary, and in that case the conclusion of the Hopf lemma may not hold.

ExXAMPLE 2.20. Let

( z > zlogr + yb
’u,:g% = 3
log z log®r + 62

where log z = logr + 10 with —7/2 < § < w/2. Define
Q={(z,y) eR*:0<z <1, u(z,y) <0}.

Then u is harmonic in €, since z/ log z is analytic in 2, and 92 is C! near the origin,
with unit outward normal (—1,0) at the origin. The curvature of 92, however,
becomes infinite at the origin, and the interior sphere condition fails. Moreover,
the normal derivative 9,u(0,0) = —u;(0,0) = 0 vanishes at the origin, and it is not
strictly positive as would be required by the Hopf lemma.

LEMMA 2.21. Suppose that u € C%(2) N C* (ﬁ) is subharmonic in an open set
Q and u(x) < M for every x € Q. If u(Z) = M for some T € 0N and Q) satisfies
the interior sphere condition at T, then O,u(z) > 0, where 0, is the derivative in
the outward unit normal direction to a sphere that touches 02 at T.

PROOF. We want to perturb w to u° = u + ev by a function ev with strictly
negative normal derivative at Z, while preserving the conditions that u¢(z) = M,
u® is subharmonic, and u¢ < M near z. This will imply that the normal derivative
of u at T is strictly positive.

We first construct a suitable perturbing function v. Given a ball By (x), we
want v € C2(R"™) to have the following properties:

(1) v=0on dBg (x);

(2) v=1o0n 0Bg/s (x);

(3) dyv <0 on dBg (z);

(4) Av>0in Bg () \ Brya (2).
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We consider without loss of generality a ball Br (0) centered at 0. Thus, we want
to construct a subharmonic function in the annular region R/2 < |z| < R which
is 1 on the inner boundary and 0 on the outer boundary, with strictly negative
outward normal derivative.

The harmonic function that is equal to 1 on |z|] = R/2 and 0 on || = R is

given by
n—2
()
|z

(We assume that n > 3 for simplicity.) Note that

1

u(@) = 5oy

n—2 1

ou=———2 2
Y=Tme IR S

0 on |z| = R,
so we have room to fit a subharmonic function beneath this harmonic function while
preserving the negative normal derivative.

Explicitly, we look for a subharmonic function of the form

v(z) =c {e_a‘w _ e—aR?}

where ¢, « are suitable positive constants. We have v(z) = 0 on |z| = R, and
choosing
1

efaR2/4 _ efaRQ ’

CcC =

we have v(R/2) = 1. Also, ¢ > 0 for & > 0. The outward normal derivative of v is
the radial derivative, so

dyv(x) = —2coz|3:|67°‘|9”|2 <0 on |z| = R.

Finally, using the expression for the Laplacian in polar coordinates, we find that

Av(z) = 2ca [2alz]* — n] e—el=l®,

Thus, choosing a > 2n/R?, we get Av < 0 for R/2 < |z| < R, and this gives a
function v with the required properties.

By the interior sphere condition, there is a ball Br (z) C 2 with & € 0Bg (z).
Let

M' = max u<M
Brya2(x)

and define e = M — M’ > 0. Let
w=u-+ev— M.

Then w < 0 on Bg (z) and dBp/s () and Aw > 0 in Bg (z)\ Bg/2 (z). The max-
imum principle for subharmonic functions implies that w < 0 in Bg (z) \ Bg/» ().
Since w(Z) = 0, it follows that d,w(z) > 0. Therefore

Ou(Z) = dyw(T) — edyu(T) > 0,

which proves the result. (I
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2.4. Harnack’s inequality

The maximum principle gives a basic pointwise estimate for solutions of Laplace’s
equation, and it has a natural physical interpretation. Harnack’s inequality is an-
other useful pointwise estimate, although its physical interpretation is less clear. It
states that if a function is nonnegative and harmonic in a domain, then the ratio of
the maximum and minimum of the function on a compactly supported subdomain
is bounded by a constant that depends only on the domains. This inequality con-
trols, for example, the amount by which a harmonic function can oscillate inside a
domain in terms of the size of the function.

THEOREM 2.22. Suppose that Q' € 2 is a connected open set that is compactly
contained an open set Q). There exists a constant C, depending only on  and €V,
such that if u € C(Q) is a non-negative function with the mean value property, then
(2.9) supu < C'inf u.

gl/ Ql

PROOF. First, we establish the inequality for a compactly contained open ball.
Suppose that € Q and Byg (z) C Q, and let u be any non-negative function with
the mean value property in Q. If y € Bg (), then,

u(y) :][ udr < 2"]1 udx
Br(y) Bzr(w)

since Bg (y) C Bag () and u is non-negative. Similarly, if z € Bg (z), then

2 n
u(z) :][ udx > (—) ][ udz
Bsr(z) 3 Bar(z)

since Bsg (2) D Bag (x). It follows that

sup u < 3" inf wu.
Br(z) Br(x)

Suppose that ' € Q and 0 < 4R < dist(Q,09). Since ¥’ is compact, we
may cover ) by a finite number of open balls of radius R, where the number N
of such balls depends only on Q' and . Moreover, since €2’ is connected, for any
x,y € ) there is a sequence of at most N overlapping balls {Bi, Bs, ..., B} such
that B; N B;y1 # () and x € By, y € By. Applying the above estimate to each ball
and combining the results, we obtain that

supu < 3™V inf u.
Q Q

In particular, it follows from (29) that for any z,y € ', we have

Luly) < u(a) < Culy).

Harnack’s inequality has strong consequences. For example, it implies that if
{un} is a decreasing sequence of harmonic functions in  and {u,(z)} is bounded
for some x € €, then the sequence converges uniformly on compact subsets of
to a function that is harmonic in 2. By contrast, the convergence of an arbitrary
sequence of smooth functions at a single point in no way implies its convergence
anywhere else, nor does uniform convergence of smooth functions imply that their
limit is smooth.
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It is useful to compare this situation with what happens for analytic functions
in complex analysis. If {f,} is a sequence of analytic functions

faiQcC—C

that converges uniformly on compact subsets of €2 to a function f, then f is also
analytic in ) because uniform convergence implies that the Cauchy integral formula
continues to hold for f, and differentiation of this formula implies that f is analytic.

2.5. Green’s identities

Green’s identities provide the main energy estimates for the Laplace and Pois-
son equations.

THEOREM 2.23. If Q is a bounded C' open set in R™ and u,v € C?(Q), then

(2.10) /uAvd:C:—/Du-Dvd:C—i—/ u@ ds,
Q Q a0 OV

ov ou
2.11 /uAvd:C:/vAudx—i—/ (u——v—) ds.
( ) Q Q 0 ov ov

PRrROOF. Integrating the identity
div (uDv) = uAv 4+ Du - Dv
over {2 and using the divergence theorem, we get [2.10). Integrating the identity
div (uDv — vDu) = uAv — vAu,
we get (Z.11). O

Equations (ZI0) and (ZI1)) are Green’s first and second identity, respectively.
The second Green’s identity implies that the Laplacian A is a formally self-adjoint
differential operator.

Green’s first identity provides a proof of the uniqueness of solutions of the
Dirichlet problem based on estimates of L?-norms of derivatives instead of maxi-
mum norms. Such integral estimates are called energy estimates, because in many
(though not all) cases these integral norms may be interpreted physically as the
energy of a solution.

THEOREM 2.24. Suppose that Q is a connected, bounded C open set, f € C (),
and g € C(0Q). If u1,us € C%(Q) are solution of the Dirichlet problem (21)), then
w1 = ugz; and if ur,uz € C?(Q) are solutions of the Neumann problem (Z2), then
u; = us + C where C € R is a constant.

PROOF. Let w = u; — ug. Then Aw = 0 in  and either w = 0 or Qw/dv =0
on J9. Setting u = w, v = w in (2I0)), it follows that the boundary integral and
the integral fQ wAw dx vanish, so that

/ |Dw|? dz = 0.
Q

Therefore Dw = 0 in 2, so w is constant. For the Dirichlet problem, w = 0 on 92
so the constant is zero, and both parts of the result follow. ([
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2.6. Fundamental solution

We define the fundamental solution or free-space Green’s function I' : R — R
(not to be confused with the Gamma function!) of Laplace’s equation by

1 1

F(m) = _2 if n 2 3,
(2.12) ”(’1‘ ~ 2)an ||
[(z) = —— log|z| if n=2.
2
The corresponding potential for n =1 is
1
(213) P(@) = —5ll,

but we will consider only the multi-variable case n > 2. (Our sign convention for T’
is the same as Evans [9], but the opposite of Gilbarg and Trudinger [17].)

2.6.1. Properties of the solution. The potential ' € C*(R" \ {0}) is
smooth away from the origin. For z # 0, we compute that

1 1
2.14 ol(z) = —— ——
214 @ = e T ]
and
1 22 1 1

_ 7
(9”1—‘(1:) = Oé_n—|$|"+2 — EW
It follows that

Al' =10 if x#0,
so I' is harmonic in any open set that does not contain the origin. The function
I" is homogeneous of degree —n + 2, its first derivative is homogeneous of degree
—n + 1, and its second derivative is homogeneous of degree n.
From (ZI4), we have for x # 0 that

1 1
pr. Xt —_ -
e[ nag [e]*t
Thus we get the following surface integral over a sphere centered at the origin with
normal v = z/|z|:

(2.15) —/ DT -vdS =1.
9B,(0)

As follows from the divergence theorem and the fact that I' is harmonic in By (0) \
B, (0), this integral does not depend on r. The surface integral is not zero, however,
as it would be for a function that was harmonic everywhere inside B, (0), including
at the origin. The normalization of the flux integral in (ZI5)) to one accounts for
the choice of the multiplicative constant in the definition of T'.

The function T is unbounded as @ — 0 with T'(z) — oo. Nevertheless, T' and
DT are locally integrable. For example, the local integrability of 9,I' in (214)
follows from the estimate

Cn
Bk
since |x|~* is locally integrable on R™ when a < n (see Example [[T3]). The second
partial derivatives of I" are not locally integrable, however, since they are of the
order |z|~™™ as z — 0.

|0;'(x)] <
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2.6.2. Physical interpretation. Suppose, as in electrostatics, that u is the
potential due to a charge distribution with smooth density f, where —Awu = f, and
E = —Du is the electric field. By the divergence theorem, the flux of E through
the boundary 92 of an open set 2 is equal to the to charge inside the enclosed

volume,
/ E~VdS:/(—Au)dx:/fdx.
o0 Q Q

Thus, since AT’ = 0 for « # 0 and from (2I8) the flux of —DT through any sphere
centered at the origin is equal to one, we may interpret I' as the potential due to

a point charge located at the origin. In the sense of distributions, I' satisfies the
PDE

—All'=§

where § is the delta-function supported at the origin. We refer to such a solution
as a Green’s function of the Laplacian.

In three space dimensions, the electric field £ = —DTI of the point charge is
given by

1 1 =z
Amfa? o]
corresponding to an inverse-square force directed away from the origin. For gravity,
which is always attractive, the force has the opposite sign. This explains the con-
nection between the Laplace and Poisson equations and Newton’s inverse square
law of gravitation.

As |z] = oo, the potential T'(x) approaches zero if n > 3, but I'(z) = —oco as
|z| = oo if n = 2. Physically, this corresponds to the fact that only a finite amount
of energy is required to remove an object from a point source in three or more space
dimensions (for example, to remove a rocket from the earth’s gravitational field)
but an infinite amount of energy is required to remove an object from a line source
in two space dimensions.

We will use the point-source potential I" to construct solutions of Poisson’s
equation for rather general right hand sides. The physical interpretation of the
method is that we can obtain the potential of a general source by representing
the source as a continuous distribution of point sources and superposing the corre-
sponding point-source potential as in ([2.24]) below. This method, of course, depends
crucially on the linearity of the equation.

2.7. The Newtonian potential

Consider the equation
—Au=f in R™

where f : R®™ — R is a given function, which for simplicity we assume is smooth
and compactly supported.

THEOREM 2.25. Suppose that f € C°(R™), and let
u=I=xf
where T is the fundamental solution (212). Then u € C*°(R™) and
(2.16) —Au=f.
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PROOF. Since f € C°(R") and ' € L] (R"), Theorem implies that
u € C*(R™) and

(2.17) Au=Tx(Af)
Our objective is to transfer the Laplacian across the convolution from f to I
If = ¢ supp f, then we may choose a smooth open set  that contains supp f

such that = ¢ Q. Then I'(z — y) is a smooth, harmonic function of 3 in  and f,
Df are zero on 0f). Green’s theorem therefore implies that

Au(z) = / I(x —y)Af(y)dy = | AT(z - y)f(y)dy =0,
Q Q

which shows that —Au(z) = f(x).

If x € supp f, we must be careful about the non-integrable singularity in AT.
We therefore ‘cut out’ a ball of radius r about the singularity, apply Green’s theorem
to the resulting smooth integral, and then take the limit as r — 0F.

Let 2 be an open set that contains the support of f and define

(2.18) Q- () =Q\ B, (z).

Since A f is bounded with compact support and I is locally integrable, the Lebesgue
dominated convergence theorem implies that

(2.19) T'x (Af)(z) = lim Iz —y)Af(y)dy.

r—0+t Q- (z)

The potential I'(x — y) is a smooth, harmonic function of y in Q,(z). Thus
Green’s identity ([2.I1) gives

/ L@ —y)Af(y) dy
Q. (x)
N /BQ [Tz —y)Dyf(y) - v(y) — DyT(z —y) - v(y)f(y)] dS(y)

- / [D(z —y)Dy f(y) - v(y) — DyT(x —y) - v(y) f(y)] dS(y)
8B, ()

where we use the radially outward unit normal on the boundary. The boundary
terms on 0f2 vanish because f and D f are zero there, so

/ P(x — y)Af(y) dy = - / P(x — y)Dy f(y) - () dS(y)
(220) Q- (x) OB (x)

+ [ Dy =) ) ) dS()
9B, (z)
Since Df is bounded and I'(z) = O(|z|*~?) if n > 3, we have
[ Ta@-nDf) vl dS) = Or)  asr 0.
OB, (x)
The integral is O(rlogr) if n = 2. In either case,

(2.21) lim, I(z —y)Dyf(y) - v(y) dS(y) = 0.
r=0% JoB, (z)
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For the surface integral in ([2:20) that involves DI', we write

[ Dure—y) v ) ds)
OB, (z)
= [ Dy ) ) - 1) dS()
9B, (z)

t f(@) / D,T(x — y) - v(y) dS(y).
8B, (x)

From (2.15),
[ DGy vwdst) = -1
OB, (x)

and, since f is smooth,

[ D)) - @ ast) =0 (i ) o
OB, (z) r

as r — 0T. It follows that
(2.22) lim DyI'(x —y) - v(y)f(y)dS(y) = — f(z).
r—0+ 9B, ()

Taking the limit of ([220) as » — 07 and using ([2.2I) and ([2:22) in the result, we
get

lim Iz —y)Af(y)dy = - f(2).

r=0t JQ, (2)
The use of this equation in ([2I9) shows that

(2.23) s (Af) =,
and the use of (2.23)) in (ZI7) gives (2.16). O

Equation (223)) is worth noting: it provides a representation of a function
f € C(R™) as a convolution of its Laplacian with the Newtonian potential.
The potential u associated with a source distribution f is given by

(2:24) u(e) = [ T~ )1 dy.

We call u the Newtonian potential of f. We may interpret u(z) as a continuous
superposition of potentials proportional to I'(z —y) due to point sources of strength
f(y) dy located at y.

If n > 3, the potential T' x f(x) of a compactly supported, integrable function
approaches zero as || — co. We have

i) = e | () (0

and by the Lebesgue dominated convergence theorem,

|x1|igloo/<|x|f|y|>n_2f(y)dy—/f(y)dy.

Thus, the asymptotic behavior of the potential is the same as that of a point source
whose charge is equal to the total charge of the source density f. If n = 2, the
potential, in general, grows logarithmically as |z| — oo.
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If n > 3, Liouville’s theorem (Corollary [Z8) implies that the Newtonian poten-
tial I % f is the unique solution of —Awu = f such that u(z) — 0 as z — oo. (If uy,
ug are solutions, then v = u; — uo is harmonic in R™ and approaches 0 as x — oo;
thus v is bounded and therefore constant, so v = 0.) If n = 2, then a similar
argument shows that any solution of Poisson’s equation such that Du(z) — 0 as
|z| — oo differs from the Newtonian potential by a constant.

2.7.1. Second derivatives of the potential. In order to study the regular-
ity of the Newtonian potential w in terms of f, we derive an integral representation
for its second derivatives.

We write 0;0; = 0;;, and let

P 1 ifi=y

YTl 0 ifi#y
denote the Kronecker delta. In the following 9;I'(x — y) denotes the ith partial
derivative of I' evaluated at x —y, with similar notation for other derivatives. Thus,

B
ayil“(w —y) = -0l (z —y).

THEOREM 2.26. Suppose that f € C°(R™), and u = T x f where T is the
Newtonian potential (Z12). If Q is any smooth open set that contains the support
of f, then

0u(r) = [ 95T~ ) [F(w) - F(@)] dy
(2.25) @
= flx) | OT(z —y)v(y)dS(y).
a0
PROOF. As before, the result is straightforward to prove if « ¢ supp f. We
choose Q D supp f such that ¢ Q. Then I is smooth on Q so we may differentiate
under the integral sign to get

jula) = [ 0,7 = 1)1 ) dy.
which is [225) with f(z) = 0.

If € supp f, we follow a similar procedure to the one used in the proof of
Theorem 225t We differentiate under the integral sign in the convolution u = I'* f
on f, cut out a ball of radius r about the singularity in I', apply Greens’ theorem,
and let 7 — 0.

In detail, define Q,.(x) as in [ZI8), where Q D supp f is a smooth open set.
Since I is locally integrable, the Lebesgue dominated convergence theorem implies
that

(226 Oyule) = /Q @ — )0 f(y)dy = lim [ T(e— )0/ () dy.

r—0t Q- ()

For x # y, we have the identity
Lz —y)0i; f(y) — 950 (x — y) f(y)

- ai- Dz = )05/ ()] + % X =) I W)
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Thus, using Green’s theorem, we get

/ Iz —y)0i; f(y) dy = / 0, T(z — y) f(y) dy
(2.27) (@) Q- (x)
a /BB = [z —y)0; f(y)vi(y) + 0T (x — y) f(y)v;(y)] dS(y).

In [227), v denotes the radially outward unit normal vector on OB, (z), which
accounts for the minus sign of the surface integral; the integral over the boundary
0N vanishes because f is identically zero there.

We cannot take the limit of the integral over €2, (x) directly, since 9;;T is not
locally integrable. To obtain a limiting integral that is convergent, we write

/ BT (@ — ) f(y) dy
ST(z)

- / 0T — w)[f () — F(@)] dy + F(x) / 0T (x — y) dy
Q. (z)

Q. (z)

_ / 0T (x — y)[f(y) — F(2)] dy
Q- ()

T (& — y);(y) dS(y) — /8 ) P0G = D) aSw)|.

—f(x)[

[219]

Using this expression in (Z27) and using the result in (Z26]), we get

diju(z) = lim Oy (x —y) [f(y) — f(x)] dy

r—0+t Q- (z)

(@) / T (& — y)v; () dS(y)

(2.28) o0

- / O (z — y)[F(y) — £(2)]v;(y) dS(y)
8B, (z)

_ / T(a — )95 f (y)vi(y) dS(y).
OB, (x)

Since f is smooth, the function y — 0;;I'(z — y) [f(y) — f(z)] is integrable on 2,
and by the Lebesgue dominated convergence theorem

lim 0T (x — ) [f(y) — f(z)] dy = / T (x —y) [f () - f(2)] dy.

r—0t Q. (z)

We also have

lim O (z —y) [f(y) — f(2)]v;(y) dS(y) =0,
r—0t 9B, (z)
lim Iz = y)0;f (y)vi(y) dS(y) = 0.
r—0t 9B,.(z)
Using these limits in ([2Z28)), we get (2.25]). O

Note that if Q" D Q D supp f, then writing
Q' =QU Q)
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and using the divergence theorem, we get

// 0 T(x—y)[fy) — f(@)]dy — f(z) [ 0T (x —y)v;(y)dS(y)

oY

- /Qaijr(x -y [f(y) - ()] dy

ol (x —y)vj(x —y)dS(y) + / 9i;T'(z — y) dy]

Q\Q

o

o
_ / 0T — )W) — F@)] dy— f(@) | BT — y)v;(y) dS(y).
Q o0

Thus, the expression on the right-hand side of (2220 does not depend on 2 provided
that it contains the support of f. In particular, we can choose € to be a sufficiently
large ball centered at x.

COROLLARY 2.27. Suppose that f € CX(R™), and u = I" x f where I is the
Newtonian potential (Z12). Then

e20) o= [ NG I6) ~ ) dy— 1@,

where Bg (z) is any open ball centered at x that contains the support of f.

ProoF. In [225), we choose Q@ = Bg (z) D supp f. From [ZI4)), we have

[ ar-ymase) = [ ZHEBLGE )
OBR(x)

0B r(x) Man|T —y[™ [y — x|

- [ s

Br(0) Mo |y|" !

If i # j, then y;y; is odd under a reflection y; — —y;, so this integral is zero. If
i = j, then the value of the integral does not depend on 4, since we may transform
the i-integral into an #’-integral by a rotation. Therefore

1 / Y2 1 & 1 Y2
- L dS(y) =~ — / ——dS(y)
nan Jopgo) Y™ n ; nan Jopgo) [yI" T

1
11 1
= ——/ 1 45()
nnan Jopgyo) Yl
1

n

It follows that
1
/ Ol (x — y)v;(y) dS(y) = —s;.
OBRr(z) n

Using this result in ([2.25]), we get ([2:29). O

2.7.2. Holder estimates. We want to derive estimates of the derivatives of
the Newtonian potential u = I' * f in terms of the source density f. We continue
to assume that f € C°(R"); the estimates extend by a density argument to any
Hélder-continuous function f with compact support (or sufficiently rapid decay at
infinity).
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In one space dimension, a solution of the ODE
_u// _ f
is given in terms of the potential (Z13) by

u(w) =5 [l =3l fw) .

If f € C.(R), then obviously u € C?(R) and max |u”| = max |f].

In more than one space dimension, however, it is not possible estimate the
maximum norm of the second derivative D?u of the potential u = I' % f in terms
of the maximum norm of f, and there exist functions f € C.(R™) for which u ¢
C?(R™).

Nevertheless, if we measure derivatives in an appropriate way, we gain two
derivatives in solving the Laplace equation (and other second-order elliptic PDEs).
The fact that in inverting the Laplacian we gain as many derivatives as the order
of the PDE is the essential point of elliptic regularity theory; this does not happen
for many other types of PDEs, such as hyperbolic PDEs.

In particular, if we measure derivatives in terms of their Hélder continuity, we
can estimate the C%“norm of u in terms of the C%“norm of f. These Holder
estimates were used by Schauderf] to develop a general existence theory for elliptic
PDEs with Hélder continuous coefficients, typically referred to as the Schauder
theory [17].

Here, we will derive Holder estimates for the Newtonian potential.

THEOREM 2.28. Suppose that f € C°(R™) and 0 < a < 1. If u =T x f where

T is the Newtonian potential (2.12), then
[aiju]o,a S C [f]O,oz

where [, , denotes the Hélder semi-norm (L) and C is a constant that depends
only on o and n.

PROOF. Let 2 be a smooth open set that contains the support of f. We write
E2) as
(230) 61']"11, = Tf - fg
where the linear operator

T:CPR") - CR")

is defined by

Tf(z)= A K(z—y)[f(y) = f(@)] dy, K =0yl,

and the function g : R — R is given by

(2.31) g(x) = [ O'(z —y)v;(y) dS(y).
o

If 2,2’ € R™, then
Oyju(x) — Oyu(a’) = Tf(x) = Tf(2') — [f(2)g(x) — f(a")g(2")]

3Juliusz Schauder (1899-1943) was a Polish mathematician. In addition to the Schauder
theory for elliptic PDEs, he is known for the Leray-Schauder fixed point theorem, and Schauder
bases of a Banach space. He was killed by the Nazi’s while they occupied Lvov during the second
world war.
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The main part of the proof is to estimate the difference of the terms that involve
Tf.
In order to do this, let

1
f:§($—|—I/), 5:|$—I/|,

and choose €2 so that it contains Bas (). We have
Tf(x) - Tf()

(2.32) _ /Q (K(x— ) [f(y) — f@)] — K& —y) [f(y) — F@)]} dy.

We will separate the the integral over €2 in ([232) into two parts: (a) |y — Z| < d;
(b) ly — Z| > 4. In region (a), which contains the points y = x, y = 2’ where K is
singular, we will use the Holder continuity of f and the smallness of the integration
region to estimate the integral. In region (b), we will use the Hélder continuity of
f and the smoothness of K to estimate the integral.

(a) Suppose that |y — Z| < 0, meaning that y € Bs (Z). Then

3
o -yl <o —al+]z -yl < 55,

so y € Bss)s (), and similarly for ’. Using the Holder continuity of f and the fact
that K is homogeneous of degree —n, we have

Kz =) [f(y) - f(@)] - K@@' —y)[f(y) = f@)]]
S C[f]oﬁa {|$ _yla—n + |.’L'/ _y|o¢—n} .

Thus, using C' to denote a generic constant depending on a and n, we get
/B . Kz —y) [f(y) = f(@)] = K(z" =) [f(y) = f(&)]] dy
s(T

<Clflaa [ ey i dy
5T

<Cllo [ oy
B3s/2(0)
< Cflyq 0™
(b) Suppose that |y — Z| > §. We write

K@ —y)[f(y) — f(@)] - K2’ —y) [f(y) - f(@)]
= [K(x—y) = K@ =yl [fly) - f(@)] = K@@' —y)[f(2) = f(&)]

and estimate the two terms on the right hand side separately. For the first term,
we use the the Holder continuity of f and the smoothness of K; for the second
term we use the Holder continuity of f and the divergence theorem to estimate the
integral of K.

(b1) Since DK is homogeneous of degree —(n + 1), the mean value theorem
implies that

(2.33)

|z — ']

|K(z —y) — K(2' —y)| SCW
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for € = x4 (1—0)a’ with 0 < 6 < 1. Using this estimate and the Holder continuity
of f, we get

y—x®
Ko =)~ K = 0] 1)~ 1] < €l 572
We have
_ _ _ 1 3 B
ly—al<ly—z/+lg—zl=ly -2+ 50 < ly -1,
_ _ _ 1 1 3
E—ylzly—zl-lz—&2ly—2[- 502 5ly -2

It follows that
[K(z—y) = K" = )] [f(y) = f@)]| < C[flyq0ly — 2"
Thus,
/ NE (@ —y) - K@ =] [f(y) — f(@)]] dy
Q\B; (z)

<[ K-y - K6 - )7 - f@)] dy
R"\ B;(Z)

<Cflyad y 5|y|°*‘"‘1dy
y|=

< C[flp.a 0™

Note that the integral does not converge at infinity if o = 1; this is where we require
o<1

(b2) To estimate the second term in ([2Z33]), we suppose that 2 = Br (Z) where
Bpg (Z) contains the support of f and R > 2§. (All of the estimates above apply for
this choice of Q.) Writing K = 0;;I' and using the divergence theorem we get

/ K(z —y)dy
Br(%)\Bs ()

- / AT (x — y)v;(y) dS(y) — / T ( — y)v; () dS(y).
OBR(T)

9Bs(7)
If y € 9BRr (Z), then

6>

>~ w

1
o —yl >y —a| — |z —a| > R -5 R
and If y € 9B; (), then
o 1.1
o=yl > ly -z |z —2] >0 56> 50

Thus, using the fact that DI" is homogeneous of degree —n + 1, we compute that

(2.34) / 0.0 (x — y)v;(y)] dS(y) < CRP 1L < ©
OBR(7) R

and

1
/ 0T (z — y)v;(y) dS(y)| C6" ' —= < C
9B;s(Z) g
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Thus, using the Holder continuity of f, we get

<C [f]o,a 6.

(@)~ 1) | o K )y

Putting these estimates together, we conclude that
Tf(x) = Tf@")] < Clflgqle -2

where C is a constant that depends only on a and n.
(c) Finally, to estimate the Holder norm of the remaining term fg in (2.30), we
continue to assume that Q = Bg (). From (2.31)),

o( +h) = / T (h — y)v; () dS(y).
OBR(0)

Changing y — —y in the integral, we find that g(z + h) = ¢g(z — h). Hence
g(x) = g(a’). Moreover, from [234), we have |g(z)| < C. It therefore follows that

[f(@)g(x) — f(a")g(a")] < Cf(x) = f(a")] < Cflyq lz =27,
which completes the proof. ([l

These Holder estimates, and their generalizations, are fundamental to theory
of elliptic PDEs. Their derivation by direct estimation of the Newtonian potential
is only one of many methods to obtain them (although it was the original method).
For example, they can also be obtained by the use of Campanato spaces, which
provide Hoélder estimates in terms of suitable integral norms [23], or by the use
of Littlewood-Payley theory, which provides Holder estimates in terms of dyadic
decompositions of the Fourier transform [5].

2.8. Singular integral operators
Using (2.29)), we may define a linear operator
T : CF(R™) — C*(R")
that gives the second derivatives of a function in terms of its Laplacian,
&ju = T%j Au.
Explicitly,

39 Tl = [ Kl 5 - S by S,

where B (z) D supp f and K;; = —0;;T is given by

(2.36) Kij(z) = — (léij—xixj).

anlz[™ \n |[?

This function is homogeneous of degree —n, the borderline power for integrability,
so it is not locally integrable. Thus, Young’s inequality does not imply that con-
volution with K; is a bounded operator on Lys., which explains why we cannot
bound the maximum norm of D?u in terms of the maximum norm of f.

The kernel K;; in (230) has zero integral over any sphere, meaning that

/ K;j(y)dS(y) = 0.
Bgr(0)
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Thus, we may alternatively write 753; as

Ty f(x) — > f(2)5;; = lm Koz — ) [ (0) — f(@)] dy
n €=0" JBr(2)\B.(x)
= lir(ng+ Kij(x —y)f(y)dy
€— Br(z)\Be(z)
= lim Kij(x —y)f(y)dy.

e—0t Rn\ B ()

This is an example of a singular integral operator.
The operator T;; can also be expressed in terms of the Fourier transform

F(€) = L z)e " dx
7€) = G [ e

as
T = SO
Since the multiplier m;; : R™ — R defined by
e (6) = $8
) (5) |§|2

belongs to L>(R™), it follows from Plancherel’s theorem that T;; extends to a
bounded linear operator on L2(R™).

In more generality, consider a function K : R™ — R that is continuously differ-
entiable in R™ \ 0 and satisfies the following conditions:

K(\x) = /\—1nK(x) for A > 0;

(2.37)
/ KdS=0 for R > 0.
OBR(0)

That is, K is homogeneous of degree —n, and its integral over any sphere centered
at zero is zero. We may then write

K(z) = &) P=—

e ||

where  : S"1 — R is a C'-function such that

/ QdS =0.
Sn—1

We define a singular integral operator T : C°(R™) — C°°(R™) of convolution
type with smooth, homogeneous kernel K by

(2.38) Tf(x) = Tim K(x—y)/(y) dy.
e R™\B.(x)
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This operator is well-defined, since if Bg (z) D supp f, we may write

Tf(z)= lim K(z —y)f(y)dy.
€07 JBg(2)\B.(x)

~ 1im { /B ey FE =D ) = @) dy

e—0t
+1 | Kz —y)dy)
Br(x)\B.(z)

- / K(z—y) [f(y) - /(2)] dy.
Bpgr(z)

Here, we use the dominated convergence theorem and the fact that

/ K(y)dy =0
Br(0)\B.(0)

since K has zero mean over spheres centered at the origin. Thus, the cancelation due
to the fact that K has zero mean over spheres compensates for the non-integrability
of K at the origin to give a finite limit.

Calderén and Zygmund (1952) proved that such operators, and generalizations
of them, extend to bounded linear operators on LP(R™) for any 1 < p < oo (see
e.g. [7]). As a result, we also ‘gain’ two derivatives in inverting the Laplacian when
derivatives are measured in LP for 1 < p < co.






CHAPTER 3

Sobolev spaces

These spaces, at least in the particular case p = 2, were known
since the very beginning of this century, to the Italian mathe-
maticians Beppo Levi and Guido Fubini who investigated the
Dirichlet minimum principle for elliptic equations. Later on
many mathematicians have used these spaces in their work. Some
French mathematicians, at the beginning of the fifties, decided to
invent a name for such spaces as, very often, French mathemati-
cians like to do. They proposed the name Beppo Levi spaces.
Although this name is not very exciting in the Italian language
and it sounds because of the name “Beppo”, somewhat peasant,
the outcome in French must be gorgeous since the special French
pronunciation of the names makes it to sound very impressive.
Unfortunately this choice was deeply disliked by Beppo Levi,
who at that time was still alive, and — as many elderly people
— was strongly against the modern way of viewing mathematics.
In a review of a paper of an Italian mathematician, who, imi-
tating the Frenchman, had written something on “Beppo Levi
spaces”, he practically said that he did not want to leave his
name mixed up with this kind of things. Thus the name had
to be changed. A good choice was to name the spaces after
S. L. Sobolev. Sobolev did not object and the name Sobolev
spaces is nowadays universally accepted

We will give only the most basic results here. For more information, see Shkoller
[37], Evans [9] (Chapter 5), and Leoni [26]. A standard reference is [I].

3.1. Weak derivatives

Suppose, as usual, that €2 is an open set in R".

DEFINITION 3.1. A function f € Li () is weakly differentiable with respect

loc

to ; if there exists a function g; € L () such that

fOipdr = —/ gi¢ dx for all ¢ € C° ().
Q Q
The function g; is called the weak ith partial derivative of f, and is denoted by 0; f.

Thus, for weak derivatives, the integration by parts formula

O;0dr = — 0; d
[ Fows /chb:v

1Fichera, 1977, quoted by Naumann [31].

47
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holds by definition for all ¢ € C°(2). Since C°(Q) is dense in L{, (), the weak

derivative of a function, if it exists, is unique up to pointwise almost everywhere
equivalence. Moreover, the weak derivative of a continuously differentiable function
agrees with the pointwise derivative. The existence of a weak derivative is, however,
not equivalent to the existence of a pointwise derivative almost everywhere; see
Examples 3.4 and

Unless stated otherwise, we will always interpret derivatives as weak deriva-
tives, and we use the same notation for weak derivatives and continuous pointwise
derivatives. Higher-order weak derivatives are defined in a similar way.

DEFINITION 3.2. Suppose that a € NjJ is a multi-index. A function f € L{ (2)
has weak derivative 9°f € L{ (Q) if

loc
/ (0°f) pdx = (—1)‘“|/f(6a¢) dr  forall ¢ € C2(Q).
Q Q

3.2. Examples

Let us consider some examples of weak derivatives that illustrate the definition.
We denote the weak derivative of a function of a single variable by a prime.

EXAMPLE 3.3. Define f € C(R) by
xz if x>0,
f(‘r)_{ 0 ifz<0.
We also write f(x) = x4. Then f is weakly differentiable, with
(3.1) I = X[0,00)>
where X|o,o0) is the step function

(1 ifz>0,
X0 () =1 0 itz <o

The choice of the value of f/'(z) at = 0 is irrelevant, since the weak derivative
is only defined up to pointwise almost everwhere equivalence. To prove (B.]), note
that for any ¢ € C2°(R), an integration by parts gives

/fsb'dx—/ooow'dx_—/owm_—/X[O,Oo)cz)dz.

EXAMPLE 3.4. The discontinuous function f: R — R

f(x)_{ (1) if 2 >0,

itz <.
is not weakly differentiable. To prove this, note that for any ¢ € C°(R),

[ g0 - /000 & dr = —(0).

Thus, the weak derivative g = f’ would have to satisfy
(3.2) /g(b dz = ¢(0) for all ¢ € C°(R).

Assume for contradiction that g € Li _(R) satisfies (3.2). By considering test

loc
functions with ¢(0) = 0, we see that g is equal to zero pointwise almost everywhere,

and then ([B.2]) does not hold for test functions with ¢(0) # 0.
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The pointwise derivative of the discontinuous function f in the previous ex-
ample exists and is zero except at 0, where the function is discontinuous, but the
function is not weakly differentiable. The next example shows that even a contin-
uous function that is pointwise differentiable almost everywhere need not have a
weak derivative.

EXAMPLE 3.5. Let f € C'(R) be the Cantor function, which may be constructed
as a uniform limit of piecewise constant functions defined on the standard ‘middle-
thirds’ Cantor set C. For example, f(x) = 1/2 for 1/3 <z <2/3, f(z) =1/4 for
1/9 < 2 <2/9, f(z) =3/4 for 7/9 < < 8/9, and so on[] Then f is not weakly
differentiable. To see this, suppose that f’ = g where

[oode=— [ to'ds

for all test functions ¢. The complement of the Cantor set in [0,1] is a union of

open intervals,
12 12 7 8
1 === - = — =
pane=(53)0(53) 0 (55) v

whose measure is equal to one. Taking test functions ¢ whose supports are com-
pactly contained in one of these intervals, call it I, and using the fact that f = ¢;
is constant on I, we find that

/g¢dw=—/Ifqﬁ’dac:—cf/l(b’dxzo.

It follows that g = 0 pointwise a.e. on [0,1]\ C, and hence if f is weakly differ-
entiable, then f’ = 0. From the following proposition, however, the only functions
with zero weak derivative are the ones that are equivalent to a constant function.
This is a contradiction, so the Cantor function is not weakly differentiable.

PROPOSITION 3.6. If f: (a,b) = R is weakly differentiable and ' =0, then f
is a constant function.

PROOF. The condition that the weak derivative f’ is zero means that
(3.3) /f(b’ de =0  for all ¢ € C°(a,b).

Choose a fixed test function n € C¢°(a,b) whose integral is equal to one. We may
represent an arbitrary test function ¢ € CS°(a,b) as

¢=An+'

2The Cantor function is given explicitly by: f(z) =0ifx <0; f(x) =1ifz > 1;

oo

1 Cn
f(w):§Z2—n

n=1

if e =730°, cn/3" with ¢, € {0,2} for all n € N; and
N Cn 1
Z on + oN+1
n=1

ife=>7",cn/3", with ¢, € {0,2} for 1 <n < k and ¢, = 1.

f(@) =

N | =
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where A € R and ¢ € C2°(a,b) are given by

b T
A= / pdv, )= / [6(t) — An(t)] dt.

Then (B3]) implies that
/f¢dw=A/fndx:c/¢d:E, c:/fndx.

It follows that
/(f—c)¢d:1c=0 for all ¢ € C°(a,b),

which implies that f = ¢ pointwise almost everywhere, so f is equivalent to a
constant function. O

As this discussion illustrates, in defining ‘strong’ solutions of a differential equa-
tion that satisfy the equation pointwise a.e., but which are not necessarily contin-
uously differentiable ‘classical’ solutions, it is important to include the condition
that the solutions are weakly differentiable. For example, up to pointwise a.e.
equivalence, the only weakly differentiable functions u : R — R that satisfy the
ODE

u' =0 pointwise a.e.
are the constant functions. There are, however, many non-constant functions that
are differentiable pointwise a.e. and satisfy the ODE pointwise a.e., but these so-
lutions are not weakly differentiable; the step function and the Cantor function are
examples.

ExXAMPLE 3.7. For a € R, define f: R" — R by

1
(3.4) flz) = —.
=]
Then f is weakly differentiable if a + 1 < n with weak derivative

a xX;

9if(z) = BEGEEE

That is, f is weakly differentiable provided that the pointwise derivative, which is
defined almost everywhere, is locally integrable.

To prove this claim, suppose that € > 0, and let ¢¢ € C°(R™) be a cut-off
function that is equal to one in B, (0) and zero outside Bz, (0). Then

belongs to C°°(R™) and f€ = f in |x| > 2e. Integrating by parts, we get

(3.5) [@ir0de=- [ @) da.
We have

a xZ;

1
Oif () = =77 1 = ¢°(@)] = =700 (2).
||+ |z ||
Since |0;¢°| < C/e and |0;¢°| = 0 when |z| < € or |z| > 2¢, we have

. c
|09 ()] < T
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It follows that

!

C
. fe <
0.0 <

where C’ is a constant independent of e. Moreover
a  x;
0ifé(x) = ——= — ointwise a.e. as ¢ — 07.
SO R P
If |z|~(@*1 is locally integrable, then by taking the limit of ([BX) as ¢ — 0T and
using the Lebesgue dominated convergence theorem, we get

/<_m%%>¢dx_—/f<ai¢> dz,

which proves the claim.
Alternatively, instead of mollifying f, we can use the truncated function

Foa) = XB. (0) (55)

x|®

3.3. Distributions

Although we will not make extensive use of the theory of distributions, it is
useful to understand the interpretation of a weak derivative as a distributional
derivative. Let €2 be an open set in R™.

DEFINITION 3.8. A sequence {¢, : n € N} of functions ¢,, € C2°(Q) converges
to ¢ € C°(Q) in the sense of test functions if:

(a) there exists Q' € Q such that supp ¢, C Q' for every n € N;
(b) 0%y, — 0%¢ as n — oo uniformly on § for every a € Ng.

The topological vector space D(Q2) consists of C'°(2) equipped with the topology
that corresponds to convergence in the sense of test functions.

Note that since the supports of the ¢, are contained in the same compactly
contained subset, the limit has compact support; and since the derivatives of all
orders converge uniformly, the limit is smooth.

The space D(2) is not metrizable, but it can be shown that the sequential
convergence of test functions is sufficient to determine its topology [19].

A linear functional on D(f2) is a linear map T : D(2) — R. We denote the
value of T acting on a test function ¢ by (T, ¢); thus, T is linear if

(T, A + pab) = MT', ¢) + u(T,)  for all \,pu € R and ¢, € D(Q).
A functional T is continuous if ¢,, — ¢ in the sense of test functions implies that
(T, ¢n) = (T, ¢) n R
DEFINITION 3.9. A distribution on (2 is a continuous linear functional
T:D(Q) >R
A sequence {T,, : n € N} of distributions converges to a distribution 7', written
T, = T, if (T,,,¢) — (T,¢) for every ¢ € D(Q). The topological vector space

D'(Q) consists of the distributions on  equipped with the topology corresponding
to this notion of convergence.

Thus, the space of distributions is the topological dual of the space of test
functions.
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ExaMPLE 3.10. The delta-function supported at a € Q is the distribution
0o : D(Q) - R
defined by evaluation of a test function at a:

(0a, @) = ¢(a).
This functional is continuous since ¢, — ¢ in the sense of test functions implies,
in particular, that ¢,(a) = ¢(a)

EXAMPLE 3.11. Any function f € L], () defines a distribution Ty € D'(2) by
Tp.0) = | fode
The linear functional T is continuous since if ¢, — ¢ in D(12), then
sup |¢n, — ¢ — 0
o4
on a set ' € Q that contains the supports of the ¢, so

(T~ @0 = | [ £160-0) ds| < ([ 111de) suplon— o1 0.

Any distribution associated with a locally integrable function in this way is called
a regular distribution. We typically regard the function f and the distribution T’
as equivalent.

ExXAMPLE 3.12. If i is a Radon measure on €2, then
Iy 0) = | ddp
Q

defines a distribution I, € D’(2). This distribution is regular if and only if p is
locally absolutely continuous with respect to Lebesgue measure A, in which case
the Radon-Nikodym derivative

_ ap 1
f d\ € LIOC(Q)
is locally integrable, and
(Iu;¢) = | fodx

Q
so I, = Ty. On the other hand, if u is singular with respect to Lebesgue measure
(for example, if p = 6, is the unit point measure supported at a € ), then I, is
not a regular distribution.

One of the main advantages of distributions is that, in contrast to functions,
every distribution is differentiable. The space of distributions may be thought of
as the smallest extension of the space of continuous functions that is closed under
differentiation.

DEFINITION 3.13. For 1 < i < n, the partial derivative of a distribution T €
D'(2) with respect to x; is the distribution 0;T € D'(2) defined by

(O:T, ¢) = —(T,8:6)  for all ¢ € D(S).
For a € Ni, the derivative 9*T € D'(Q) of order || is defined by
(0°T, ¢) = (—1)1*N(T,8%¢)  for all ¢ € D(Q).
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Note that if T' € D’(€2), then it follows from the linearity and continuity of the
derivative 0 : D(2) — D(£2) on the space of test functions that 9T is a continuous
linear functional on D(Q?). Thus, 0*T € D'(Q) for any T € D'(Q2). It also follows
that the distributional derivative 9 : D'(Q) — D’(Q) is linear and continuous on
the space of distributions; in particular if T,, — T', then 0%7T,, — 90T .

Let f € LL.(2) be a locally integrable function and Ty € D'(2) the associ-

ated regular distribution defined in Example 3.1l Suppose that the distributional
derivative of T is a regular distribution

0Ty =T, gi € Li, ().
Then it follows from the definitions that

fO;0dx = —/ gi¢p dx for all ¢ € C2°(0).
Q Q

Thus, Definition B.1] of the weak derivative may be restated as follows: A locally
integrable function is weakly differentiable if its distributional derivative is regu-
lar, and its weak derivative is the locally integrable function corresponding to the
distributional derivative.

The distributional derivative of a function exists even if the function is not
weakly differentiable.

ExXAMPLE 3.14. If f is a function of bounded variation, then the distributional
derivative of f is a finite Radon measure, which need not be regular. For example,
the distributional derivative of the step function is the delta-function, and the dis-
tributional derivative of the Cantor function is the corresponding Lebesgue-Stieltjes
measure supported on the Cantor set.

ExXAMPLE 3.15. The derivative of the delta-function d, supported at a, defined
in Example B.I0] is the distribution 9;0, defined by

(0i0a, §) = —0id(a).
This distribution is neither regular nor a Radon measure.

Differential equations are typically thought of as equations that relate functions.
The use of weak derivatives and distribution theory leads to an alternative point of
view of linear differential equations as linear functionals acting on test functions.
Using this perspective, given suitable estimates, one can obtain simple and general
existence results for weak solutions of linear PDEs by the use of the Hahn-Banach,
Riesz representation, or other duality theorems for the existence of bounded linear
functionals.

While distribution theory provides an effective general framework for the anal-
ysis of linear PDEs, it is less useful for nonlinear PDEs because one cannot define a
product of distributions that extends the usual product of smooth functions in an
unambiguous way. For example, what is T¢d, if f is a locally integrable function
that is discontinuous at a? There are difficulties even for regular distributions. For
example, f : x — |z|~"/? is locally integrable on R™ but f? is not, so how should
one define the distribution (7f)??

3.4. Properties of weak derivatives

We collect here some properties of weak derivatives. The first result is a product
rule.
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PROPOSITION 3.16. If f € L _(Q) has weak partial derivative 0;f € Li ()

loc loc

and ¢ € C®(Q), then ¥ f is weakly differentiable with respect to x; and
(3.6) 9i(f) = (0) f +¥(0if).

PROOF. Let ¢ € C°(Q2) be any test function. Then ¢¢ € C°(Q) and the
weak differentiability of f implies that

F0i(06) di = / (8: Yo d.
Q

Q

Expanding 9;(v¢) = ¥ (0;¢) + (0;1)¢ in this equation and rearranging the result,
we get

@0 do =~ [ (@) +viaf)ods  forall o€ O @),
Thus, ¢ f is weakly differentiable and its weak derivative is given by ([B.6]). O

The commutativity of weak derivatives follows immediately from the commu-
tativity of derivatives applied to smooth functions.

PROPOSITION 3.17. Suppose that f € Li _(Q) and that the weak derivatives

loc

O%f, 0P f exist for multi-indices o, f € N§. Then if any one of the weak derivatives
0otBf 9298 f, OPO™f exists, all three derivatives exist and are equal.

ProOF. Using the existence of 9%u, and the fact that 3°¢ € C°(Q) for any
¢ € C(Q), we have

0udPpdr = (—1)|a‘/u8°‘+ﬁ¢)d$.

Q Q

This equation shows that 9*T#u exists if and only if °0%u exists, and in that case
the weak derivatives are equal. Using the same argument with « and § exchanged,
we get the result. 0

ExaMPLE 3.18. Consider functions of the form
u(z,y) = f(z) + g(y).
Then u € L _(R?) if and only if f,g € L _(R). The weak derivative 0,u exists if

loc loc

and only if the weak derivative f’ exists, and then O,u(z,y) = f'(z). To see this,
we use Fubini’s theorem to get for any ¢ € C2°(R?) that

/U(:E, Y)0xp(x, y) dudy

- /f(x)az U{b(l’,y) dy] dx+/g(y) [/&caﬁ(aﬁ,y) dx} dy.

Since ¢ has compact support,

/(%C(b(:t, y)dx = 0.
Also,
[ o)y = e(a)
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is a test function & € C°(R). Moreover, by taking ¢(z,y) = &£(z)n(y), where
n € C*(R) is an arbitrary test function with integral equal to one, we can get
every £ € C(R). Since

[utw)o.otw. v dody = [ 1) ) da,

it follows that 0,u exists if and only if f’ exists, and then d,u = f’.
In that case, the mixed derivative 0,0,u also exists, and is zero, since using
Fubini’s theorem as before

/fl($)5y¢($ay) dzdy = /f’(w) {/ Oyd(z,y) dy} dr = 0.

Similarly 9,u exists if and only if ¢’ exists, and then dyu = ¢’ and 9,0,u = 0.
The second-order weak derivative 0,,u exists without any differentiability as-
sumptions on f,g € L (R) and is equal to zero. For any ¢ € C°(R?), we have

/ w(z,y)Deyd(e, ) dady

— /f(a:)am </3y¢(x,y) dy) da:—l—/g(y)ay (/&cab(a:,y) dx) dy
=0.

Thus, the mixed derivatives 9,0,u and 0,0,u are equal, and are equal to the
second-order derivative 0,,u, whenever both are defined.

Weak derivatives combine well with mollifiers. If € is an open set in R™ and
e > 0, we define Q¢ as in (7)) and let n° be the standard mollifier (LG]).

THEOREM 3.19. Suppose that f € L .(Q) has weak derivative 0°f € L] ().
Then 1 * f € C*(Q°) and
0%+ f) =n"=(0°F).
Moreover,
O (e*f)—=0f in L (Q) as e — 0.
PROOF. From Theorem [[228 we have ¢ x f € C°°(Q) and
% (N + f) = (0°n°) * f.
Using the fact that y — n°(z — y) defines a test function in C°(Q) for any fixed
x € Q¢ and the definition of the weak derivative, we have

=0 (0°f) (x)
Thus (0%n°) * f =0 * (0*f). Since 0*f € L{, (), Theorem [[228 implies that
n o (0%f) = 0°f
in L] (Q), which proves the result. O
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The next result gives an alternative way to characterize weak derivatives as
limits of derivatives of smooth functions.

THEOREM 3.20. A function f € Li (Q) is weakly differentiable in ) if and only
if there is a sequence { f,} of functions f,, € C*(Q) such that f,, = f and 0%f, — ¢
in Li .(Q). In that case the weak derivative of f is given by g = 0% f € L] .(Q).

PRrROOF. If f is weakly differentiable, we may construct an appropriate sequence
by mollification as in Theorem B.I91 Conversely, suppose that such a sequence
exists. Note that if f,, — f in L{ _(Q) and ¢ € C.(Q), then

/fn¢d:b—>/f¢dx as n — oo,
Q Q
since if K =supp ¢ € Q2

‘/ fngbda:—/f(bdx ‘/ ) ¢dx

Thus, for any ¢ € C°(€2), the L] -convergence of f,, and 9° f,, implies that

<sup|¢|/ |fn— f| dz — 0.

f0%dx = lim /fn8a¢dx
Q n—oo

= (=1)* lim Bo‘fn(bdx

n—r oo
= (-1l / 9o dz.
Q
So f is weakly differentiable and 0“f = g. O

We can use this approximation result to derive properties of the weak derivative
as a limit of corresponding properties of smooth functions. The following weak
versions of the product and chain rule, which are not stated in maximum generality,
may be derived in this way.

PROPOSITION 3.21. Let €2 be an open set in R™.

(1) Suppose that a € C*(Q) and u € L} (Q) is weakly differentiable. Then
au is weakly differentiable and

Oi(au) = a (O;u) + (9;a) u

(2) Suppose that f : R — R is a continuously differentiable function with
' € L*®(R) bounded, and u € Li () is weakly differentiable. Then
v = fowu is weakly differentiable and

O = f'(u)d;u.

(3) Suppose that ¢ : Q — QisaC- diffeomorphism of Q onto Q= o(Q) C R™.
For u € L}, (2 ), define v € LIOC(Q) by v =wuo¢ t. Then v is weakly
differentiable in Q if and only if u is weakly differentiable in ), and

0¢; Ov
8:101 Z o0x; 8y] °9
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PROOF. We prove (2) as an example. Since f' € L>, f is globally Lipschitz
and there exists a constant M such that

|f(s) = f(t)] < M|s—t] for all s,t € R.

Choose u,, € C*(Q) such that u, — u and dju,, — d;u in L] (), where u, — u
pointwise almost everywhere in Q. Let v = f owu and v, = f o u,, € C*(), with

Oivn = [ (un)0iu, € C(Q).
If O € Q, then

|vp, —v| dz = [flun) — flu) de <M [ |up —u|dx—0
o

Q Q/

as n — 0o. Also, we have
|00, — f'(u)Ou| dx :/ |f (un)Bsuup — f'(u)0;ul| dx
o Q'

< [ 1f (un)] |0sun — Osul da

194

+ [ 1 (un) — f'(u)] |0:u] dz.

o
Then
/ |f (un)| |0sun, — Oju| de < M | |0iupn, — Oju| do — 0.
Q/ Q/
Moreover, since f'(u,) — f'(u) pointwise a.e. and
|f (un) = f'(u)] |Osu| < 2M [Dul,

the dominated convergence theorem implies that
/ If (un) — f'(u)] |0;u] dz — 0 as n — 0.
o

It follows that v, — fow and d;v, — f'(u)dju in Li . Then Theorem 320, which
still applies if the approximating functions are C', implies that f o u is weakly
differentiable with the weak derivative stated. O

In fact, (2) remains valid if f € W1°°(R) is globally Lipschitz but not neces-
sarily C'*. We will prove this is the useful special case that f(u) = |ul.

PROPOSITION 3.22. Ifu € L () has the weak derivative O;u € L (), then

loc loc

lu| € Li .(Q) is weakly differentiable and

du ifu>0,
(3.7) Oilu| = 0 fu=0,
—0;u qu < 0.

ProOOF. Let
fe@) = Vit2 + €2
Since f€is C! and globally Lipschitz, Proposition [B.21] implies that f€(u) is weakly
differentiable, and for every ¢ € C°(Q)
0;
/ FE(u)digp da = _/ 2P da.
Q Q

u? 4 €2
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Taking the limit of this equation as ¢ — 0 and using the dominated convergence
theorem, we conclude that

; |u|0;p dx = — /Q((?Z|u|)¢) dx

where 0;|u| is given by (B.7]). O

It follows immediately from this result that the positive and negative parts of
u=u"t —u", given by

1 1
wh=g(ll+u), =g (el - w),
are weakly differentiable if u is weakly differentiable, with
O ifu>0 _ 0 ifu>0
P ? ’ . _ Z Yy
Oiu _{ 0 ifu<0, Oiu _{—Biu if u < 0,

3.5. Sobolev spaces

Sobolev spaces consist of functions whose weak derivatives belong to L?. These
spaces provide one of the most useful settings for the analysis of PDEs.

DEFINITION 3.23. Suppose that €2 is an open set in R™, £k € N, and 1 < p < oc.
The Sobolev space WP (Q) consists of all locally integrable functions f : Q — R
such that

0%f e L? () for 0 < |a| < k.
We write W2(Q) = H*(Q).

The Sobolev space WP (Q) is a Banach space when equipped with the norm

1/p
ey = | 3 [ 10°51 do

la| <k
for 1 <p < oo and
1 w00 () = max sup |0%f].

al
As usual, we identify functions that are equal almost everywhere. We will use these
norms as the standard ones on W#?(Q), but there are other equivalent norms e.g.

1/p
T ( oot dx) |

la| <k

1/p
— @ r|P
ooy = mase ([ 107 )
The space H*(2) is a Hilbert space with the inner product

(f9)="> /Q (0° ) (0°g) da.

|| <K
We will consider the following properties of Sobolev spaces in the simplest
settings.

(1) Approximation of Sobolev functions by smooth functions;
(2) Embedding theorems;
(3) Boundary values of Sobolev functions and trace theorems;
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(4) Compactness results.

3.6. Approximation of Sobolev functions

To begin with, we consider Sobolev functions defined on all of R®. They may
be approximated in the Sobolev norm by by test functions.

THEOREM 3.24. For k € N and 1 < p < oo, the space C°(R™) is dense in
Wk,p(Rn)

PROOF. Let n° € C°(R™) be the standard mollifier and f € W*P(R™). Then
Theorem and Theorem imply that 7¢ * f € C>(R™) N W¥*P(R") and for
la| <k

M xf)=n"x(0°f) = 0%f  inLP(R") ase— 0T,
It follows that 7 x f — f in W*P(R™) as € — 0. Therefore C>°(R") N W*P?(R") is
dense in W*P(R").
Now suppose that f € C>(R") N WkP(R"), and let ¢ € C>°(R"™) be a cut-off

function such that o]
1 if |z <1,
o) :{ 0 if |z > 2.
Define ¢ (z) = ¢(z/R) and f£ = ¢®f € C°(R"). Then, by the Leibnitz rule,
aafR _ ¢Rao¢f+ %hR

where h® is bounded in L? uniformly in R. Hence, by the dominated convergence
theorem

o%ff 5 9f  inLP as R — oo,
so fB — fin WkP(R") as R — oo. It follows that C2°(9) is dense in W*»?(R"). O

If Q is a proper open subset of R™, then C%°(f)) is not dense in W*?(Q).
Instead, its closure is the space of functions Wé“ "P(Q) that ‘vanish on the boundary
09.” We discuss this further below. The space C>(Q)NW*?(Q) is dense in WP (Q)
for any open set 2 (Meyers and Serrin, 1964), so that W (Q2) may alternatively be
defined as the completion of the space of smooth functions in €2 whose derivatives
of order less than or equal to k belong to LP(€2). Such functions need not extend
to continuous functions on Q or be bounded on .

3.7. Sobolev embedding: p <n

G. H. Hardy reported Harald Bohr as saying ‘all analysts spend
half their time hunting through the literature for inequalities
which they want to use but cannot prove.

Let us first consider the following basic question: Can we estimate the LZ(R™)-
norm of a smooth, compactly supported function in terms of the LP(R™)-norm of
its derivative? As we will show, given 1 < p < n, this is possible for a unique value
of ¢, called the Sobolev conjugate of p.

We may motivate the answer by means of a scaling argument. We are looking
for an estimate of the form

(3.8) 1flle < CI|Df]lLe for all f € C°(R™)

3From the Introduction of [16].
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for some constant C' = C(p, q,n). For A > 0, let f) denote the rescaled function
x
A =1 (3)-
Then, changing variables x +— Az in the integrals that define the LP, L9 norms,
with 1 < p,q < 0o, and using the fact that

Dfy= 5D

1/ 1/
</ |Dfr|P d:z:> ’ = \n/p—1 </ |DfP dx) p,
1/q 1/q
7 dx =\ ( e da:) .
(/nw ) [

These norms must scale according to the same exponent if we are to have an
inequality of the desired form, otherwise we can violate the inequality by taking
A — 0 or A = co. The equality of exponents implies that ¢ = p* where p* satifies

1 1 1
(3.9) —=———.

p* p n
Note that we need 1 < p < n to ensure that p* > 0, in which case p < p* < oc.
We assume that n > 2. Writing the solution of (3.9]) for p* explicitly, we make the

following definition.

we find that

DEFINITION 3.25. If 1 < p < n, then the Sobolev conjugate p* of p is
L mp
p* = .
n—p
Thus, an estimate of the form (B8] is possible only if ¢ = p*; we will show
that B8] is, in fact, true when ¢ = p*. This result was obtained by Sobolev
(1938), who used potential-theoretic methods (c.f. Section [5.D]). The proof we give
is due to Nirenberg (1959). The inequality is usually called the Gagliardo-Nirenberg
inequality or Sobolev inequality (or Gagliardo-Nirenberg-Sobolev inequality ... ).
Before describing the proof, we introduce some notation, explain the main idea,
and establish a preliminary inequality.
For1 <i<nand z = (21,22,...,2,) € R, let

I’/L: (Il,---;ii;---xn) eRnily

where the ‘hat’ means that the ith coordinate is omitted. We write z = (z;, 27})

and denote the value of a function f : R™ — R at x by

f@) = f (zi,27) -
We denote the partial derivative with respect to x; by 0;.

If f is smooth with compact support, then the fundamental theorem of calculus
implies that

f = [ ol

Taking absolute values, we get

|f ()] g/ |8, f (£, )| dt.
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We can improve the constant in this estimate by using the fact that
oo
/ O; f(t,x}) dt = 0.
— 00

LEMMA 3.26. Suppose that g : R — R is an integrable function with compact
support such that fgdt =0. If

then

s@I < [ lola

PrROOF. Let g = g4+ — g— where the nonnegative functions g4, g_ are defined
by g4+ = max(g,0), g— = max(—g,0). Then |g| = g+ + g— and

1
/g+dt=/g_dt: §/|g|dt.
It follows that

@< [ awas [ gwa=3 [lla,

x o0 1
f@z- [ gwaz-[ gwia--; [lga
which proves the result. (|
Thus, for 1 < i < n we have
1 o0
s@I<3 [ 1o

The idea of the proof is to average a suitable power of this inequality over the
i-directions and integrate the result to estimate f in terms of Df. In order to do
this, we use the following inequality, which estimates the L'-norm of a function of
z € R" in terms of the L™ !-norms of n functions of @} € R"~! whose product
bounds the original function pointwise.

THEOREM 3.27. Suppose that n > 2 and
{gi cCPR"H:1<i< n}
are nonnegative functions. Define g € C°(R™) by
g9(@) = [[o:()).
i=1

Then

(3.10) /gd:c <IJllgll,,+-
i=1

Before proving the theorem, we consider what it says in more detail. If n = 2,
the theorem states that

/gl(Iz)gz(Il)diﬂldiﬂz < (/gl(l’z)dl’z> </92($1)d$1) :
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which follows immediately from Fubini’s theorem. If n = 3, the theorem states that

/91(202,$3)92($1,$3)g3($1,$2)dwldw2dw3

1/2 1/2 1/2
< (/g%(l‘g,l’g;)dl‘gdl‘g;) (/g%(ml,m) d$1d$3> (/g§($1,I2) d$1d$2> )

To prove the inequality in this case, we fix z; and apply the Cauchy-Schwartz
inequality to the xox3-integral of g7 - gogs. We then use the inequality for n = 2 to
estimate the zoxs-integral of gogs, and integrate the result over ;. An analogous
approach works for higher n.

Note that under the scaling g; — Ag;, both sides of ([B.I0) scale in the same
way,

/gdw — <H )\i> /gd!E, H lgillp_y (H )\z‘) H 19ill,,—1
bl ie1 i=1 i=1

as must be true for any inequality involving norms. Also, under the spatial rescaling

T +— Az, we have
/gdx»—>/\7”/gdx,

while [|gi[l, = A==1/?) i, s0

n n
[Tlgilly = A== T llgill
i=1 i=1
Thus, if p =n — 1 the two terms scale in the same way, which explains the appear-

ance of the L™ 1-norms of the g;’s on the right hand side of (Z.10).

PROOF. We use proof by induction. The result is true when n = 2. Suppose
that it is true for n — 1 where n > 3.

For1 <i<mn,let g;: R" ' - Rand g : R® = R be the functions given in the
theorem. Fix 7 € R and define g,, : R"~! — R by

g1 (21) = g(z1, 7).
For 2 <i<mn,let 2} = (z1,2} ;) where
2= (&1,...,&,...an) ER"Z
Define g¢; 4, : R 2 - R and Gizy R ! = R by
Gixq (55/11) =i (551795/1,1') .
Then
n
9o (@) = 91(21) [ [ 9000 () -
i=2

Using Holder’s inequality with g =n — 1 and ¢’ = (n — 1)/(n — 2), we get

/gm day = /91 <H9i=zl (l’/l,i)> dry
=2

. (n—1)/(n—2)
< lg1ll,—s /(Hgml (xll,z')> dzy
1=2

(n=2)/(n=1)
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The induction hypothesis implies that

n (n—1)/(n—2)
/ (Hgi,ml (55/11)> day < H‘
i=2

<H|\g |0

g’L s L1

n—2

Hence,

n
/ Gor d2; < llga s [ Ngise0 My -

i=2
Integrating this equation over 1 and using the generalized Holder inequality with
p2=p3=--=p,=n—1, we get

/gdw < ||91||n71/ <H|9ix11”n—l> dy
=2
" 1/(n—1)
n—1
< llgall—s (H/|9i,wl||n—1 dwl) '
=2

n—1 n—1
[lsilit e = [ < Je dxa,i) dy

- HgZHn 1>

/gdx <TLlgl -

i=1
The result follows by induction. ([l

Thus, since

we find that

We now prove the main result.

THEOREM 3.28. Let1 < p < n, wheren > 2, and let p* be the Sobolev conjugate
of p giwen in Definition[3.20. Then

p SCIDFl,.  forall f € C(R")

where

(3.11) C(n,p) = L <Z‘1).

2n —p

PROOF. First, we prove the result for p = 1. For 1 < ¢ < n, we have

ol <3 [107(ta)

Multiplying these inequalities and taking the (n — 1)th root, we get

n/(n—1 1 - ~
Tika )Smga QZHQi
i=1
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where g;(z) = g;(}) with

1/(n-1)
gi(al) = ( [ ot dt) .

Theorem B.27] implies that

n
/ gde < [T lgill, .-
=1

1/(n-1)
o = ([ 101 a2)

n 1/(n—1)
n/(n— 1
/|f| / 1)d$SW<H/|3if|d$> :
=1

Note that n/(n — 1) = 1* is the Sobolev conjugate of 1.
Using the arithmetic-geometric mean inequality,

1
(il:[laz) < E;aia

n n/(n—1)
1
n/n=1) g, < [ L ,
Jlarroas < <2n > [10i dcc) ,

1
£l < 5 1Dl

Since

it follows that

we get

or

which proves the result when p = 1.
Next suppose that 1 < p < n. For any s > 1, we have

d
d—|:1c|S = ssgnaz|z[* .
x

Thus,

@) = / O\ f(t )| de
= 8/ i ()" sgn [ f (¢, )] 8 f (¢, ) dt.

— 00

Using Lemma [3.28] it follows that

@) <2 / £ (1 )DL f (8, )| e,

_5_00

and multiplication of these inequalities gives
sn S n - > S—
s < (3) TL[ I abosies)] d.
=17 "

Applying Theorem with the functions
0o 1/(n-1)
) = | [ 17 waons sl an
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we find that
sn S S—
171150y < 5 LTI 01, -
=1

1=

From Hélder’s inequality,

s—1 s—1
108, < 17, 1051
We have
s— s—1
Hf ! P’ = Hpr’(sfl)
We choose s > 1 so that
'(s—1)= o
p n_1
which holds if
(n— 1) sn .
s§=p ) =p.
n—p n—1

Then

I/

n 1/n
S
o<t (H ||az-f|p> .
i=1

Using the arithmetic-geometric mean inequality, we get

n 1/p
S
1l < 5 (Z ||aif|§> :
i=1

which proves the result. O

We can interpret this result roughly as follows: Differentiation of a function
increases the strength of its local singularities and improves its decay at infinity.
Thus, if Df € LP, it is reasonable to expect that f € LP" for some p* > p since
LP" -functions have weaker singularities and decay more slowly at infinity than LP-
functions.

EXAMPLE 3.29. For a > 0, let f, : R™ — R be the function
1
fa(z)

||

considered in Example 377 This function does not belong to L4(R™) for any a since
the integral at infinity diverges whenever the integral at zero converges. Let ¢ be a
smooth cut-off function that is equal to one for |z| < 1 and zero for |z| > 2. Then
go = @fq is an unbounded function with compact support. We have g, € LI(R"™)
if ag < n, and Dg, € LP(R™) if p(a + 1) < n or ap* < n. Thus if Dg, € LP(R"),
then g, € LY(R"™) for 1 < ¢ < p*. On the other hand, the function h, = (1 — ¢)f,
is smooth and decays like |z|~% as z — oo. We have h, € LY(R") if ga > n and
Dh, € LP(R™) if p(a+1) > n or p*a > n. Thus, if Dh, € LP(R™), then f € LI(R™)
for p* < ¢ < co. The function fu, = g, + hy belongs to LP" (R™) for any choice of
a,b > 0 such that Df,, € LP(R™). On the other hand, for any 1 < ¢ < oo such that
q # p*, there is a choice of a,b > 0 such that D fq, € LP(R™) but fup ¢ LY(R™).

The constant in Theorem [3.28] is not optimal. For p = 1, the best constant is

1

1/n
nan/

C(n,1) =
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where a,, is the volume of the unit ball, or

C(n,1) = n—\l/% r (1+g)]1/”

where T" is the I-function. Equality is obtained in the limit of functions that
approach the characteristic function of a ball. This result for the best Sobolev
constant is equivalent to the isoperimetric inequality that a sphere has minimal
area among all surfaces enclosing a given volume.

For 1 < p < n, the best constant is (Talenti, 1976)

1 p—I\"YP[  TA+n/2DR) V"
n'/Py/m \n—p I'(n/p)P(1+n—-n/p)|
Equality holds for functions of the form

C(n,p) =

1-n/
flz) = (a 4 b|x|p/(pfl)) b

where a, b are positive constants.
The Sobolev inequality in Theorem does not hold in the limiting case
p — n, p* — oco.

EXAMPLE 3.30. If ¢(z) is a smooth cut-off function that is equal to one for
|z] <1 and zero for |z| > 2, and

f() = é(x) loglog (1 + ﬁ) ,

then Df € L™(R™), and f € WL (R), but f ¢ L=(R").

We can use the Sobolev inequality to prove various embedding theorems. In
general, we say that a Banach space X is continuously embedded, or embedded for
short, in a Banach space Y if there is a one-to-one, bounded linear map: X — Y.
We often think of ¢ as identifying elements of the smaller space X with elements
of the larger space Y; if X is a subset of Y, then 2 is the inclusion map. The
boundedness of ¢+ means that there is a constant C such that ||y < C||z|x for
all z € X, so the weaker Y-norm of vz is controlled by the stronger X-norm of x.

We write an embedding as X — Y, or as X C Y when the boundedness is
understood.

THEOREM 3.31. Suppose that1 <p <n andp < g < p* where p* is the Sobolev
conjugate of p. Then WHP(R™) — L4(R™) and

Ifllg < Cllfllwrr  for all f € WHP(R™)
for some constant C = C(n,p,q).

PROOF. If f € WHP(R™), then by Theorem 324l there is a sequence of functions
fn € C(R™) that converges to f in W1P(R"). Theorem .28 implies that f,, — f
in LP"(R"). In detail: {Df,} converges to Df in LP so it is Cauchy in LP; since

||fn - fm p* < OHDfn - Dfm“p

{fn} is Cauchy in L?"; therefore f, — f for some f € L?" since L?" is complete;
and f is equivalent to f since a subsequence of {f,,} converges pointwise a.e. to f,
from the LP" convergence, and to f, from the LP-convergence.
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Thus, f € L?" (R™) and

1fllp= < CIDFlp-
Since f € LP(R"), Lemma [[.T1l implies that for p < ¢ < p*
£l < IFIDHF I
where 0 < 6 < 1 is defined by
1 6 1-6
=4 —.
qa p p

Therefore, using Theorem and the inequality
afpt < [99(1 B 9)1—0]1/1” (aP + bp)l/p,
we get
I1£lla < C*2UFIRID AN,
<o) P (I + D)
<= 0) )" |l
O

Sobolev embedding gives a stronger conclusion for sets €2 with finite measure.
In that case, LP () < L%(Q) for every 1 < ¢ < p*, so W'P(Q) — L4(Q) for
1< g <p* not just p < q < p*.

Theorem does not, of course, imply that f € LP" (R") whenever Df €
LP(R™), since constant functions have zero derivative. To ensure that f € LP" (R"),
we also need to impose a decay condition on f that eliminates the constant func-
tions. In Theorem B3] this is provided by the assumption that f € LP(R") in
addition to Df € LP(R™). We can instead impose the following weaker decay
condition.

DEFINITION 3.32. A Lebesgue measurable function f : R™ — R vanishes at
infinity if for every € > 0 the set {x € R™ : |f(z)| > €} has finite Lebesgue measure.

If f € LP(R™) for some 1 < p < oo, then f vanishes at infinity. Note that this
does not imply that lim|,| . f(x) = 0.

EXAMPLE 3.33. Define f: R — R by

1
F=Sx d=|mot ]

neN

where x7 is the characteristic function of the interval I. Then

1
/ fdx = Z 3 < 00,
neN
so f € LY(R). The limit of f(x) as |z| — oo does not exist since f(x) takes on the
values 0 and 1 for arbitrarily large values of x. Nevertheless, f vanishes at infinity

since for any € < 1,
1
Hz eR:|f(z)] > €} :Zﬁ’
neN
which is finite.
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EXAMPLE 3.34. The function f : R — R defined by

| 1/logx ifx>2
f(“’)_{o if v <2

vanishes at infinity, but f ¢ LP(R) for any 1 < p < co.

The Sobolev embedding theorem remains true for functions that vanish at
infinity.

THEOREM 3.35. Suppose that f € Li (R™) is weakly differentiable with Df €

loc

LP(R™) where 1 < p < n and f vanishes at infinity. Then f € LP" (R") and
[fllp= < ClIDSIlp

where C' is given in (311]).

As before, we prove this by approximating f with smooth compactly supported
functions. We omit the details.

3.8. Sobolev embedding: p > n

Friedrichs was a great lover of inequalities, and that affected me
very much. The point of view was that the inequalities are more
interesting than the equalities, the identities

In the previous section, we saw that if the weak derivative of a function that
vanishes at infinity belongs to LP(R™) with p < n, then the function has improved
integrability properties and belongs to L?" (R™). Even though the function is weakly
differentiable, it need not be continuous. In this section, we show that if the deriva-
tive belongs to LP(R™) with p > n then the function (or a pointwise a.e. equivalent
version of it) is continuous, and in fact Holder continuous. The following result is
due to Morrey (1940). The main idea is to estimate the difference |f(z) — f(y)| in
terms of Df by the mean value theorem, average the result over a ball B, (z) and
estimate the result in terms of ||Df||, by Holder’s inequality.

THEOREM 3.36. Let n < p < oo and

oa=1-— 2,
p
with « = 1 if p = co. Then there are constants C = C(n,p) such that
(3.12) [fla <CIDfll, — forall f € CZ(R"),
(3.13) sup [f| < C [ fllyr,  forall f € CZ(R™),
]Rn

where [-],, denotes the Holder seminorm [, pn defined in (L1).

ProoF. First we prove that there exists a constant C' depending only on n
such that for any ball B, (x)

(3.14) ]lB @) s dy =0 /B DI,

@) |z =yt

Let w € 9B; (0) be a unit vector. For s > 0
f(:v—l—sw)—f(:v):/ %f(x—i—tw)dt:/ Df(z 4+ tw) - wdt,
0 0

4 ouis Nirenberg on K. O. Friedrichs, from Notices of the AMS, April 2002.
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and therefore since |w| =1

F(x+ sw) — F(z)] < /0 D f(z+ tw)| dt.

Integrating this inequality with respect to w over the unit sphere, we get

/ F(@) — f( + sw)| dS(w) g/ (/ D+ tw)| dt) d5(w).
9B1(0) 8B1(0)
From Proposition [[.45]

/ (/ |Df(x+tw)|dt> dS (w / / DI + t0)| et 445 )
8B (0) 8B (0) L3
D
:/ | f(n)il1 ay.
&@Hw—m

IDf ()
/831<0>'f“ f(a + sw)| dS(w) < /B Rt

Using Proposition [.45] together with this inequality, and estimating the integral
over By (z) by the integral over B, (z) for s < r, we find that

/Br(m) |f(x) = f(y)|dy = /07" (/831(()) |f(z) — f(z + sw)| dS(w)) "1 s
[

" D
o[ orl,
n Jp, () lz =y

This gives 3.14) with C = (na,)~!.
Next, we prove [BI2). Suppose that z,y € R". Let r = |z — y| and Q =
B, (x) N By (y). Then averaging the inequality

[f(@) = )l < [f(2) = F) + [ (y) = f(2)]

with respect to z over (2, we get

Thus,

IN

B15) @)= )] < £ 1) = 1G] d+ £ 1) = )] b=
From ([B.I4) and Holder’s inequality,
)| dz < x) — f(2)| dz
]1|f )| ]{Wum 1)l
DS ()]
C —
= /BT(m) oy Y

1/p d 1/p’
<C / |Df[P dz / 72 =y :
B, (z) B, (z) |7 — z[P'("
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1/p ,
dz /p _c Topn=ldr 1/p _ opl-n/p
Bo(x) [T — 2[P"(n=D) B o rP(n=1) -

where C' denotes a generic constant depending on n and p. Thus,

]{2 F(2) = £(2)] dz < O/ |Df Ly

We have

with a similar estimate for the integral in which z is replaced by y. Using these
estimates in (BI5) and setting r = |x — y|, we get

(3.16) |f(z) = f(y)] < Clz — y|1_n/p HDfHLP(R") )

which proves (312).
Finally, we prove (813). For any = € R™, using (310, we find that

(@) < ]{3 @) = f) dy s Ji F)] dy

1(z)

<C ||Df||LP(R") +C Hf”Lp(Bl(ﬂC))
SO llwrr@ny s

and taking the supremum with respect to x, we get (3.13). O

Combining these estimates for

[fllcoe = sup|f]| + [fla

and using a density argument, we get the following theorem. We denote by C’g H(R™)
the space of Holder continuous functions f whose limit as  — oo is zero, meaning
that for every € > 0 there exists a compact set K C R™ such that |f(x)| < e if
zeR"\ K.

THEOREM 3.37. Letn <p < oo and o« =1—n/p. Then
WHP(R™) — C*(R™)
and there is a constant C = C(n,p) such that
[fllgoe <Clfllwrs — forall f e CZ(R™).

PROOF. From Theorem [3:24] the mollified functions n° x f¢ — f in WHP(R")
as € — 07, and by Theorem [3.36]

[f(@) = fW)| < Clz = y|" P |IDF -
Letting € — 0T, we find that

/(@) = f)] < Cla —y[* "7 | Df|

for all Lebesgue points z,y € R™ of f. Since these form a set of measure zero, f
extends by uniform continuity to a uniformly continuous function on R™.

Also from Theorem [3.24] the function f € WHP(R™) is a limit of compactly
supported functions, and from (BI3]), f is the uniform limit of compactly supported
functions, which implies that its limit as  — oo is zero. O
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We state two related results without proof (see §5.8 of [9]).

For p = oo, the same proof as the proof of (B12]), using Holder’s inequality
with p = co and p’ = 1, shows that f € W1°(R") is globally Lipschitz continuous,
with

[/l < CIDSl oo -
A function in W1°°(R™) need not approach zero at infinity. We have in this case
the following characterization of Lipschitz functions.

THEOREM 3.38. A function f € L{ _(R") is globally Lipschitz continuous if
and only if it is weakly differentiable and Df € L>°(R™).

When n < p < oo, the above estimates can be used to prove that the pointwise
derivative of a Sobolev function exists almost everywhere and agrees with the weak
derivative.

THEOREM 3.39. If f € VVliéD(R") for some n < p < oo, then f is differentiable
pointwise a.e. and the pointwise derivative coincides with the weak derivative.

3.9. Boundary values of Sobolev functions

If f € C(Q) is a continuous function on the closure of a smooth domain €,
then we can define the boundary values of f pointwise as a continuous function
on the boundary 02. We can also do this when Sobolev embedding implies that
a function is Holder continuous. In general, however, a Sobolev function is not
equivalent pointwise a.e. to a continuous function and the boundary of a smooth
open set has measure zero, so the boundary values cannot be defined pointwise.
For example, we cannot make sense of the boundary values of an LP-function as an
LP-function on the boundary.

EXAMPLE 3.40. Suppose T : C*°([0,1]) — R is the map defined by T : ¢ —
B(0). If ¢¢(x) = e~*/¢, then ||¢¢|z1 — 0 as e — 0T, but ¢°(0) = 1 for every
€ > 0. Thus, T is not bounded (or even closed) in L' and we cannot extend it by
continuity to L'(0,1).

Nevertheless, we can define the boundary values of suitable Sobolev functions at
the expense of a loss of smoothness in restricting the functions to the boundary. To
do this, we show that the linear map on smooth functions that gives their boundary
values is bounded with respect to appropriate Sobolev norms. We then extend the
map by continuity to Sobolev functions, and the resulting trace map defines their
boundary values.

We consider the basic case of a half-space R}. We write = (2/,2,) € R}
where z,, > 0 and (2/,0) € R} =R"~1.

The Sobolev space WP (R") consists of functions f € LP(R") that are weakly
differentiable in R with Df € LP(R’). We begin with a result which states that
we can extend functions f € W?(R") to functions in WP (R"™) without increasing
their norm. An extension may be constructed by reflecting a function across the
boundary OR”} in a way that preserves its differentiability. Such an extension map
E is not, of course, unique.

THEOREM 3.41. There is a bounded linear map
E:W"P(RY) — WHP(R™)
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such that Ef = [ pointwise a.e. in R’} and for some constant C = C(n, p)
HEf”WLP(R") < ¢ HfHWI,p(Ri) .

The following approximation result may be proved by extending a Sobolev
function from R’} to R™, mollifying the extension, and restricting the result to the
half-space.

THEOREM 3.42. The space C'° (EZ) of smooth functions is dense in WHP(R').

Functions f : Ei — Rin C° (Ei) need not vanish on the boundary dR”. On
the other hand, functions in the space C°(R") of smooth functions whose support
is contained in the open half space R’} do vanish on the boundary, and it is not true
that this space is dense in W#» (R™). Roughly speaking, we can only approximate
Sobolev functions that ‘vanish on the boundary’ by functions in CZ°(R’} ). We make
the following definition.

DEFINITION 3.43. The space Wé’p(Ri) is the closure of C2°(R") in WHP(R7).

The interpretation of WO1 P(R%) as the space of Sobolev functions that vanish
on the boundary is made more precise in the following theorem, which shows the
existence of a trace map T that maps a Sobolev function to its boundary values,
and states that functions in WO1 P(R") are the ones whose trace is equal to zero.

THEOREM 3.44. For 1 < p < 0o, there is a bounded linear operator
T:WhP(R") — LP(ORY)
such that for any f € C° (Ei)
(Tf) (@) = f(2',0)
and

”TfHLP(R”*l) <cC Hf”WLP(]Ri)

for some constant C' depending only on p. Furthermore, f € Wéc’p (R™}) if and only
if Tf=0.

PROOF. First, we consider f € C° (Ki) For 2/ € R""! and p > 1, we have

If (@, 0))" < p/ |f @ O [0 f (1) dt.

0
Hence, using Holder’s inequality and the identity p'(p — 1) = p, we get

Jiraora <p [T1raor s @0l

oo '(p—1) 1/p’ e 1/p
<p ( / f (=", )" da:’dt) ( / 0, f (2, )7 dx’dt)
0 0

-1
<plfIp lonfll,
< Pl Ipen-

The trace map
T:CX([RY) — CFR")
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is therefore bounded with respect to the WP(R”) and LP(9R”.) norms, and ex-
tends by density and continuity to a map between these spaces. It follows immedi-
ately that Tf = 0 if f € WP (R?).

We omit the proof that T'f = 0 implies that f € Wok’p(]Ri). (The idea is to
extend f by 0, translate the extension into the domain, and mollify the translated
extension to get a smooth compactly supported approximation; see e.g., [9]). O

If p = 1, the trace T : WHY(R%) — LY(R" 1) is onto, but if 1 < p < oo
the range of T is not all of LP. In that case, T : WIP(R") — Bl=1/pP(R"1)
maps WP onto a Besov space B'~1/P?; roughly speaking, this is a Sobolev space
of functions with fractional derivatives, and there is a loss of 1/p derivatives in
restricting a function to the boundary [26].

An alternative, and more concrete, way to define the trace map is to show that
if f € WHH(R?Y), then f = f pointwise a.e. in R?” where f(z',z,) is an absolutely
continuous function of 0 < z,, < oo for 2’ pointwise a.e. in R”~!. In that case,
(Tf)(2') = f(a',0) is defined pointwise a.e. on the boundary by continuity [3]E

Note that if f € WP(R™), then 9;f € WP (R™), so T(d;f) = 0. Thus, both
fand D f vanish on the boundary. The correct way to formulate the condition that
f has weak derivatives of order less than or equal to two and satisfies the Dirichlet
condition f = 0 on the boundary is that f € W2P(R%) N W, P (R?).

3.10. Compactness results

A Banach space X is compactly embedded in a Banach space Y, written X € Y,
if the embedding ¢+ : X — Y is compact. That is, » maps bounded sets in X to
precompact sets in Y; or, equivalently, if {z,,} is a bounded sequence in X, then
{1z, } has a convergent subsequence in Y.

An important property of the Sobolev embeddings is that they are compact on
domains with finite measure. This corresponds to the rough principle that uniform
bounds on higher derivatives imply compactness with respect to lower derivatives.
The compactness of the Sobolev embeddings, due to Rellich and Kondrachov, de-
pend on the Arzela-Ascoli theorem. We will prove a version for VVO1 "P(Q) by use of
the LP-compactness criterion in Theorem

THEOREM 3.45. Let Q) be a bounded open set in R™, 1 <p < n, and1 < q < p*.
If F is a bounded set in Wy '*(2), then F is precompact in LI(R™).

PROOF. By a density argument, we may assume that the functions in F are
smooth and supp f € 2. We may then extend the functions and their derivatives by
zero to obtain smooth functions on R™, and prove that F is precompact in L?(R").

Condition (1) in Theorem [[.TH] follows immediately from the boundedness of
and the Sobolev embeddeding theorem: for all f € F,

I fllaggny = 1fllLac) < CllfllLes ) < CIDfllLrwny < C

where C' denotes a generic constant that does not depend on f. Condition (2) is
satisfied automatically since the supports of all functions in F are contained in the
same bounded set.

5The definition of weakly differentiable functions as absolutely continuous functions on lines
z; = constant, pointwise a.e. in the remaining coordinates m;, goes back to the Italian mathemati-
cian Levi (1906) before the introduction of Sobolev spaces.
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To verify (3), we first note that since D f is supported inside the bounded open
set €,

IDflLr@ny < CNDSN Lo ny -
Fix h € R™ and let f(z) = f(x + h) denote the translation of f by h. Then

1 1
(@) — ()] = ] [ e pst+imal <ol [ 105+

Integrating this inequality with respect to x and using Fubini’s theorem to exchange
the order of integration on the right-hand side, together with the fact that the inner
z-integral is independent of ¢, we get

[ 1@ = 5@ d < BIDS sy < CRIIDS oy

Thus,
(3.17) Ifn = fllpr@ny < CIRHID S Loy -
Using the interpolation inequality in Lemma [[L.TT] we get for any 1 < ¢ < p* that

0 —0
(3.18) 1 fn = Fllpagny < Ifn = FllLa@ny 1fn = Fll" @)
where 0 < 6 <1 is given by

The Sobolev embedding theorem implies that
”fh — fHLP* (R™) <C ”Df”LP(]R") :
Using this inequality and B.I7) in BI8), we get
1 = oy < CIRIE DAl poan, -

It follows that F is L9-equicontinuous if the derivatives of functions in F are uni-
formly bounded in L?, and the result follows. O

Equivalently, this theorem states that if {f.k € N} is a sequence of functions in
WP (€2) such that
I il <C forallk €N,
for some constant C, then there exists a subsequence fi, and a function f € L?(2)
such that
fe, = f as i — oo in LI(N).
The assumptions that the domain €2 satisfies a boundedness condition and that
q < p* are necessary.

EXAMPLE 3.46. If ¢ € WLP(R™) and f,,(z) = ¢(x — ¢m), where ¢, — 00
as m — oo, then || fmllwir = ||¢|lwir is constant, but {f,} has no convergent
subsequence in L9 since the functions ‘escape’ to infinity. Thus, compactness does
not hold without some limitation on the decay of the functions.

EXAMPLE 3.47. For 1 < p < n, define f : R® — R by
R (= k|x]) i x| < 1/E,
fk(x)_{ 0 if |z] > 1/k.

Then supp fr. C By (0) for every k € N and {fx} is bounded in W1?(R"), but no
subsequence converges strongly in LP" (R™).
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The loss of compactness in the critical case ¢ = p* has received a great deal of
study (for example, in the concentration compactness principle of P.L. Lions).

If © is a smooth and bounded domain, the use of an extension map implies that
WhP(Q) € L4(f2). For an example of the loss of this compactness in a bounded
domain with an irregular boundary, see [26].

THEOREM 3.48. Let 2 be a bounded open set in R™, and n < p < co. Suppose
that F is a set of functions whose weak derivative belongs to LP(R™) such that: (a)
supp f € Q; (b) there exists a constant C' such that

IDfll, <C for all f € F.
Then F is precompact in Co(R™).

PRrROOF. Theorem [3.36] implies that the set F is bounded and equicontinuous,
so the result follows immediately from the Arzela-Ascoli theorem. |

In other words, if {f,, : m € N} is a sequence of functions in W1?(R") such
that supp f, C 2, where Q € R”, and

Hfm”wl,p <C for all m € N

for some constant C', then there exists a subsequence f,,, such that f,, — f
uniformly, in which case f € C.(R").

3.11. Sobolev functions on ) C R"

Here, we briefly outline how ones transfers the results above to Sobolev spaces
on domains other than R™ or R’;.

Suppose that €2 is a smooth, bounded domain in R"™. We may cover the closure
Q by a collection of open balls contained in € and open balls with center z € 9.
Since Q is compact, there is a finite collection {B; : 1 <4 < N} of such open balls
that covers Q. There is a partition of unity {¢; : 1 <4 < N} subordinate to this
cover consisting of functions ¢; € C2°(B;) such that 0 < +; <1 and ) ,1¢; =1 on
Q.

Given any function f € L{ (), we may write f = Y, f; where f; = ¥;f
has compact support in B; for balls whose center belongs to €, and in B; N Q) for
balls whose center belongs to 9€). In these latter balls, we may ‘straighten out the
boundary’ by a smooth map. After this change of variables, we get a function f;
that is compactly supported in EZ. We may then apply the previous results to the
functions {f; : 1 <i < N}.

Typically, results about Wé“ "P(Q) do not require assumptions on the smooth-
ness of 9€2; but results about W*?(Q2) — for example, the existence of a bounded
extension operator E : W*P(Q) — WHP(R"™) — only hold if 95 satisfies an appro-
priate smoothness or regularity condition e.g. a C¥, Lipschitz, segment, or cone
condition [IJ.

The statement of the embedding theorem for higher order derivatives extends
in a straightforward way from the one for first order derivatives. For example,

1 1 k

WFP(R") — LYR")  if - =—-— =,

g p n
The result for smooth bounded domains is summarized in the following theorem.
As before, X C Y denotes a continuous embedding of X into Y, and X € Y denotes

a compact embedding.
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THEOREM 3.49. Suppose that Q is a bounded open set in R™ with C* boundary,
k,meNwith k>m, and 1 < p < oo.
(1) If kp < n, then
WkP(Q) € LYQ) for 1 <gq<mnp/(n—kp);
WhP(Q) C LYQ)  for g =mnp/(n — kp).
More generally, if (k—m)p <n, then
WhP(Q) e W™U(Q)  for 1 <q<np/(n—(k—m)p);
WhP(Q) c W™UQ)  for g =np/(n— (k —m)p).
(2) If kp = n, then
WkP(Q) € LY() for1 < g < oo.

(3) If kp > n, then
whr(Q) e CO* (Q)
forO<pu<k—-n/pifk—n/p<l, for0<u<lifk—n/p=1, and for
w=1ifk—n/p>1;and

WhP(Q) c CO* (Q)
foru=k—n/pifk—n/p<1. More generally, if (k —m)p > n, then
WhP(Q) € ™" (Q)

for0<p<k—m-n/pifk—m-n/p<1, for0<pu<1lifk—m-n/p=1,
and forpy=11ifk—m—n/p>1; and

WhP(Q) c C™* (Q)
foruy=k—m-—n/pifk—m—n/p=0.
These results hold for arbitrary bounded open sets  if W*P(Q) is replaced by
Wg ()
o .
EXAMPLE 3.50. If u € W™1(R"), then u € Co(R™). This can be seen from the

equality
u(z / / Oy -+ Opu(x’)dxy ... dx),

which holds for all u € C2°(R™) and a density argument. In general however, it is
not true that w € L™ in the critical case kp = n c.f. Example 3.3
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Appendix

In this appendix, we describe without proof some results from real analysis
which help to understand weak and distributional derivatives in the simplest context
of functions of a single variable. Proofs are given in [11] or [15], for example.
These results are, in fact, easier to understand from the perspective of weak and
distributional derivatives of functions, rather than pointwise derivatives.

3.A. Functions

For definiteness, we consider functions f : [a,b] — R defined on a compact
interval [a,b]. When we say that a property holds almost everywhere (a.e.), we
mean a.e. with respect to Lebesgue measure unless we specify otherwise.

3.A.1. Lipschitz functions. Lipschitz continuity is a weaker condition than
continuous differentiability. A Lipschitz continuous function is pointwise differ-
entiable almost everwhere and weakly differentiable. The derivative is essentially
bounded, but not necessarily continuous.

DEFINITION 3.51. A function f : [a,b] — R is uniformly Lipschitz continuous
on [a,b] (or Lipschitz, for short) if there is a constant C' such that

|f($)—f(y)|§0|(b—y| for all (E,yE[a,b]-
The Lipschitz constant of f is the infimum of constants C' with this property.

We denote the space of Lipschitz functions on [a, b] by Lip[a, b]. We also define
the space of locally Lipschitz functions on R by

Lip;o(R) ={f : R —= R: f € Lip[a, b] for all a < b}.

By the mean-value theorem, any function that is continuous on [a, b] and point-
wise differentiable in (a, b) with bounded derivative is Lipschitz. In particular, every
function f € C*([a,b]) is Lipschitz, and every function f € C*(R) is locally Lips-
chitz. On the other hand, the function x + || is Lipschitz but not C* on [—1,1].
The following result, called Rademacher’s theorem, is true for functions of several
variables, but we state it here only for the one-dimensional case.

THEOREM 3.52. If f € Lip[a,b], then the pointwise derivative f’ exists almost
everywhere in (a,b) and is essentially bounded.

It follows from the discussion in the next section that the pointwise derivative
of a Lipschitz function is also its weak derivative (since a Lipschitz function is
absolutely continuous). In fact, we have the following characterization of Lipschitz
functions.

THEOREM 3.53. Suppose that f € Li _(a,b). Then f € Lip[a,b] if and only
if [ is weakly differentiable in (a,b) and f' € L*(a,b). Moreover, the Lipschitz
constant of f is equal to the sup-norm of f’.

Here, we say that f € L\ (a,b) is Lipschitz on [a,b] if is equal almost every-
where to a (uniformly) Lipschitz function on (a,b), in which case f extends by

uniform continuity to a Lipschitz function on [a, b].
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EXAMPLE 3.54. The function f(z) = x4 in ExampleB.3]is Lipschitz continuous

n [—1, 1] with Lipschitz constant 1. The pointwise derivative of f exists everywhere

except at x = 0, and is equal to the weak derivative. The sup-norm of the weak
derivative f' = x[o,1] is equal to 1.

EXAMPLE 3.55. Consider the function f : (0,1) — R defined by

f(z) = 2*sin (é) .

Since f is C' on compactly contained intervals in (0,1), an integration by parts
implies that

1 1
/ f¢’dw=—/ f'odx for all ¢ € C2°(0,1).
Thus, the weak derivative of f in (0,1) i
1 . (1
= —Cos (—) + 2z sin (—) .
T x
Since f’ € L*°(0,1), f is Lipschitz on [0, 1],

Similarly, if f € L] (R), then f € Lip,.(R), if and only if f is weakly differ-
entiable in R and f’ € LS (R).

7y

3.A.2. Absolutely continuous functions. Absolute continuity is a strength-
ening of uniform continuity that provides a necessary and sufficient condition for
the fundamental theorem of calculus to hold. A function is absolutely continuous
if and only if its weak derivative is integrable.

DEFINITION 3.56. A function f : [a,b] — R is absolutely continuous on [a, b] if
for every € > 0 there exists a d > 0 such that

Z|f fla)| < e

for any finite collection {[a;, b;] : 1 <i < N} of non-overlapping subintervals [a;, b;]
of [a, b] with

N
Z|bZ — CLi| <4
=1

Here, we say that intervals are non-overlapping if their interiors are disjoint.
We denote the space of absolutely continuous functions on [a,b] by ACl[a,b]. We
also define the space of locally absolutely continuous functions on R by

ACL:(R)={f:R—=R: f € AC[a, ] for all a < b}.

Restricting attention to the case N = 1 in Definition 56l we see that an
absolutely continuous function is uniformly continuous, but the converse is not

true (see Example B.5]).

ExAMPLE 3.57. A Lipschitz function is absolutely continuous. If the func-
tion has Lipschitz constant C, we may take ¢ = ¢/C' in the definition of absolute
continuity.
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ExAMPLE 3.58. The Cantor function f in Example[3.5]is uniformly continuous
on [0, 1], as is any continuous function on a compact interval, but it is not absolutely
continuous. We may enclose the Cantor set in a union of disjoint intervals the sum
of whose lengths is as small as we please, but the jumps in f across those intervals
add up to 1. Thus for any 0 < € < 1, there is no § > 0 with the property required in
the definition of absolute continuity. In fact, absolutely continuous functions map
sets of measure zero to sets of measure zero; by contrast, the Cantor function maps
the Cantor set with measure zero onto the interval [0, 1] with measure one.

EXAMPLE 3.59. If g € L'(a,b) and

ﬂm:/lwﬁ

then f € AC[a,b] and f' = g pointwise a.e. (at every Lebesgue point of g). This is
one direction of the fundamental theorem of calculus.

According to the following result, the absolutely continuous functions are pre-
cisely the ones for which the fundamental theorem of calculus holds. This result may
be regarded as giving an explicit characterization of weakly differentiable functions
of a single variable.

THEOREM 3.60. A function f : [a,b] — R is absolutely continuous if and only if:
(a) the pointwise derivative f' exists almost everywhere in (a,b); (b) the derivative
f' € L'(a,b) is integrable; and (c) for every x € [a,b],

ﬂ@=ﬂ@+/ﬁ%ﬂt

To prove this result, one shows from the definition of absolute continuity that
if f € ACla,b], then f’ exists pointwise a.e. and is integrable, and if f = 0, then
f is constant. Then the function

(W%/vmﬁ

is absolutely continuous with pointwise a.e. derivative equal to zero, so the result
follows.

ExAMPLE 3.61. We recover the function f(z) = x4 in Example by inte-
grating its derivative x[g,o0). On the other hand, the pointwise a.e. derivative of
the Cantor function in Example[3.H]is zero, so integration of its pointwise derivative
(which exists a.e. and is integrable) gives zero instead of the original function.

Integration by parts holds for absolutely continuous functions.

THEOREM 3.62. If f,g: [a,b] = R are absolutely continuous, then

b b
(3.19) [ #dde = 109(0) - @@ - [ Fads
where f', g’ denote the pointwise a.e. derivatives of f, g.

This result is not true under the assumption that f, g that are continuous and
differentiable pointwise a.e., as can be seen by taking f, g to be Cantor functions
on [0,1].

In particular, taking g € C2°(a,b) in (B19), we see that an absolutely continu-
ous function f is weakly differentiable on (a,b) with integrable derivative, and the
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weak derivative is equal to the pointwise a.e. derivative. Thus, we have the following
characterization of absolutely continuous functions in terms of weak derivatives.

THEOREM 3.63. Suppose that f € Li (a,b). Then f € ACla,b] if and only if

loc

f is weakly differentiable in (a,b) and f' € L*(a,b).

It follows that a function f € Ll _(R) is weakly differentiable if and only if

loc

f € ACjo¢(R), in which case f' € L _(R).

loc

3.A.3. Functions of bounded variation. Functions of bounded variation
are functions with finite oscillation or variation. A function of bounded variation
need not be weakly differentiable, but its distributional derivative is a Radon mea-
sure.

DEFINITION 3.64. The total variation Vs([a,b]) of a function f : [a,b] — R on
the interval [a, b] is

V¢([a,b]) = sup {Z | fz:) — f($i—1)|}

i=1
where the supremum is taken over all partitions
a=zrg<x1<x3< - <xTN=0b

of the interval [a,b]. A function f has bounded variation on [a,b] if V,([a,b]) is
finite.

We denote the space of functions of bounded variation on [a, b] by BV[a, b], and
refer to a function of bounded variation as a BV-function. We also define the space
of locally BV-functions on R by

BVic(R) ={f:R—=R: f € BV]a,b| for all a < b}.

EXAMPLE 3.65. Every Lipschitz continuous function f : [a,b] — R has bounded
variation, and

Vi([a,b]) <C(b—a)
where C' is the Lipschitz constant of f.

A BV-function is bounded, and an absolutely continuous function is BV; but
a BV-function need not be continuous, and a continuous function need not be BV.

ExAMPLE 3.66. The discontinuous step function in Example 3.4] has bounded
variation on the interval [—1, 1], and the continuous Cantor function in Example[3.5]
has bounded variation on [0, 1]. The total variation of both functions is equal to
one. More generally, any monotone function f : [a,b] — R has bounded variation,
and its total variation on [a, b] is equal to |f(b) — f(a)|.

ExAMPLE 3.67. The function

~f sin(l/z) ifxz>0,
f(z)_{o if 2 =0,

is bounded [0, 1], but it is not of bounded variation on [0, 1].
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ExAMPLE 3.68. The function

o= { e 2

is continuous on [0, 1], but it is not of bounded variation on [0, 1] since its total
variation is proportional to the divergent harmonic series Y 1/n.

The following result states that any BV-functions is a difference of monotone
increasing functions. We say that a function f is monotone increasing if f(x) < f(y)
for z < y; we do not require that the function is strictly increasing.

THEOREM 3.69. A function f : [a,b] = R has bounded variation on [a,b] if and
only if f = f+ — f—, where f,f— : [a,b] = R are bounded monotone increasing
functions.

To prove the theorem, we define an increasing variation function v : [a,b] — R
by v(a) = 0 and
v(z) = Vi ([a,z]) for x > a.
We then choose fy, f_ so that

(3.20) f=h-f v=Ff+/f,
and show that fi, f_ are increasing functions.

The decomposition in Theorem is not unique, since we may add an arbi-
trary increasing function to both fy and f_, but it is unique if we add the condition
that f+ + f— = Vf

A monotone function is differentiable pointwise a.e., and thus so is a BV-
function. In general, a BV-function contains a singular component that is not
weakly differentiable in addition to an absolutely continuous component that is
weakly differentiable

DEFINITION 3.70. A function f € BV]a, ] is singular on [a, b] if the pointwise
derivative f’ is equal to zero a.e. in [a, b].

The step function and the Cantor function are examples of non-constant sin-
gular functions

THEOREM 3.71. If f € BV]a,b], then f = foc+ fs where fo. € AC[a,b] and fs

is singular. The functions fac, fs are unique up to an additive constant.

The absolutely continuous part f,. of f is given by

o) = [ F@yas

and the remainder fs = f — f,. is the singular part. We may further decompose
the singular part into a jump-function (such as the step function) and a singular
continuous part (such as the Cantor function).

For f € BV]a,b], let D C [a,b] denote the set of points of discontinuity of f.
Since f is the difference of monotone functions, it can only contain jump disconti-
nuities at which its left and right limits exist (excluding the left limit at @ and the
right limit at b), and D is necessarily countable.

6Sometimes a singular function is required to be continuous, but our definition allows jump
discontinuities.
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If ce D, let
[fl(e) = fc") = f(c7)
denote the jump of f at ¢ (with f(a™) = f(a), f(b") = f(b) if a,b € D). Define

fo@y= Y [flle) ifzgD.

ceDN[a,x]

Then f, has the same jump discontinuities as f and, with an appropriate choice
of fp(c) for ¢ € D, the function f — f, is continuous on [a,b]. Decomposing this
continuous part into and absolutely continuous and a singular continuous part, we
get the following result.

THEOREM 3.72. If f € BV(a,b], then f = foc+ fp + fsc where foc € ACla, b,
fp is a jump function, and fsc is a singular continuous function. The functions
facs fp, [sc are unique up to an additive constant.

EXAMPLE 3.73. Let @ = {g,, : n € N} be an enumeration of the rational num-
bers in [0,1] and {p, : n € N} any sequence of real numbers such that 3 p, is
absolutely convergent. Define f : [a,b] — R by f(0) = 0 and

Z Pn for z > 0.

a<gn<z

= Ipal.

neN
This function is a singular jump function with zero pointwise derivative at every
irrational number in [0, 1].

Then f € BV]a,b], with

3.B. Measures

We denote the extended real numbers by R = [~00,00] and the extended
nonnegative real numbers by Ry = [0,00]. We make the natural conventions for
algebraic operations and limits that involve extended real numbers.

3.B.1. Borel measures. The Borel o-algebra of a topological space X is the
smallest collection of subsets of X that contains the open and closed sets, and is
closed under complements, countable unions, and countable intersections. Let B
denote the Borel o-algebra of R, and B the Borel o-algebra of R.

DEFINITION 3.74. A Borel measure on R is a function p : B — R, such that

p1(0) =0 and
K <U En) = Z/L(En)

neN neN
for any countable collection of disjoint sets {E,, € B : n € N}.

The measure p is finite if pu(R) < oo, in which case p : B — [0,00). The
measure is o-finite if R is a countable union of Borel sets with finite measure.

EXAMPLE 3.75. Lebesgue measure \ : B — R is a Borel measure that assigns
to each interval its length. Lebesgue measure on B may be extended to a complete
measure on a larger o-algebra of Lebesgue measurable sets by the inclusion of all
subsets of sets with Lebesgue measure zero. Here we consider it as a Borel measure.
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EXAMPLE 3.76. For ¢ € R, the unit point measure d. : B — [0, 00) supported
on c is defined by
1 ifcekFE,
6C(E)_{ 0 ifc¢E.
This measure is a finite Borel measure. More generally, if {¢,, : n € N} is a countable
set of points in R and {p,, > 0: n € N}, we define a point measure

= Pbe,,  WE)= > pn

neN cn€E

This measure is o-finite, and finite if 3 p, < oc.

EXAMPLE 3.77. Counting measure v : B — R, is defined by v(E) = #E where
#FE denotes the number of points in E. Thus, v(0) = 0 and v(E) = oo if E contains
infinitely many points. This measure is not o-finite.

In order to describe the decomposition of measures, we introduce the idea of
singular measures that ‘live’ on different sets.

DEFINITION 3.78. Two measures j, v : B — R, are mutually singular, written
u L v, if there is a set E' € B such that y(F) =0 and v(E€) = 0.

We also say that p is singular with respect to v, or v is singular with respect
to p. In particular, a measure is singular with respect to Lebesgue measure if it
assigns full measure to a set of Lebesgue measure zero.

EXAMPLE 3.79. The point measures in Example [B.76] are singular with respect
to Lebesgue measure.

Next we consider signed measures which can take negative as well as positive
values.

DEFINITION 3.80. A signed Borel measure is a map p : B — R of the form
= pg —
where iy, pu_ : B — R, are Borel measures, at least one of which is finite.

The condition that at least one of p4, p— is finite is needed to avoid meaningless
expressions such as u(R) = oo — co. Thus, p takes at most one of the values oo,
—00.

According to the Jordan decomposition theorem, we may choose gy, p— in
Definition so that gy L pu_, in which case the decomposition is unique. The
total variation of y is then measure |u|: B — R, defined by

lul = py +p—.

DEFINITION 3.81. Let pv: B — R, be a measure. A signed measure v : B — R
is absolutely continuous with respect to u, written v < p, if u(F) = 0 implies that
v(E) =0 for any F € B.

The condition v < p is equivalent to |v| < p. In that case v ‘lives’ on the
same sets as p; thus absolute continuity is at the opposite extreme to singularity.
In particular, a signed measure v is absolutely continuous with respect to Lebesgue
measure if it assigns zero measure to any set with zero Lebesgue measure,
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If g € L'(R), then

(3.21) V(E):/Egdx

defines a finite signed Borel measure v : B — R. This measure is absolutely
continuous with respect to Lebesgue measure, since |’ g 9dzx =0 for any set F with
Lebesgue measure zero.

If g > 0, then v is a measure. If the set {z : g(x) = 0} has non-zero Lebesgue
measure, then Lebesgue measure is not absolutely continuous with respect to v.
Thus v < p does not imply that p < v.

The Radon-Nikodym theorem (which holds in greater generality) implies that
every absolutely continuous measure is given by the above example.

THEOREM 3.82. Ifv is a Borel measure on R that is absolutely continuous with
respect to Lebesgue measure \ then there exists a function g € L' (R) such that v is

given by (321)).

The function ¢ in this theorem is called the Radon-Nikodym derivative of v
with respect to A, and is denoted by
_dv
=7

The following result gives an alternative characterization of absolute continuity
of measures, which has a direct connection with the absolute continuity of functions.

9

THEOREM 3.83. A signed measure v : B — R is absolutely continuous with
respect to a measure i : B — Ry if and only if for every € > 0 there exists a 6 > 0
such that p(E) < 0 implies that |[v(E)| < € for oll E € B.

3.B.2. Radon measures. The most important Borel measures for distribu-
tion theory are the Radon measures. The essential property of a Radon measure
1 is that integration against p defines a positive linear functional on the space of
continuous functions ¢ with compact support,

¢>—>/¢du.

(See Theorem [3.96] below.) This link is the fundamental connection between mea-
sures and distributions. The condition in the following definition characterizes all
such measures on R (and R™).

DEFINITION 3.84. A Radon measure on R is a Borel measure that is finite on
compact sets.

We note in passing that a Radon measure p has the following regularity prop-
erty: For any F € B,

w(E) =inf {u(G): G D E open}, wu(E)=sup{u(K): K C E compact}.

Thus, any Borel set may be approximated in a measure-theoretic sense by open
sets from the outside and compact sets from the inside.

ExaMPLE 3.85. Lebesgue measure A in Example B.75] and the point measure
0. in Example 3.76] are Radon measures on R.



3.B. MEASURES 85

EXAMPLE 3.86. The counting measure v in Example BT is not a Radon mea-
sure since, for example, v[0, 1] = co. This measure is not outer regular: If {c} is a
singleton set, then v({c}) =1 but

inf {v(G) : c € G, G open} = .
The following is the Lebesgue decomposition of a Radon measure.

THEOREM 3.87. Let i, v be Radon measures on R. There are unique measures
Vae, Vs Such that

V= Vge + Vs, where Voo <K 1 and vs L .

3.B.3. Lebesgue-Stieltjes measures. Given a Radon measure p on R, we
may define a monotone increasing, right-continuous distribution function f : R —
R, which is unique up to an arbitrary additive constant, such that

pu(a,b] = f(b) = f(a).

The function f is right-continuous since
lim f(b) — f(a) = lim p(a,z] = p(a,b] = f(b) — f(a).
r—bt z—bt

Conversely, every such function f defines a Radon measure py, called the
Lebesgue-Stieltjes measure associated with f. Thus, Radon measures on R may
be characterized explicitly as Lebesgue-Stieltjes measures.

THEOREM 3.88. If f : R — R is a monotone increasing, right-continuous
function, there is a unique Radon measure pu¢ such that

iy (a, bl = f(b) = f(a)
for any half-open interval (a,b] C R.

The standard proof is due to Carathéodory. One uses f to define a countably
sub-additive outer measure p% on all subsets of R, then restricts Ky to a measure
on the o-algebra of p13-measurable sets, which includes all of the Borel sets [11].

The Lebesgue-Stieltjes measure of a compact interval [a, ] is given by

pslab] = Lim pp(z,b] = f(b) - lim f(a).

Thus, the measure of the set consisting of a single point is equal to the jump in f
at the point,

prtal = f(a)— T f(a)
and pr{a} = 0if and only if f is continuous at a.

ExAMPLE 3.89. If f(z) = «, then pj is Lebesgue measure (restricted to the
Borel sets) in R.

ExaMPLE 3.90. If ce R and

f(:v)z{(l) ifx >e¢,

if x <e,

then py is the point measure 6. in Example [3.76
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ExAMPLE 3.91. If f is the Cantor function defined in Example B3, then py
assigns measure one to the Cantor set C' and measure zero to R\ C. Thus, uy is
singular with respect to Lebesgue measure. Nevertheless, since f is continuous, the
measure of any set consisting of a single point, and therefore any countable set, is
Zero.

If f:R — R is the difference f = fi — f_ of two right-continuous monotone
increasing functions fi, f- : R — R, at least one of which is bounded, we may
define a signed Radon measure pf : B — R by

Hp = fy ~ M

If we add the condition that puy, L py , then this decomposition is unique, and
corresponds to the decomposition of f in ([B.20]).

3.C. Integration

A function ¢ : R — R is Borel measurable if ¢~!(E) € B for every E € B. In
particular, every continuous function ¢ : R — R is Borel measurable.

Given a Borel measure u, and a non-negative, Borel measurable function ¢, we
define the integral of ¢ with respect to u as follows. If

= cixe,

ieN

is a simple function, where ¢; € Ry and xg, is the characteristic function of a set

E; € B, then
/1/}du = Z citl(E;).
ieN
Here, we define 0- oo = 0 for the integral of a zero value on a set of infinite measure,
or an infinite value on a set of measure zero. If ¢ : R — R, is a non-negative Borel-
measurable function, we define

/gbdu—sup{/l/)dl“oﬁU)S(b}

where the supremum is taken over all non-negative simple functions i that are
bounded from above by ¢.

If ¢ : R — R is a general Borel function, we split ¢ into its positive and negative
parts,

(b = ¢+ - (b—u ¢+ = maX(¢7 0)7 ¢— = max(—¢, 0)7

Jodu=[orin- [o-an

provided that at least one of these integrals is finite.

The continual annoyance of excluding oo — co as meaningless is often viewed as
a defect of the Lebesgue integral, which cannot cope directly with the cancelation
between infinite positive and negative components. For example, the improper

integral
* sinx T
/ der = —
0 X 2

and define
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does not hold as a Lebesgue integral since | sin(z) /x| is not integrable. Nevertheless,
other definitions of the integral — such as the Henstock-Kurzweil integral — have
not proved to be as useful.

EXAMPLE 3.92. The integral of ¢ with respect to Lebesgue measure X\ in Ex-
ample 3.759] is the usual Lebesgue integral

/gbd/\:/gbdx.

ExAMPLE 3.93. The integral of ¢ with respect to the point measure §. in
Example [3.76] is

/¢d5c = ¢(c).
Note that ¢ = ¢ pointwise a.e. with respect to d. if and only if ¢(c) = 9(c).

ExaMPLE 3.94. If f is absolutely continuous, the associated Lebesgue-Stieltjes
measure py is absolutely continuous with respect to Lebesgue measure, and

[odus= [ o5 a

Next, we consider linear functionals on the space C,(R) of linear functions with
compact support.

DEFINITION 3.95. A linear functional I : C.(R) — R is positive if I(¢) > 0
whenever ¢ > 0, and locally bounded if for every compact set K in R there is a
constant C'i such that

[1(¢)] < Ck |9l for all ¢ € C.(R) with supp ¢ C K.

A positive functional is locally bounded, and a locally bounded functional I
defines a distribution I € D’(R) by restriction to C:°(R). We also write I(¢) =
(I,¢). If pis a Radon measure, then

(10 = [ 6

defines a positive linear functional I, : C.(R) — R, and if py, p— are Radon
measures, then I, — I, is a locally bounded functional.

Conversely, according to the following Riesz representation theorem, all locally
bounded linear functionals on C.(R) are of this form

THEOREM 3.96. If I : C.(R) — Ry is a positive linear functional on the space
of continuous functions ¢ : R — R with compact support, then there is a unique
Radon measure p such that

10) = [ odn

IfI: C.(R) — Ry is locally bounded linear functional, then there are unique Radon
measures [y, f— such that

16) = [odus ~ [odu-.
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Note that the functional p = py — p— is not well-defined as a signed Radon
measure if both gy and p_ are infinite.
Every distribution T' € D'(R) such that

(T,¢) < Ck |9l for all ¢ € C°(R) with supp¢ C K

may be extended by continuity to a locally bounded linear functional on C.(R),
and therefore is given by 7" = I, — I,,_ for Radon measures py, u_ . We typi-
cally identify a Radon measure u with the corresponding distribution I,,. If p is
absolutely continuous with respect to Lebesgue measure, then p = py for some
f € ACjoc(R), meaning that

s (E) = [E /' da,

and I, is the same as the regular distribution 7T.. Thus, with these identifications,
and denoting the Radon measures by M, we have the following local inclusions:

ACcBVCL'cMcD.

The distributional derivative of an AC function is an integrable function, and
the following integration by parts formula shows that the distributional derivative
of a BV function is a Radon measure.

THEOREM 3.97. Suppose that f € BVi(R) and g € AC.(R) is absolutely
continuous with compact support. Then

[odus =~ [ 9z

Thus, the distributional derivative of f € BVioc(R) is the functional I, asso-
ciated with the corresponding Radon measure piy. If

f:fac+fp+fsc

is the decomposition of f into a locally absolutely continuous part, a jump function,
and a singular continuous function, then

B = ac + tp + Hse,

where p4. is absolutely continuous with respect to Lebesgue measure with density
fi., tp is a point measure of the form

Hp = an5cn

neN
where the ¢,, are the points of discontinuity of f and the p,, are the jumps, and ps.
is a measure with continuous distribution function that is singular with respect to
Lebesgue measure. The function is weakly differentiable if and only if it is locally
absolutely continuous.

Thus, to return to our original one-dimensional examples, the function x4 in
Example B3] is absolutely continuous and its weak derivative is the step function.
The weak derivative is bounded since the function is Lipschitz. The step function
in Example [3.4] is not weakly differentiable; its distributional derivative is the o-
measure. The Cantor function f in Example is not weakly differentiable; its
distributional derivative is the singular continuous Lebesgue-Stieltjes measure uy
associated with f.

We summarize the above discussion in a table.
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| Function || Weak Derivative |
Smooth (C1) Continuous (C?)
Lipschitz Bounded (L)
Absolutely Continuous Integrable (L)
Bounded Variation Distributional derivative
is Radon measure

The correspondences shown in this table continue to hold for functions of several
variables, although the study of fine structure of weakly differentiable functions and
functions of bounded variation is more involved than in the one-dimensional case.






CHAPTER 4

Elliptic PDEs

One of the main advantages of extending the class of solutions of a PDE from
classical solutions with continuous derivatives to weak solutions with weak deriva-
tives is that it is easier to prove the existence of weak solutions. Having estab-
lished the existence of weak solutions, one may then study their properties, such as
uniqueness and regularity, and perhaps prove under appropriate assumptions that
the weak solutions are, in fact, classical solutions.

There is often considerable freedom in how one defines a weak solution of a
PDE; for example, the function space to which a solution is required to belong is
not given a priori by the PDE itself. Typically, we look for a weak formulation that
reduces to the classical formulation under appropriate smoothness assumptions and
which is amenable to a mathematical analysis; the notion of solution and the spaces
to which solutions belong are dictated by the available estimates and analysis.

4.1. Weak formulation of the Dirichlet problem

Let us consider the Dirichlet problem for the Laplacian with homogeneous
boundary conditions on a bounded domain €2 in R”,

(4.1) —Au=f in £,
(4.2) u=0 on Of.

First, suppose that the boundary of 2 is smooth and u, f : Q@ — R are smooth
functions. Multiplying (1) by a test function ¢, integrating the result over €2, and
using the divergence theorem, we get

(4.3) Du-D¢dr = | fodx for all ¢ € C°(Q).
Q Q
The boundary terms vanish because ¢ = 0 on the boundary. Conversely, if f and
) are smooth, then any smooth function u that satisfies (4.3) is a solution of (£I).
Next, we formulate weaker assumptions under which (3] makes sense. We
use the flexibility of choice to define weak solutions with L2?-derivatives that belong
to a Hilbert space; this is helpful because Hilbert spaces are easier to work with
than Banach spacesE Furthermore, it leads to a variational form of the equation
that is symmetric in the solution u and the test function ¢. Our goal of obtaining
a symmetric weak formulation also explains why we only integrate by parts once
in ([A3). We briefly discuss some other ways to define weak solutions at the end of
this section.

1We would need to use Banach spaces to study the solutions of Laplace’s equation whose
derivatives lie in LP for p # 2, and we may be forced to use Banach spaces for some PDEs,
especially if they are nonlinear.

91
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By the Cauchy-Schwartz inequality, the integral on the left-hand side of (€3]
is finite if Du belongs to L%(Q), so we suppose that u € H'(Q). We impose the
boundary condition ([2)) in a weak sense by requiring that u € H}(2). The left
hand side of ([3)) then extends by continuity to ¢ € H}(Q) = C*(Q).

The right hand side of (@3] is well-defined for all ¢ € H}(Q) if f € L*(Q), but
this is not the most general f for which it makes sense; we can define the right-hand

for any f in the dual space of H}(Q).

DEFINITION 4.1. The space of bounded linear maps f : H}(2) — R is denoted
by H=Y(Q) = H}(Q)*, and the action of f € H=1(Q) on ¢ € H} () by (f,¢). The
norm of f € H-*(Q) is given by

(/. 9)l

[fllzr— =supQ =" :p € Hy, ¢ #0.
161l 212

A function f € L?(€) defines a linear functional Fy € H~1(Q2) by
<Ff,v>:/ fodx = (f,v)re for all v € H} ().
Q

Here, (+,-)z2 denotes the standard inner product on L?(€2). The functional Fy is
bounded on H} () with || Ff||g-1 < || f| L2 since, by the Cauchy-Schwartz inequal-
ity,

[(Ers o)l < I flle2llvllze < I le2llvll -
We identify F; with f, and write both simply as f.

Such linear functionals are, however, not the only elements of H~1(£2). As we
will show below, H~1(2) may be identified with the space of distributions on
that are sums of first-order distributional derivatives of functions in L?((2).

Thus, after identifying functions with regular distributions, we have the follow-
ing triple of Hilbert spaces

H(Q) — L*(Q) — H1(Q), HYQ) = Hj ()"
Moreover, if f € L*(Q) C H~1(Q) and u € H(Q), then
<f7u> = (fu U)L27

so the duality pairing coincides with the L2-inner product when both are defined.
This discussion motivates the following definition.

DEFINITION 4.2. Let Q be an open set in R™ and f € H~1(Q). A function
u: ) — R is a weak solution of @I)-2) if: (a) u € HI(Q); (b)

(4.4) /QDu -Dodx = {f,d) for all ¢ € H}(9).

Here, strictly speaking, ‘function’ means an equivalence class of functions with
respect to pointwise a.e. equality.

We have assumed homogeneous boundary conditions to simplify the discussion.
If © is smooth and g : 9 — R is a function on the boundary that is in the range
of the trace map T : HY(Q) — L2?(09), say g = Tw, then we obtain a weak
formulation of the nonhomogeneous Dirichet problem

—Au=f in Q,
u=gq on 0,
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by replacing (a) in Definition with the condition that uw —w € H(Q). The
definition is otherwise the same. The range of the trace map on H'(Q) for a smooth
domain Q is the fractional-order Sobolev space H'/2(9); thus if the boundary
data g is so rough that g ¢ H'/2(9Q), then there is no solution u € H'(Q2) of the
nonhomogeneous BVP.

Finally, we comment on some other ways to define weak solutions of Poisson’s

equation. If we integrate by parts again in (&3], we find that every smooth solution
u of (@) satisfies

(4.5) - / ulApdr = [ fodx for all ¢ € C°(Q).
Q Q

This condition makes sense without any differentiability assumptions on w, and
we can define a locally integrable function u € L{ (€2) to be a weak solution of

—Au = ffor f € L] () if it satisfies (F). One problem with using this definition
is that general functions u € LP(£2) do not have enough regularity to make sense of
their boundary values on 00h

More generally, we can define distributional solutions T' € D'(€2) of Poisson’s

equation —AT = f with f € D'(Q) by
(4.6) —(T,AG) = (f,6)  forall g € C(Q).

While these definitions appear more general, because of elliptic regularity they turn
out not to extend the class of variational solutions we consider here if f € H1(Q),
and we will not use them below.

4.2. Variational formulation

Definition of a weak solution in is closely connected with the variational
formulation of the Dirichlet problem for Poisson’s equation. To explain this con-
nection, we first summarize some definitions of the differentiability of functionals
(scalar-valued functions) acting on a Banach space.

DEFINITION 4.3. A functional J : X — R on a Banach space X is differentiable
at x € X if there is a bounded linear functional A : X — R such that

lim |J(x + h) — J(x) — Ah| _

0.
h—0 1]l x

If A exists, then it is unique, and it is called the derivative, or differential, of J at
x, denoted DJ(x) = A.

This definition expresses the basic idea of a differentiable function as one which
can be approximated locally by a linear map. If J is differentiable at every point
of X, then DJ : X — X* maps € X to the linear functional DJ(xz) € X* that
approximates J near z.

2For example, if 2 is bounded and 9 is smooth, then pointwise evaluation ¢ — ¢|5q on
C(Q) extends to a bounded, linear trace map T : H*(Q) — H*~1/2(Q) if s > 1/2 but not
if s < 1/2. In particular, there is no sensible definition of the boundary values of a general
function w € L?(2). We remark, however, that if u € L2(Q) is a weak solution of —Au = f
where f € L2?(Q), then elliptic regularity implies that v € H2(Q), so it does have a well-defined
boundary value u|yq € H3/2(8Q); on the other hand, if f € H~2(Q), then u € L?(Q) and we
cannot make sense of u|yq.
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A weaker notion of differentiability (even for functions J : R? — R — see
Example [4.4) is the existence of directional derivatives
J(x + eh) — J(x) d

0J(x;h) = lim = —J(z + €h)
e—0 € de

e=0

If the directional derivative at x exists for every h € X and is a bounded linear
functional on h, then 6J(x;h) = 6J(x)h where §J(z) € X*. We call §J(z) the
Gateaux derivative of J at x. The derivative D.J is then called the Fréchet derivative
to distinguish it from the directional or Gateaux derivative. If J is differentiable
at x, then it is Gateaux-differentiable at « and D.J(z) = §J(z), but the converse is
not true.

EXAMPLE 4.4. Define f : R? — R by £(0,0) = 0 and

flz,y) = (Irffﬁ)z if (z,y) # (0,0).

Then f is Gateaux-differentiable at 0, with §f(0) = 0, but f is not Fréchet-
differentiable at 0.

If J: X — R attains a local minimum at = € X and J is differentiable at z,
then for every h € X the function Jg : R — R defined by Jg.5(t) = J(x + th) is
differentiable at ¢ = 0 and attains a minimum at ¢ = 0. It follows that

sz;h
dt

Hence DJ(x) = 0. Thus, just as in multivariable calculus, an extreme point of a
differentiable functional is a critical point where the derivative is zero.
Given f € H~1(), define a quadratic functional J : Hi(Q) — R by

1
(4.7) J(u) = 5/ |Dul? dz — (f,u).
Q
Clearly, J is well-defined.

PROPOSITION 4.5. The functional J : H} () — R in ({{.7) is differentiable. Its
derivative DJ(u) : H} () — R at u € H}(Q) is given by

(0)=0J(z;h) =0 for every h € X.

DJ(u)h:/Du~th:1:—<f,h> for h € H} ().
Q
PROOF. Given u € H}(Q2), define the linear map A : H}(Q2) — R by
Ahz/Du-thw—(f,h>.
Q

Then A is bounded, with ||A|| < ||Dullzz + || f|| -1, since
|AR| < [|Dull 2| D2 + | flz- [Pl gy < ([Dullzz + [ lm-2) Al -
For h € H}(Q2), we have
1
J(u+h) = J(u) - Ah = 5 / |Dh|? d.
Q

It follows that .
2
[t R) = J(w) = AB| < 5 [l
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and therefore
|[J(uw+ h) — J(u) — Ah| B

lim 0,
h—0 1]l 2
which proves that J is differentiable on H{ () with DJ(u) = A. O

Note that DJ(u) = 0 if and only if u is a weak solution of Poisson’s equation
in the sense of Definition Thus, we have the following result.

COROLLARY 4.6. If J : Hj(Q2) — R defined in {{.7) attains a minimum at
u € HE(Q), then u is a weak solution of —Au = f in the sense of Definition [J.2

In the direct method of the calculus of variations, we prove the existence of a
minimizer of J by showing that a minimizing sequence {u,} converges in a suitable
sense to a minimizer w. This minimizer is then a weak solution of (I)-E2). We
will not follow this method here, and instead establish the existence of a weak
solution by use of the Riesz representation theorem. The Riesz representation
theorem is, however, typically proved by a similar argument to the one used in the
direct method of the calculus of variations, so in essence the proofs are equivalent.

4.3. The space H~}(Q)

The negative order Sobolev space H~1(Q) can be described as a space of dis-
tributions on (2.

THEOREM 4.7. The space H~1(Q) consists of all distributions f € D' () of the
form
(4.8) f=fo+> 0ifs  where fo, f; € L*(Q).
i=1

These distributions extend uniquely by continuity from D(Y) to bounded linear func-
tionals on Hg (). Moreover,

n 1/2
(4.9 1 fllg-1() = inf <Z /Q f? da:) : such that fo, fi satisfy (4.3
i=0

PROOF. First suppose that f € H~1(Q). By the Riesz representation theorem
there is a function g € HJ () such that

(4.10) (f6) = (9.0);y  forall ¢ € HY(Q).
Here, (+,) gy denotes the standard inner product on HLQ),

(u,v) gy = / (uv + Du - Dv) dz.
Q

Identifying a function g € L?(Q) with its corresponding regular distribution, re-
stricting f to ¢ € D(Q) C Hi(Q), and using the definition of the distributional
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derivative, we have

= 0,9 0;
(f.9) /ngsdw;/Q 90,6 de

=1

- <g - Z@igi,¢> for all ¢ € D(Q),
=1

where g; = 9;g € L?(Q). Thus the restriction of every f € H~1(Q) from H}(Q) to
D(9) is a distribution

F=9-> 0
i=1

of the form ([48). Also note that taking ¢ = g in ([@I0), we get (f,g) = Hg||Hl7
which implies that

n 1/2
1l > gl = (/ngderZ/ng dx> ,
i=1

which proves inequality in one direction of (£.9]).
Conversely, suppose that f € D'(2) is a distribution of the form (L8]). Then,
using the definition of the distributional derivative, we have for any ¢ € D(Q) that

(f.0) = (fo, 8) + D _(Difi,d) = (o, 8) — > _(fi, Did).
i=1 i=1

Use of the Cauchy-Schwartz inequality gives

n 1/2
(s, ¢>|<(<fo,> Z<fi,ai¢>2> .

i=1

Moreover, since the f; are regular distributions belonging to L?()

() ()"
(F, &) < l(/ﬂfﬁdw> ([ ¢ar) +i(/ﬂf§dw) (/Qamfdx)r/z,

and
n 1/2 1/2
2 2 2 2
0, 0] < </Qfodx+;/ﬂfi dw) (/Qas +/Qaz¢ dw)
n 1/2
2
< (Z; /Q I dcc) 162

(fs, Bi6)] = ’ /Q Jidhodo

SO
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Thus the distribution f : D(Q) — R is bounded with respect to the H}()-norm
on the dense subset D(Q2). It therefore extends in a unique way to a bounded linear
functional on H}(2), which we still denote by f. Moreover,

" 1/2
. 24
11l S(Z;Afzw> ,

which proves inequality in the other direction of (£9)). O

The dual space of H*(£2) cannot be identified with a space of distributions on
because D(2) is not a dense subspace. Any linear functional f € H'(Q)* defines a
distribution by restriction to D(£2), but the same distribution arises from different
linear functionals. Conversely, any distribution 7' € D'(2) that is bounded with
respect to the H'-norm extends uniquely to a bounded linear functional on Hg, but
the extension of the functional to the orthogonal complement (H})‘ in H! is ar-
bitrary (subject to maintaining its boundedness). Roughly speaking, distributions
are defined on functions whose boundary values or trace is zero, but general linear
functionals on H' depend on the trace of the function on the boundary 9.

EXAMPLE 4.8. The one-dimensional Sobolev space H'(0,1) is embedded in the
space C([0,1]) of continuous functions, since p > n for p = 2 and n = 1. In fact,
according to the Sobolev embedding theorem H'(0,1) — C%/2([0,1]), as can be
seen directly from the Cauchy-Schwartz inequality:

5@ - 1wl < [ 17

s(éﬁﬁfm(éﬂfwfﬁfﬂ
g(%ﬂf@ﬁd&wﬂx—m”?

As usual, we identify an element of H'(0,1) with its continuous representative in
C([0,1]). By the trace theorem,

Hj(0,1) ={ue H(0,1) : u(0) =0, u(l) =0} .
The orthogonal complement is
Hg(0,1)* = {u € H'(0,1) : such that (u,v)s =0 for every v € H}(0,1)}.
This condition implies that u € H}(0,1)* if and only if

1
/ (ww+u'v') de =0  for all v € HE(0,1),
0

which means that u is a weak solution of the ODE
—u” +u=0.
It follows that u(z) = c1e” 4+ coe™*, so
HY0,1)=H)(0,1)& F

where F is the two dimensional subspace of H'(0,1) spanned by the orthogonal
vectors {e®,e"*}. Thus,

HY0,1)* = H'(0,1) @ E*.
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If fe€ HY(0,1)* and u = ug + c1€® + c2e~* where ug € HZ(0,1), then
(fsu) = (fo,u0) + arc1 + azez
where fo € H71(0,1) is the restriction of f to H}(0,1) and

ay = <fvez>7 az = <f7eiz>'
The constants a;, as determine how the functional f € H'(0,1)* acts on the
boundary values u(0), u(1) of a function u € H*(0,1).

4.4. The Poincaré inequality for H{(Q)

We cannot, in general, estimate a norm of a function in terms of a norm of its
derivative since constant functions have zero derivative. Such estimates are possible
if we add an additional condition that eliminates non-zero constant functions. For
example, we can require that the function vanishes on the boundary of a domain, or
that it has zero mean. We typically also need some sort of boundedness condition
on the domain of the function, since even if a function vanishes at some point we
cannot expect to estimate the size of a function over arbitrarily large distances by
the size of its derivative. The resulting inequalities are called Poincaré inequalities.

The inequality we prove here is a basic example of a Poincaré inequality. We
say that an open set € in R™ is bounded in some direction if there is a unit vector
e € R™ and constants a, b such that a < x-e < b for all z € Q.

THEOREM 4.9. Suppose that € is an open set in R™ that is bounded is some
direction. Then there is a constant C' such that

(4.11) / wde < C/ |Du|2 dx for all uw € HY(Q).
Q Q

PROOF. Since C2°(0) is dense in H} (), it is sufficient to prove the inequality
for u € C°(2). The inequality is invariant under rotations and translations, so
we can assume without loss of generality that the domain is bounded in the z,-
direction and lies between 0 < z,, < a.

Writing = = (2, z,,) where 2’ = (21,...,,2,-1), we have

/nanu(x’,t)dt g/ Ol )| dt.
0 0

The Cauchy-Schwartz inequality implies that

/|6nu(x’,t)|dt:/ - |G, )| dt < al/? (/ Onua’, 1) dt)
0 0 0

Hence,

|ua’, )| =

1/2

lu(z’, z,)]* < a/ |0au(z’, )| dt.
0

Integrating this inequality with respect to x,, we get

/ lu(z', 2| day, < a2/ 0 u(z’, )] dt.
0

0
A further integration with respect to z’ gives

lu(z)? da < a2/ |0u(z)]? dx.
Q Q

Since |9,u| < |Dul, the result follows with C' = a?. O
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This inequality implies that we may use as an equivalent inner-product on
H{ an expression that involves only the derivatives of the functions and not the
functions themselves.

COROLLARY 4.10. If Q is an open set that is bounded in some direction, then
HY(Q) equipped with the inner product

(4.12) (u,v)o = | Du-Dvdx
Q

is a Hilbert space, and the corresponding norm is equivalent to the standard norm
on H ().

PROOF. We denote the norm associated with the inner-product (£I12) by

1/2
o = ( [ 1D dx> |
Q

and the standard norm and inner product by

(4.13) [[ull, = (/Q {u2+ |Du|2] dx) 1/27
(u,v); = /Q (wv + Du - Dv) dx.

Then, using the Poincaré inequality ([@I1), we have
[ullo < lufls < (C+ 1) [ullo.

us, the two norms are equivalent; in particular -,+)o) is complete since
Thus, the t quivalent; in particular, (H¢, (-, i plete si
(HE, (+,+)1) is complete, so it is a Hilbert space with respect to the inner product

EI2). O

4.5. Existence of weak solutions of the Dirichlet problem

With these preparations, the existence of weak solutions is an immediate con-
sequence of the Riesz representation theorem.

THEOREM 4.11. Suppose that 2 is an open set in R™ that is bounded in some
direction and f € H™'(Q). Then there is a unique weak solution u € Hg(Q) of
—Au = f in the sense of Definition[{.2

PrROOF. We equip Hg(Q) with the inner product (@IZ). Then, since  is
bounded in some direction, the resulting norm is equivalent to the standard norm,
and f is a bounded linear functional on (H (), (,)o). By the Riesz representation
theorem, there exists a unique u € Hg (£2) such that

(u,9)o = (f,¢)  forall g € Hj(9),

which is equivalent to the condition that u is a weak solution. O

The same approach works for other symmetric linear elliptic PDEs. Let us give
some examples.

EXAMPLE 4.12. Consider the Dirichlet problem
—Au+tu=f in Q,
u=20 on 0f).
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Then u € Hg () is a weak solution if

/ (Du - D¢+ u¢) dx = (f, d) for all ¢ € HJ(9).
Q
This is equivalent to the condition that

(u,¢); = (f, o) for all ¢ € HJ(S2).

where (-,-); is the standard inner product on H}(Q) given in (@I3). Thus, the
Riesz representation theorem implies the existence of a unique weak solution.

Note that in this example and the next, we do not use the Poincaré inequality, so
the result applies to arbitrary open sets, including Q = R™. In that case, Hi(R") =
H'(R™), and we get a unique solution u € H'(R") of —Au + u = f for every
f € H-1(R™). Moreover, using the standard norms, we have ||ul|g1 = [|f|z-1-
Thus the operator —A + [ is an isometry of H!(R") onto H ~(R").

EXAMPLE 4.13. As a slight generalization of the previous example, suppose
that u > 0. A function u € H}(f2) is a weak solution of

—Au+pu=f in Q,

(4.14) u=0 on Of).

if (u, ), = (f,¢) for all ¢ € Hg(Q) where

(u,v)u = / (puv + Du - Dv) dz
Q

The norm || - ||, associated with this inner product is equivalent to the standard
one, since

1
Sl < llullf < Cllull:

where C' = max{p,1/u}. We therefore again get the existence of a unique weak
solution from the Riesz representation theorem.

ExXAMPLE 4.14. Consider the last example for pu < 0. If we have a Poincaré
inequality ||ul|pz < C||Dul/rz for Q, which is the case if Q is bounded in some
direction, then

(u,u)p :/ (pu® + |Dul?) dz > (1 — C|,u|)/ |Dul® dz.
Q Q

Thus |Jul|,, defines a norm on H{(f) that is equivalent to the standard norm if
—1/C < p < 0, and we get a unique weak solution in this case also, provided that
|| is sufficiently small.

For bounded domains, the Dirichlet Laplacian has an infinite sequence of real
eigenvalues {), : n € N} such that there exists a nonzero solution u € H{ () of
—Au = Mu. The best constant in the Poincaré inequality can be shown to be the
minimum eigenvalue \;, and this method does not work if y < —\;. For p = —\,,
a weak solution of ([I4) does not exist for every f € H~1(Q), and if one does exist
it is not unique since we can add to it an arbitrary eigenfunction. Thus, not only
does the method fail, but the conclusion of Theorem .11 may be false.
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ExAMPLE 4.15. Consider the second order PDE

— Z (91 (aijaju) = f in Q,
(4.15) i1
u=20 on 0f)

where the coefficient functions a;; : £ — R are symmetric (a;; = aj;), bounded,
and satisfy the uniform ellipticity condition that for some 6 > 0

> aij()€& > 016> forallz € Q and all § € R™.

i,j=1
Also, assume that €2 is bounded in some direction. Then a weak formulation of
([EI5) is that u € HE(Q) and

a(u,¢) = (f,¢)  forall g € Hy(Q),
where the symmetric bilinear form a : H}(Q) x Hg(£2) — R is defined by

a(u,v) = Z /Q a;;O;udjv dx.

i,j=1
The boundedness of a;;, the uniform ellipticity condition, and the Poincaré inequal-
ity imply that a defines an inner product on H} which is equivalent to the standard
one. An application of the Riesz representation theorem for the bounded linear
functionals f on the Hilbert space (Hg,a) then implies the existence of a unique
weak solution. We discuss a generalization of this example in greater detail in the
next section.

4.6. General linear, second order elliptic PDEs

Consider PDEs of the form

Lu=f
where L is a linear differential operator of the form
(416) Lu=— Z 8Z (aijaju) + Z 81 (bzu) + Ccu,
ij=1 i=1

acting on functions u : 2 — R where € is an open set in R™. A physical interpre-
tation of such PDEs is described briefly in Section Al
We assume that the given coefficients functions a;j,b;, c : @ — R satisfy

(417) Qg s bi; ce L™ (Q), Qij = Qjj-
The operator L is elliptic if the matrix (a;;) is positive definite. We will assume

the stronger condition of uniformly ellipticity given in the next definition.

DEFINITION 4.16. The operator L in ([@I0]) is uniformly elliptic on Q if there

exists a constant @ > 0 such that
n

(4.18) > ai(x)&ig; > 08

4,j=1
for z almost everywhere in {2} and every £ € R™.

This uniform ellipticity condition allows us to estimate the integral of |Du|? in
terms of the integral of )" a;;0;ud;u.
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ExAMPLE 4.17. The Laplacian operator L = —A is uniformly elliptic on any
open set, with 8 = 1.

ExaMPLE 4.18. The Tricomi operator
— .92 2
L =yd;+ 9,

is elliptic in y > 0 and hyperbolic in y < 0. For any 0 < € < 1, L is uniformly
elliptic in the strip {(z,y) : € < y < 1}, with § = ¢, but it is not uniformly elliptic
in {(z,y) : 0<y<1}.

For i1 € R, we consider the Dirichlet problem for L + ul,
Lu+ pu=f in Q,

(4.19) u=0 on 0f2.

We motivate the definition of a weak solution of ([@I9) in a similar way to the
motivation for the Laplacian: multiply the PDE by a test function ¢ € C2°(Q),
integrate over €2, and use integration by parts, assuming that all functions and the
domain are smooth. Note that

Q Q

This leads to the condition that u € Hg(f) is a weak solution of {@I9) with L
given by (@10 if

n

/Q Z ai;Oud;p — ibiu[)iqﬁ—kcud) dx —I—,u/ updr = (f, P)

i,j=1 i=1 Q

for all ¢ € H} ().
To write this condition more concisely, we define a bilinear form

a: HY} Q) x HY}(Q) =R
by

n

(4.20) au,v) = /Q >

ij=1

ai;Oud;v — Z b;u0;v + cuv p dx.

This form is well-defined and bounded on H{(£2), as we check explicitly below. We
denote the L2-inner product by

(u,v)2 z/uvd:v.
Q

DEFINITION 4.19. Suppose that € is an open set in R", f € H=1(Q), and L is
a differential operator (.16 whose coefficients satisfy ([AI7). Then u: Q — R is a
weak solution of (X19) if: (a) u € HI(Q); (b)

a(u, ) + p(u, d)rz = (f, ) for all ¢ € Hg(Q).
The form a in (@20) is not symmetric unless b; = 0. We have

a(v,u) = a*(u,v)
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where
(4.21) a* (u,v) = /Q i a;; O;udjv + i bi(Ou)v + cuv p dx
i,j=1 i
is the bilinear form associated with the formal adjoint L* of L,
(422) L*u = — i 81 (aij[)ju) - i blazu + cu.
i,j=1 i=1

The proof of the existence of a weak solution of ([@I9) is similar to the proof
for the Dirichlet Laplacian, with one exception. If L is not symmetric, we cannot
use a to define an equivalent inner product on Hg () and appeal to the Riesz
representation theorem. Instead we use a result due to Lax and Milgram which
applies to non-symmetric bilinear forms [l

4.7. The Lax-Milgram theorem and general elliptic PDEs

We begin by stating the Lax-Milgram theorem for a bilinear form on a Hilbert
space. Afterwards, we verify its hypotheses for the bilinear form associated with
a general second-order uniformly elliptic PDE and use it to prove the existence of
weak solutions.

THEOREM 4.20. Let H be a Hilbert space with inner-product (+,-) : HXH — R,
and let a : H X H — R be a bilinear form on H. Assume that there exist constants
C1,Cy > 0 such that

Cillull? < a(u,u), |a(u,v)| < Collul| ||v]| for all u,v € H.

Then for every bounded linear functional f : H — R, there exists a unique u € H
such that

(f,v) = a(u,v) for all v € H.

For the proof, see [9]. The verification of the hypotheses for (£20) depends on
the following energy estimates.

THEOREM 4.21. Let a be the bilinear form on H}(Q) defined in [f-20), where
the coefficients satisfy [{{-17) and the uniform ellipticity condition [{-18) with con-
stant 6. Then there exist constants C1,Cy > 0 and v € R such that for all
u,v € HHQ)

(4.23) CulullZy < alu,u) +lul2s
(4.24) lau, )] < Ca [[ull gy 0] g5

If b = 0, we may take v = 0 — co where ¢y = info ¢, and if b # 0, we may take
1 & 5 0
=5 ; 16l Lo + 5 = co-

3The story behind this result — the story might be completely true or completely false —
is that Lax and Milgram attended a seminar where the speaker proved existence for a symmetric
PDE by use of the Riesz representation theorem, and one of them asked the other if symmetry
was required; in half an hour, they convinced themselves that is wasn’t, giving birth to the Lax-
Milgram “lemma.”
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PROOF. First, we have for any u,v € H}(Q) that

la(u,v)| < Z / |a;;0;ud;v| da:—l—Z/ |b;ud;v| d33—|—/ |cuv| dz.
0 —Ja 0

ij=1

n

< > llaigll oo 10l 2 10501l 2

ij=1

n
+ 3 bl Nl o 1000l 2 + llell o a2 1ol 2
i=1

n n
<O D Naijlpoe + D 106l o + lell oo | el gy oll gy

i,j=1 i=1

which shows ([d.24).
Second, using the uniform ellipticity condition (418)), we have

0| DulZ, — 9/ \Duf? do
Q

< Z /Qaij(’?iuajudx

4,j=1

< a(u,u) + Z/ biudiu dx — / cu? da
=179 Q

< a(u,u) + Z/ |biudiu| do — co/ u? dx
=179 Q@

< a(u,w) + ) bill oo llll 2 10:ull 2 = collull 2
i=1

< a(u,u) + B lull g2 [[Dull 2 = co [l 2

where ¢(x) > ¢g a.e. in £, and

n 1/2
B = (Z ||bz-|im> :
=1

If 8 =0, we get [@23)) with
Y= 0 — Co, Ol =4.
If g > 0, by Cauchy’s inequality with €, we have for any € > 0 that
2 1 2
lull g2 [|1Dul 2 < el|Dullza + = llullze -

Hence, choosing € = 0/23, we get

0 9 32
I Dullze < alw,u) + | 55 —co | llullge
and ([{.23) follows with

20
ﬂ——FE—Co, Ci =

B 0
LY 2
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O

Equation ([@23) is called Garding’s inequality; this estimate of the H}-norm
of u in terms of a(u,u), using the uniform ellipticity of L, is the crucial energy
estimate. Equation (Z24)) states that the bilinear form a is bounded on H}. The
expression for 7 in this Theorem is not necessarily sharp. For example, as in the
case of the Laplacian, the use of Poincaré’s inequality gives smaller values of v for
bounded domains.

THEOREM 4.22. Suppose that Q is an open set in R™, and f € H-1(Q). Let L
be a differential operator (4.10) with coefficients that satisfy {¢-17), and let v € R
be a constant for which Theorem[{.21| holds. Then for every p >~ there is a unique
weak solution of the Dirichlet problem

Lu+puf =0, u € HY(Q)
in the sense of Definition [[.19
PROOF. For p € R, define a, : Hj(Q) x Hj(Q2) — R by
(4.25) ay(u,v) = a(u,v) + p(u, v) 2

where a is defined in (@20). Then u € H}(Q) is a weak solution of Lu + pu = f if
and only if

au(u, ) = (f,¢) for all ¢ € H(9).
From (L2),
|ap(u, )] < O [lull g [0l g+l lullp2llvllze < (Co + ul) lull g 0]l
so a, is bounded on H}(Q2). From @Z3),
Cullullfy < alu,u) +yllullzs < au(u,u)

whenever p > «. Thus, by the Lax-Milgram theorem, for every f € H=1(Q) there
is a unique u € H}(Q) such that (f, #) = a,(u, ¢) for all v € H}(2), which proves
the result. (]

Although L* is not of exactly the same form as L, since it first derivative term
is not in divergence form, the same proof of the existence of weak solutions for L

applies to L* with a in [@20) replaced by a* in (@2I)).
4.8. Compactness of the resolvent

An elliptic operator L + pl of the type studied above is a bounded, invertible
linear map from H{(Q) onto H~1(Q) for sufficiently large u € R, so we may de-
fine an inverse operator K = (L + uI)~!. If © is a bounded open set, then the
Sobolev embedding theorem implies that H} () is compactly embedded in L?(€2),
and therefore K is a compact operator on L?((2).

The operator (L — AI)~! is called the resolvent of L, so this property is some-
times expressed by saying that L has compact resolvent. As discussed in Exam-
ple 14 L + ul may fail to be invertible at smaller values of u, such that A = —pu
belongs to the spectrum o (L) of L, and the resolvent is not defined as a bounded
operator on L?(Q) for X € o(L).

The compactness of the resolvent of elliptic operators on bounded open sets
has several important consequences for the solvability of the elliptic PDE and the
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spectrum of the elliptic operator. Before describing some of these, we discuss the
resolvent in more detail.
From Theorem 4.22] for 1 > v we can define

K : L*(Q) — L*(Q), K= (L+ HI)A‘N(Q) :

We define the inverse K on L?(f2), rather than H~1(f2), in which case its range is
a subspace of HE (). If the domain € is sufficiently smooth for elliptic regularity
theory to apply, then u € H?(Q) if f € L?(€2), and the range of K is H?(Q)NH}(Q);
for non-smooth domains, the range of K is more difficult to describe.

If we consider L as an operator acting in L?(Q2), then the domain of L is
D =ran K, and

L:DC L*(Q) — L*()

is an unbounded linear operator with dense domain D. The operator L is closed,
meaning that if {u, } is a sequence of functions in D such that w,, — u and Lu,, — f
in L2(Q), then u € D and Lu = f. By using the resolvent, we can replace an
analysis of the unbounded operator L by an analysis of the bounded operator K.

If f € L3(Q), then (f,v) = (f,v)r2. It follows from the definition of weak
solution of Lu + pu = f that
(4.26) Kf=wu ifandonlyif a,(u,v)=(f,v)z2 for all v € H}(Q)
where a,, is defined in ([@25). We also define the operator

K*: L*(Q) — L*(Q), K*= (L +MI)_1|L2(Q) )

meaning that
(4.27) K*f=w ifand only if aj(u,v) = (f,v)Le for all v € H}(Q)

where aj,(u,v) = a*(u,v) + p (u,v) > and a* is given in ({@ZT).

THEOREM 4.23. If K € B(L*(Q)) is defined by [§-20), then the adjoint of K
is K* defined by (£-27). If Q is a bounded open set, then K is a compact operator.

PROOF. If f,g € L*(Q) and Kf = u, K*g = v, then using (£26) and {27),
we get
(fv K*g)L2 = (fvv)L2 = CL#(U,’U) = CLZ(’U,’UJ) = (g,U)L2 = (uvg)L2 = (Kfa g)Lz'
Hence, K* is the adjoint of K.
If Kf = u, then (£23)) with g > v and (28] imply that
Cillullfy < auu,u) = (f,w)re < | fllze llullpe < 122 llull gy
Hence [|K f| gy < C|/fllrz where C = 1/Cy. It follows that K is compact if § is

bounded, since it maps bounded sets in L?*(Q) into bounded sets in Hg (£2), which
are precompact in L?(Q) by the Sobolev embedding theorem. ([l

4.9. The Fredholm alternative
Consider the Dirichlet problem
(4.28) Lu=f inQ, u=0 on 04,
where (2 is a smooth, bounded open set, and

Lu=— Z 0; (aijaju) + Z 0; (blu) + cu.

ij=1 i=1
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If u=v =0 on 09, Green’s formula implies that

/Q (Luyvdz = /QU(L*U) dz,

where the formal adjoint L* of L is defined by

n n

L*v=— Z 0; (aijajv) — Z b;0;v + cv.
i,j=1 i=1

It follows that if u is a smooth solution of ([A28]) and v is a smooth solution of the

homogeneous adjoint problem,

L*v =0 in §, v=0 on 0,

/fvd:tz/(Lu)vd:vz/uL*vdsz.
Q Q Q

Thus, a necessary condition for [@28)) to be solvable is that f is orthogonal with
respect to the L2()-inner product to every solution of the homogeneous adjoint
problem.

For bounded domains, we will use the compactness of the resolvent to prove
that this condition is necessary and sufficient for the existence of a weak solution of
E28) where f € L*(Q). Moreover, the solution is unique if and only if a solution
exists for every f € L(Q).

This result is a consequence of the fact that if K is compact, then the operator
I+0K is a Fredholm operator with index zero on L?(Q) for any o € R, and therefore
satisfies the Fredholm alternative (see Section LB.2). Thus, if K = (L + ul)~! is
compact, the inverse elliptic operator L — AI also satisfies the Fredholm alternative.

then

THEOREM 4.24. Suppose that 2 is a bounded open set in R™ and L is a uni-
formly elliptic operator of the form (4.16) whose coefficients satisfy (4.17). Let L*
be the adjoint operator (4-22) and A € R. Then one of the following two alternatives
holds.

(1) The only weak solution of the equation L*v — v =0 is v = 0. For every
f € L%(Q) there is a unique weak solution u € H(Q) of the equation
Lu — Au = f. In particular, the only solution of Lu — Au =0 is u = 0.

(2) The equation L*v — Xv = 0 has a nonzero weak solution v. The solution
spaces of Lu — Au =0 and L*v — Av = 0 are finite-dimensional and have
the same dimension. For f € L*(Q), the equation Lu — A\u = f has a
weak solution u € Hg(Q) if and only if (f,v) = 0 for every v € Hy(Q)
such that L*v — Av = 0, and if a solution exists it is not unique.

PROOF. Since K = (L + puI)~! is a compact operator on L?(f2), the Fredholm
alternative holds for the equation

(4.29) ut+oKu=yg u,g € L*(Q)

for any o € R. Let us consider the two alternatives separately.

First, suppose that the only solution of v + o K*v = 0 is v = 0, which implies
that the only solution of L*v+ (u+o0)v = 0 is v = 0. Then the Fredholm alterative
for I + oK implies that (Z29) has a unique solution u € L?(Q) for every g € L?(Q).
In particular, for any g € ran K, there exists a unique solution v € L?(€2), and
the equation implies that u € ran K. Hence, we may apply L + pl to (23],
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and conclude that for every f = (L + pl)g € L*(), there is a unique solution
u € ran K C H}(Q) of the equation

(4.30) Lu+ (p+o)u=f.

Taking 0 = — (A + u), we get part (1) of the Fredholm alternative for L.
Second, suppose that v + 0 K*v = 0 has a finite-dimensional subspace of solu-
tions v € L*(Q). It follows that v € ran K* (clearly, o # 0 in this case) and

L*v+ (p+o)v=0.

By the Fredholm alternative, the equation v + c Ku = 0 has a finite-dimensional
subspace of solutions of the same dimension, and hence so does

Lu+ (p+0)u=0.
Equation (Z29) is solvable for u € L?(2) given g € ran K if and only if
(4.31) (v,g)L2 =0 for all v € L?(2) such that v + o K*v = 0,

and then u € ran K. It follows that the condition (£31]) with ¢ = K f is necessary
and sufficient for the solvability of (@30) given f € L?(Q). Since
N 1
(vvg)L2 = (’U, Kf)L2 = (K v, f)L2 = ——(’U, f)L2

g

and v + cK*v = 0 if and only if L*v + (u + o)v = 0, we conclude that (£30) is
solvable for u if and only if f € L?*(Q) satisfies

(v,f)2=0 for all v € ran K such that L*v + (u + o)v = 0.
Taking 0 = — (A + u), we get alternative (2) for L. O

Elliptic operators on a Riemannian manifold may have nonzero Fredholm in-
dex. The Atiyah-Singer index theorem (1968) relates the Fredholm index of such
operators with a topological index of the manifold.

4.10. The spectrum of a self-adjoint elliptic operator

Suppose that L is a symmetric, uniformly elliptic operator of the form

(4.32) Lu=— Z 0; (a;j0;u) + cu

ij=1
where a;; = aj; and a;5,c € L>(Q2). The associated symmetric bilinear form
a: HYHQ) x HY(Q) =R

is given by
n
a(u,v) :/ Z ai;Oudju + cuv | de.
 \; 55

The resolvent K = (L + ul)~! is a compact self-adjoint operator on L?(Q) for
sufficiently large pu. Therefore its eigenvalues are real and its eigenfunctions provide
an orthonormal basis of L?(2). Since L has the same eigenfunctions as K, we get
the corresponding result for L.
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THEOREM 4.25. The operator L has an increasing sequence of real eigenvalues
of finite multiplicity
A< A< A< <A, <L

such that N, — co. There is an orthonormal basis {¢, : n € N} of L*(Q) consisting
of eigenfunctions functions ¢, € H}(Q) such that

PROOF. If K¢ = 0 for any ¢ € L?(f2), then applying L + ul to the equation
we find that ¢ = 0, so 0 is not an eigenvalue of K. If K¢ = k¢, for ¢ € L*(Q) and

Kk # 0, then ¢ € ran K and
1
Lo= (— —u) 5
K

0 ¢ is an eigenfunction of L with eigenvalue A = 1/k—pu. From Garding’s inequality
([£23) with u = ¢, and the fact that a(¢, ) = \||¢]|32, we get

Cillgllzn < (A +7)llgll7-.

It follows that A > —7, so the eigenvalues of L are bounded from below, and at
most a finite number are negative. The spectral theorem for the compact self-
adjoint operator K then implies the result. ([l

The boundedness of the domain (2 is essential here, otherwise K need not be
compact, and the spectrum of L need not consist only of eigenvalues.

EXAMPLE 4.26. Suppose that Q = R™ and L = —A. Let K = (A + )7L
Then, from Example £12) K : L?(R") — L*(R™). The range of K is H?(R").
This operator is bounded but not compact. For example, if ¢ € C°(R"™) is any
nonzero function and {a;} is a sequence in R™ such that |a;| T co as j — oo, then
the sequence {¢;} defined by ¢;(x) = ¢(z — a;) is bounded in L*(R") but {K¢;}
has no convergent subsequence. In this example, K has continuous spectrum [0, 1]
on L?(R™) and no eigenvalues. Correspondingly, —A has the purely continuous
spectrum [0, 00).

Finally, let us briefly consider the Fredholm alternative for a self-adjoint elliptic
equation from the perspective of this spectral theory. The equation

(4.33) Lu—Xu=f

may be solved by expansion with respect to the eigenfunctions of L. Suppose that
{¢n : n € N} is an orthonormal basis of L?(Q2) such that L¢, = A\,¢,, where the
eigenvalues A, are increasing and repeated according to their multiplicity. We get
the following alternatives, where all series converge in L?():

(1) If A # A, for any n € N, then ([@33) has the unique solution

_x (fi o)
=2

u

Pn

for every f € L*(Q);
(2) If A = Ay for for some M € N and A\, = Ay for M <n < N, then (£33)
has a solution u € Hg(Q) if and only if f € L?(Q) satisfies

(fydn) =0  for M <n<N.
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In that case, the solutions are

N
u=y ;f’f"icﬁﬁ > catn
n=M

An#EX

where {cps, . ..,cn} are arbitrary real constants.

4.11. Interior regularity

Roughly speaking, solutions of elliptic PDEs are as smooth as the data allows.
For boundary value problems, it is convenient to consider the regularity of the
solution in the interior of the domain and near the boundary separately. We begin
by studying the interior regularity of solutions. We follow closely the presentation
in [9].

To motivate the regularity theory, consider the following simple a priori esti-
mate for the Laplacian. Suppose that v € C2°(R™). Then, integrating by parts
twice, we get

J @@= Y [ @) @) o

ij=1

=— Z /((f’wu) (Oju) dx

ij=1

= [ o) @20) o

ij=1
:/‘DQU‘Q dzx.

[1D%ul| o = [I 1172

Thus, we can control the L?-norm of all second derivatives of « by the L?-norm
of the Laplacian of u. This estimate suggests that we should have u € HZ_ if
f,u € L?, as is in fact true. The above computation is, however, not justified for
weak solutions that belong to H'; as far as we know from the previous existence
theory, such solutions may not even possess second-order weak derivatives.

We will consider a PDE

Hence, if —Au = f, then

(4.34) Lu=f in Q
where  is an open set in R", f € L?(f2), and L is a uniformly elliptic of the form
i,j=1

It is straightforward to extend the proof of the regularity theorem to uniformly

elliptic operators that contain lower-order terms [9].
A function v € H*(Q) is a weak solution of ([{34)—E.35) if

(4.36) a(u,v) = (f,v) for all v € H} (),
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where the bilinear form « is given by
(4.37) a(u,v) = Z / a;;0;udjv dx.
Q

We do not impose any boundary condition on u, for example by requiring that
u € HY(Q), so the interior regularity theorem applies to any weak solution of
@.39).

Before stating the theorem, we illustrate the idea of the proof with a further
a priori estimate. To obtain a local estimate for D?u on a subdomain €)' € €, we
introduce a cut-off function n € C2°(€2) such that 0 <n <1 and n=1on . We
take as a test function

(4.38) v=—0) (n°Ou) .

Note that v is given by a positive-definite, symmetric operator acting on u of a
similar form to L, which leads to the positivity of the resulting estimate for DJyu.

Multiplying [@34)) by v and integrating over Q, we get (Lu,v) = (f,v). Two
integrations by parts imply that

(Lu,v) =" /Q 9; (ai;0iu) (Okn*pu) dx

i,j=1

— Z Ok (ai;05u) (8j7728ku) dx
Q

ij=1
= Z / n*aij (0;0ku) (0;05u) dx + F
Gole

where

n

F:Z/

ij=1"%

{772 (Okaij) (Oiu) (9;0Ku)

+ 200 aiy (9,0u) (9w) + (Opa) (95u) (Opuw)| } da.

The term F' is linear in the second derivatives of u. We use the uniform ellipticity
of L to get

n
e/ |DOul? dw < > / n?aq; (8;0ku) (0;0pu) dx = (f,v) — F,
Qr =179
and a Cauchy inequality with € to absorb the linear terms in second derivatives on
the right-hand side into the quadratic terms on the left-hand side. This results in
an estimate of the form

The proof of regularity is entirely analogous, with the derivatives in the test function
([E3]) replaced by difference quotients (see Section [L.CJ). We obtain an L?(Q')-
bound for the difference quotients D(?,?u that is uniform in h, which implies that
u€ H2(Q).
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THEOREM 4.27. Suppose that ) is an open set in R™. Assume that a;; € C*()
and f € L*(Q). If u € HY(Q) is a weak solution of [({-34)-{{-3%), then v € H*(Q')
for every ' € Q. Furthermore,

(4.39) lull 2oy < C (I1fl2@) + llullL2@)
where the constant C depends only on n, V', Q and a;;.

PROOF. Choose a cut-off function n € C° () such that 0 <n<landn=1
on ). We use the compactly supported test function

v=—D;" (n*D}u) € Hy(Q)

in the definition [@306)-(@3T) for weak solutions. (As in [@38), v is given by a
positive self-adjoint operator acting on u.) This implies that

(4.40) - Z /aw d;u) D;"9; (> D) da = — /fD (> D) dx.

7,j=1

Performing a discrete integration by parts and using the product rule, we may write
the left-hand side of ([@.40) as

(441)
— Z /au (0;u) D0, (n 2Dku d:E— /Dk (a;;0w) 05 (n 2D,’ju) dz
4,j=1 i,j=1
Z/naw )(Dkau) dr+ F,
1,j=1

with ah-(:zz) = ai;(x + hey), where the error-term F is given by
F = Z / { Dkaw (O;u) (D,}jﬁju)
(4.42) =1
+ 200, aly (D) (D) + (D) (9u) (D) } d.
Using the uniform ellipticity of L in [@I8]), we estimate

/77 ‘DZDU‘ dr < Z /77 aw Dkau) (DZ[?ju) dz

7,j=1

Using (@Z0)[@AT) and this inequality, we find that
(4.43) 9/ | DpDul” dx < —/ FD" (?Dlu) da — F.
By the Cauchy—Sc}?wartz inequality, "
‘/Q IO (n*Diu) de| < 11l 220 D" (WQDZU)HL?(Q)
Since supp7 € €, Theorem A3 implies that for sufficiently small h,
D" (1* D) 2 < 106 (7 D) 2
< HWQ‘?’CDZUHH(Q) + 20 (9m) DZ“HLz(Q)
< ||k Dyl 2 ) + C 1 Dull 2 g
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A similar estimate of F' in (42) gives
IF| < € (IDull gy [[1DE DUl gy + 1Dul 2y ) -
Using these results in [@43]), we find that
2
0 HanDUHp(Q) SC(||f||L2(Q) HWDZD“HLz(Q) + 12 1Dull p2(q)

(4.44) N 2
+ ||Du||L2(Q) ||77DkD“||L2(Q) + ||DU||L2(Q))'

By Cauchy’s inequality with €, we have
h h 2 1 2
£l 220 ||77DkDuHL2(Q) Se€ H77DkD“||L2(Q) T I 122 »

h h 2 1 2
1Dl 20y [1DE Dul| 2 < € [[nDE D[ 2 + 1 1Pullz2 ) -
Hence, choosing € so that 4Ce = 0, and using the result in ([Z44]) we get that

0 2 2 2
1 ImDiDul 1z ) < C(If1Z2@) + I1Dulz2qey ).
Thus, since n =1 on ¥/,

(4.45) ||DZDUH2Lz(Q,) < O(||f||2L2(Q) + ||DU||2L2(Q))

where the constant C' depends on 2, ', a;;, but is independent of h, u, f. The-
orem [4.53] now implies that the weak second derivatives of u exist and belong to
L?(£2). Furthermore, the H2-norm of u satisfies

lull 20y < C (1 fllz2 (@) + lullm@)) -
Finally, we replace ||ul| g1(q) in this estimate by |lu||12(q). First, by the previous
argument, if ' € Q" € Q, then
(4.46) lull 2y < C (1 L2y + lull i) -
Let n € C2°(Q) be a cut-off function with 0 <7 <1 and n =1 on Q”. Using the
uniform ellipticity of L and taking v = n?u in (£.36)-(@31), we get that

9/ 772|Du|2 dr < Z /nzaij&uajudaz
Q Q

ij=1

< / n? fudx — Z / 2a,;nudiud;n dx
Q o179
<N llz2@llull 2@y + Cllull2 ) [InDull 2 (o)
Cauchy’s inequality with e then implies that

InDul3zay < € (IF1132@) + lulfze))
and since ||Du||%2(Q,,) < ||77Du||%2(9), the use of this result in ([@46]) gives (@39). O

If u e HE () and f € L*(2), then the equation Lu = f relating the weak
derivatives of v and f holds pointwise a.e.; such solutions are often called strong
solutions, to distinguish them from weak solutions, which may not possess weak
second order derivatives, and classical solutions, which possess continuous second
order derivatives.

The repeated application of these estimates leads to higher interior regularity.
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THEOREM 4.28. Suppose that a;; € C*1(Q) and f € H*(Q). Ifue HY(Q) isa
weak solution of (1-34)—(Z-35), then u € H**2(Y') for every Q' € Q. Furthermore,

ull vy < C (1 e + lullL2)
where the constant C depends only on n, k, ', Q and a;;.

See [9] for a detailed proof. Note that if the above conditions hold with k > n/2,
then f € C(Q) and u € C?(Q), so u is a classical solution of the PDE Lu = f.
Furthermore, if f and a;; are smooth then so is the solution.

COROLLARY 4.29. If a;j, f € C®(Q) and u € H'(Q) is a weak solution of
TG, then u € C=(9)

Proor. If Q' € €, then f € H*(Q') for every k € N, so by Theorem (28]
u € H{Z)ng(Q’) for every k € N, and by the Sobolev embedding theorem u € C*° ().

Since this holds for every open set ' € €2, we have u € C*>°(Q). O

4.12. Boundary regularity

To study the regularity of solutions near the boundary, we localize the problem
to a neighborhood of a boundary point by use of a partition of unity: We decompose
the solution into a sum of functions that are compactly supported in the sets of a
suitable open cover of the domain and estimate each function in the sum separately.

Assuming, as in Section[[I0} that the boundary is at least C!, we may ‘flatten’
the boundary in a neighborhood U by a diffeomorphism ¢ : U — V that maps UN
to an upper half space V = By (0) N {y, > 0}. If o=! =4 and = = ¢(y), then by a
change of variables (c.f. Theorem [[.44] and Proposition B.2T]) the weak formulation

(@34)-@35) on U becomes

Z / a1y 290 g / fody  for all functions & € HX(V),
) Y; Byj

where @ € HY(V). Here, i = u o, 9 = v o1, and

Bp; 0¢; .
|detDw|Zapqow( 2op) (52ov).  F-ldetDulfou

z
p.g=1 Oq

The matrix a;; satisfies the uniform ellipticity condition if a,, does. To see this,
we define ¢ = (Dg?) &, or
-3 5%
83:p

Then, since Dy and Dy = Dp~! are 1nvert1ble and bounded away from zero, we
have for some constant C' > 0 that

n n
> @& = [det Dy| D apgGypq > |det Dy| ][> > COlg*.
5,J=1 p,q=1

Thus, we obtain a problem of the same form as before after the change of variables.
Note that we must require that the boundary is C? to ensure that a;; is C*.

It is important to recognize that in changing variables for weak solutions, we
need to verify the change of variables for the weak formulation directly and not
just for the original PDE. A transformation that is valid for smooth solutions of a
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PDE is not always valid for weak solutions, which may lack sufficient smoothness
to justify the transformation.

We now state a boundary regularity theorem. Unlike the interior regularity
theorem, we impose a boundary condition u € H}(2) on the solution, and we re-
quire that the boundary of the domain is smooth. A solution of an elliptic PDE
with smooth coefficients and smooth right-hand side is smooth in the interior of
its domain of definition, whatever its behavior near the boundary; but we can-
not expect to obtain smoothness up to the boundary without imposing a smooth
boundary condition on the solution and requiring that the boundary is smooth.

THEOREM 4.30. Suppose that ) is a bounded open set in R™ with C?-boundary.
Assume that a;; € CY(Q) and f € L*(Q). If u € H}(Q) is a weak solution of
-34)-[#-35), then u € H*(), and

lullg2@) < C (I fllz2@) + lullz2@))

where the constant C' depends only on n, Q and a;;.

PrROOF. By use of a partition of unity and a flattening of the boundary, it is
sufficient to prove the result for an upper half space Q@ = {(z1,...,2) : z, > 0}
space and functions u, f : Q — R that are compactly supported in By (0) N €. Let
n € C°(R™) be a cut-off function such that 0 <7 <1 and n =1 on By (0). We
will estimate the tangential and normal difference quotients of Du separately.

First consider a test function that depends on tangential differences,

vz—D;hnzD,’ju fork=1,2,...,n—1.

Since the trace of u is zero on 9%, the trace of v on 91 is zero and, by Theorem [3.44]
v € H}(Q). Thus we may use v in the definition of weak solution to get (EZ0).
Exactly the same argument as the one in the proof of Theorem gives (EAH]).
It follows from Theorem that the weak derivatives Jy0;u exist and satisfy

(447)  [10kDull gy < C (I 2 + lullzeey)  fork=1,2,....n 1.

The only derivative that remains is the second-order normal derivative 92u,
which we can estimate from the equation. Using (£.34)-(@.33]), we have for ¢ €
C(Q) that

/Qa,m (Onu) (Ond) dx = — Z/ /Q a;j (Ou) (0;¢) dz + /Q fodx

where 3" denotes the sum over 1 < i, j < n with the term i = j = n omitted. Since
a;; € C1(Q) and d;u is weakly differentiable with respect to z; unless i = j = n we
get, using Proposition 3.21] that

/ ann (Opu) (Ond) do = Z// {90 [ai; (O;u)] + f} pdx for every ¢ € C°(Q).
Q Q
It follows that a,, (O,u) is weakly differentiable with respect to z,,, and

On [ann (Dn)] = — {37 05 las; (Osw)] + £ } € L(9).

From the uniform ellipticity condition [{@I8]) with £ = e,,, we have a,,,, > 0. Hence,

by Proposition 3.21]
1
Opt = —— ApnOntl
a’n'n,
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is weakly differentiable with respect to x,, with derivative

Furthermore, using (£47) we get an estimate of the same form for H@%nu”%g(m, &)
that

1D%u] 2y < € (113200 + ulFe))
0

The repeated application of these estimates leads to higher-order regularity.

THEOREM 4.31. Suppose that 2 is a bounded open set in R"™ with Ck+2.
boundary. Assume that a;; € C**1(Q) and f € H*(Q). If u € HY(Q) is a weak

solution of [£-34)-(#-39), then u € H*2(Q) and
ullrvziq) < C ([ Flar@) + llullz2)
where the constant C' depends only on n, k, 2, and a;;.
Sobolev embedding then yields the following result.

COROLLARY 4.32. Suppose that ) is a bounded open set in R™ with C*° bound-
ary. If aij, f € C®(Q) and u € HE(Q) is a weak solution of {{-34)-(#-39), then
u € C>(Q)

4.13. Some further perspectives

This book is to a large extent self-contained, with the restriction
that the linear theory — Schauder estimates and Campanato
theory — is not presented. The reader is expected to be famil-
iar with functional-analytic tools, like the theory of monotone
operatorsﬁ

The above results give an existence and L2-regularity theory for second-order,
uniformly elliptic PDEs in divergence form. This theory is based on the simple
a priori energy estimate for ||Dul|p2 that we obtain by multiplying the equation
Lu = f by u, or some derivative of u, and integrating the result by parts.

This theory is a fundamental one, but there is a bewildering variety of ap-
proaches to the existence and regularity of solutions of elliptic PDEs. In an at-
tempt to put the above analysis in a broader context, we briefly list some of these
approaches and other important results, without any claim to completeness. Many
of these topics are discussed further in the references [9}, 17, 23].

LP-theory: If 1 < p < oo, there is a similar regularity result that solutions
of Lu = f satisfy u € W2P if f € LP. The derivation is not as simple when
p # 2, however, and requires the use of more sophisticated tools from real
analysis (such as the LP-theory of Calderén-Zygmund operators).

Schauder theory: The Schauder theory provides Holder-estimates similar
to those derived in Section 2.7.2] for Laplace’s equation, and a correspond-
ing existence theory of solutions u € C%% of Lu = f if f € C%* and L has
Holder continuous coefficients. General linear elliptic PDEs are treated
by regarding them as perturbations of constant coefficient PDEs, an ap-
proach that works because there is no ‘loss of derivatives’ in the estimates

4From the introduction to [2].
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of the solution. The Hoélder estimates were originally obtained by the use
of potential theory, but other ways to obtain them are now known; for
example, by the use of Campanato spaces, which provide Holder norms
in terms of suitable integral norms that are easier to estimate directly.

Perron’s method: Perron (1923) showed that solutions of the Dirichlet
problem for Laplace’s equation can be obtained as the infimum of super-
harmonic functions or the supremum of subharmonic functions, together
with the use of barrier functions to prove that, under suitable assumptions
on the boundary, the solution attains the prescribed boundary values.
This method is based on maximum principle estimates.

Boundary integral methods: By the use of Green’s functions, one can
often reduce a linear elliptic BVP to an integral equation on the boundary,
and then use the theory of integral equations to study the existence and
regularity of solutions. These methods also provide efficient numerical
schemes because of the lower dimensionality of the boundary.

Pseudo-differential operators: The Fourier transform provides an effec-
tive method for solving linear PDEs with constant coefficients. The theory
of pseudo-differential and Fourier-integral operators is a powerful exten-
sion of this method that applies to general linear PDEs with variable
coefficients, and elliptic PDEs in particular. It is, however, less well-
suited to the analysis of nonlinear PDEs (although there are nonlinear
generlizations, such as the theory of para-differential operators).

Variational methods: Many elliptic PDEs — especially those in diver-
gence form — arise as Euler-Lagrange equations for variational princi-
ples. Direct methods in the calculus of variations provide a powerful and
general way to analyze such PDEs, both linear and nonlinear.

Di Giorgi-Nash-Moser: Di Giorgi (1957), Nash (1958), and Moser (1960)
showed that weak solutions of a second order elliptic PDE in divergence
form with bounded (L°°) coefficients are Holder continuous (C%%). This
was the key step in developing a regularity theory for minimizers of non-
linear variational principles with elliptic Euler-Lagrange equations. Moser
also obtained a Harnack inequality for weak solutions which is a crucial
ingredient of the regularity theory.

Fully nonlinear equations: Krylov and Safonov (1979) obtained a Har-
nack inequality for second order elliptic equations in nondivergence form.
This allowed the development of a regularity theory for fully nonlinear
elliptic equations (e.g. second-order equations for u that depend nonlin-
early on D?u). Crandall and Lions (1983) introduced the notion of viscos-
ity solutions which — despite the name — uses the maximum principle
and is based on a comparison with appropriate sub and super solutions
This theory applies to fully nonlinear elliptic PDEs, although it is mainly
restricted to scalar equations.

Degree theory: Topological methods based on the Leray-Schauder degree
of a mapping on a Banach space can be used to prove existence of solutions
of various nonlinear elliptic problems [32]. These methods can provide
global existence results for large solutions, but often do not give much
detailed analytical information about the solutions.



118 4. ELLIPTIC PDES

Heat flow methods: Parabolic PDEs, such as u; + Lu = f, are closely
connected with the associated elliptic PDEs for stationary solutions, such
as Lu = f. One may use this connection to obtain solutions of an ellip-
tic PDE as the limit as ¢ — oo of solutions of the associated parabolic
PDE. For example, Hamilton (1981) introduced the Ricci flow on a man-
ifold, in which the metric approaches a Ricci-flat metric as t — oo, as a
means to understand the topological classification of smooth manifolds,
and Perelman (2003) used this approach to prove the Poincaré conjecture
(that every simply connected, three-dimensional, compact manifold with-
out boundary is homeomorphic to a three-dimensional sphere) and, more
generally, the geometrization conjecture of Thurston.
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Appendix
4.A. Heat flow

As a simple physical application that leads to second order PDEs, we consider
the problem of finding the temperature distribution inside a body. Similar equa-
tions describe the diffusion of a solute. Steady temperature distributions satisfy
an elliptic PDE, such as Laplace’s equation, while unsteady distributions satisfy a
parabolic PDE, such as the heat equation.

4.A.1. Steady heat flow. Suppose that the body occupies an open set € in
R™. Let v : 2 — R denote the temperature, g : 2 — R the rate per unit volume
at which heat sources create energy inside the body, and ¢: Q2 — R” the heat flux.
That is, the rate per unit area at which heat energy diffuses across a surface with
normal 7/ is equal to ¢ - V.

If the temperature distribution is steady, then conservation of energy implies
that for any smooth open set 2’ € Q) the heat flux out of Q' is equal to the rate at
which heat energy is generated inside €'; that is,

/ g-vdS= [ gdv.
o Q

Here, we use dS and dV to denote integration with respect to surface area and
volume, respectively.
We assume that ¢ and g are smooth. Then, by the divergence theorem,

/ divgdV = [ gdv.
! Q/

Since this equality holds for all subdomains ' of Q, it follows that
(4.48) divi=yg in Q.

Equation ([@48) expresses the fundamental physical principle of conservation
of energy, but this principle alone is not enough to determine the temperature
distribution inside the body. We must supplement it with a constitutive relation
that describes how the heat flux is related to the temperature distribution.

Fourier’s law states that the heat flux at some point of the body depends linearly
on the temperature gradient at the same point and is in a direction of decreasing
temperature. This law is an excellent and well-confirmed approximation in a wide
variety of circumstances. Thus,

(4.49) i{=—AVu

for a suitable conductivity tensor A : @ — L(R™ R™), which is required to be
symmetric and positive definite. Explicitly, if Z € , then A(Z) : R®™ — R" is the
linear map that takes the negative temperature gradient at Z to the heat flux at &.
In a uniform, isotropic medium A = xI where the constant x > 0 is the thermal
conductivity. In an anisotropic medium, such as a crystal or a composite medium,
A is not proportional to the identity I and the heat flux need not be in the same
direction as the temperature gradient.
Using ([@49) in (£48]), we find that the temperature u satisfies

—div (AVu) = g.
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If we denote the matrix of A with respect to the standard basis in R™ by (a;;), then
the component form of this equation is

n
= > 0i(ayou) = g.
ij=1
This equation is in divergence or conservation form. For smooth functions
ai; : 2 = R, we can write it in nondivergence form as

n n n
- Z aijaiju - Z bjaju =9, bj = Z@iaij.
i,j=1 j=1 i
These forms need not be equivalent if the coefficients a;; are not smooth. For
example, in a composite medium made up of different materials, a;; may be dis-
continuous across boundaries that separate the materials. Such problems can be
rewritten as smooth PDEs within domains occupied by a given material, together
with appropriate jump conditions across the boundaries. The weak formulation
incorporates both the PDEs and the jump conditions.

Next, suppose that the body is occupied by a fluid which, in addition to con-
ducting heat, is in motion with velocity ' : 2 — R™. Let e : Q@ — R denote the
internal thermal energy per unit volume of the body, which we assume is a function
of the location Z € Q of a point in the body. Then, in addition to the diffusive flux
q, there is a convective thermal energy flux equal to e/, and conservation of energy

gives
/ ((f—l—eﬁ)-ﬁdS:/ gdv.
lo% 0%

Using the divergence theorem as before, we find that
div (7 + ev) =g,
If we assume that e = c,u is proportional to the temperature, where ¢, is the heat
capacity per unit volume of the material in the body, and Fourier’s law, we get the
PDE
—div (AVu) 4 div(bu) = g.
where b = cpU.

Suppose that g = f — cu where f : Q@ — R is a given energy source and cu
represents a linear growth or decay term with coefficient ¢ : 0 — R. For example,
lateral heat loss at a rate proportional the temperature would give decay (¢ > 0),
while the effects of an exothermic temperature-dependent chemical reaction might
be approximated by a linear growth term (¢ < 0). We then get the linear PDE

—div (AVu) + div(bu) + cu = f,

or in component form with b= (b1,...,bn)
— Z 61' (aijaju) + Z 61' (bzu) +cu = f
i,j=1 i=1

This PDE describes a thermal equilibrium due to the combined effects of diffusion
with diffusion matrix a;;, advection with normalized velocity b;, growth or decay
with coefficient ¢, and external sources with density f.

In the simplest case where, after nondimensionalization, A = I, b= 0, c=0,
and f = 0, we get Laplace’s equation Au = 0.
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4.A.2. Unsteady heat flow. Consider a time-dependent heat flow in a region
Q with temperature u(&, t), energy density per unit volume e(Z, t), heat flux (&, t),
advection velocity ¢(Z,t), and heat source density g(Z,t). Conservation of energy
implies that for any subregion Q' € 2

d
— edV:—/ (tf—l—eﬁ)q?dS—l—/ gdV.
dt Jo o o

Since

d
— edV = e; dV,
dt Q/ Q/

the use of the divergence theorem and the same constitutive assumptions as in the
steady case lead to the parabolic PDE

n n
(cpu), — Z 0; (a;;0;u) + Z@i (biu) + cu = f.
i,j=1 i=1
In the simplest case where, after nondimensionalization, ¢, =1, A = I, b= 0,
¢=0, and f =0, we get the heat equation u; = Au.
4.B. Operators on Hilbert spaces

Suppose that H is a Hilbert space with inner product (-, -) and associated norm
| - |]. We denote the space of bounded linear operators T : H — H by L(H). This
is a Banach space with respect to the operator norm, defined by

T
17l = sup 122
S0 Tl
z#0

The adjoint T* € L(H) of T € L(H) is the linear operator such that
(Tz,y) = (2, T"y) for all z,y € H.
An operator T is self-adjoint if T' = T*. The kernel and range of T' € L(H) are the
subspaces
kerT={zxeH:Tx=0}, ranT ={yeH:y=Tz for somez cH}.

We denote by £2(N), or £2 for short, the Hilbert space of square summable real
sequences

C(N) = {(21,22,23,...,2n,...) 12y ERand 3, g 22 < 00}

neN “n
with the standard inner product. Any infinite-dimensional, separable Hilbert space

is isomorphic to £2.
4.B.1. Compact operators.

DEFINITION 4.33. A linear operator T € £(H) is compact if it maps bounded
sets to precompact sets.

That is, T is compact if {T'z,,} has a convergent subsequence for every bounded
sequence {z,} in H.

ExAMPLE 4.34. A bounded linear map with finite-dimensional range is com-
pact. In particular, every linear operator on a finite-dimensional Hilbert space is
compact.
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EXAMPLE 4.35. The identity map I € £L(H) given by I : x — z is compact if
and only if #H is finite-dimensional.

EXAMPLE 4.36. The map K € L (EQ) given by

1 1 1
K :(21,29,23,...,&pn,...) — (,’El,il}g,gwg,...,gl’n,...)
is compact (and self-adjoint).

We have the following spectral theorem for compact self-adjoint operators.

THEOREM 4.37. Let T : H — H be a compact, self-adjoint operator. Then T
has a finite or countably infinite number of distinct nonzero, real eigenvalues. If
there are infinitely many eigenvalues {\, € R : n € N} then \,, = 0 as n — oo.
The eigenspace associated with each nonzero eigenvalue is finite-dimensional, and
etgenvectors associated with distinct eigenvalues are orthogonal. Furthermore, H
has an orthonormal basis consisting of eigenvectors of T, including those (if any)
with eigenvalue zero.

4.B.2. Fredholm operators. We summarize the definition and properties of
Fredholm operators and give some examples. For proofs, see

DEFINITION 4.38. A linear operator T' € L(H) is Fredholm if: (a) kerT has
finite dimension; (b) ranT is closed and has finite codimension.

Condition (b) and the projection theorem for Hilbert spaces imply that H =
ranT @ (ran 7)1 where the dimension of ran T is finite, and

codimranT = dim(ranT)"*.
DEFINITION 4.39. If T € L(H) is Fredholm, then the index of T is the integer
indT = dimkerT — codimranT.

EXAMPLE 4.40. Every linear operator T : H — H on a finite-dimensional
Hilbert space H is Fredholm and has index zero. The range is closed since every
finite-dimensional linear space is closed, and the dimension formula

dimker T + dimranT = dim H
implies that the index is zero.

EXAMPLE 4.41. The identity map I on a Hilbert space of any dimension is
Fredholm, with dimker P = codimran P = 0 and ind I = 0.

EXAMPLE 4.42. The self-adjoint projection P on £? given by
P:(x1,22,23,. - Tny-..) = (0,29, 23,...,Zp,...)

is Fredholm, with dim ker P = codimran P = 1 and ind P = 0. The complementary
projection

Q: (x1,22,23,...,Tpn,...) — (21,0,0,...,0,...)
is not Fredholm, although the range of @ is closed, since dim ker @) and codim ran Q)
are infinite.
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EXAMPLE 4.43. The left and right shift maps on ¢2, given by

S (21,22, %3, Ty oo ) > (T2, X3, Tay e v oy Tppdy - - ) s

T:(x1,22,T3,...,Tn,...) = (0,21,T2, ..., Tp-1,-..),
are Fredholm. Note that S* = T. We have dimker S = 1, codimran S = 0, and
dimkerT = 0, codimranT = 1, so

indS =1, indT = —1.

If n € N, then ind " = n and ind 7™ = —n, so the index of a Fredholm opera-
tor on an infinite-dimensional space can take all integer values. Unlike the finite-
dimensional case, where a linear operator A : H — H is one-to-one if and only if it

is onto, S fails to be one-to-one although it is onto, and 7" fails to be onto although
it is one-to-one.

The above example also illustrates the following theorem.
THEOREM 4.44. If T € L(H) is Fredholm, then T* is Fredholm with
dimker T* = codimranT, codimranT™* = dimker7, ind7T* = —indT.

EXAMPLE 4.45. The compact map K in Example [4.36] is not Fredholm since
the range of K,

ran K = {(yl,yg,y3,...,yn,...) €. Znnyl <oo}7

neN
is not closed. The range is dense in ¢2 but, for example,
11 1
(1,5,5,...,5,...) 662\I'3.HK.
We denote the set of Fredholm operators by F. Then, according to the next
theorem, F is an open set in £(H), and

F=U7x
ne

is the union of connected components F,, consisting of the Fredholm operators with
index n. Moreover, if T € F,, then T + K € F,, for any compact operator K.

THEOREM 4.46. Suppose that T € L(H) is Fredholm and K € L(H) is compact.
(1) There exists € > 0 such that T + H s Fredholm for any H € L(H) with
|H|| < e. Moreover, ind(T + H) =indT.
(2) T+ K is Fredholm and ind(T + K) =ind T.

Solvability conditions for Fredholm operators are a consequences of following
theorem.

THEOREM 4.47. If T € L(H), then H =ranT @ ker T* and ranT = (ker T)~.

Thus, if T € L(H) has closed range, then T = y has a solution = € H if and
only if y L z for every z € ‘H such that 7"z = 0. For a Fredholm operator, this is
finitely many linearly independent solvability conditions.

EXAMPLE 4.48. If S, T are the shift maps defined in Example €43 then
ker S* = ker T = 0 and the equation Sz = y is solvable for every y € £2. Solutions
are not, however, unique since ker S # 0. The equation Tz = y is solvable only if
y L ker S. If it exists, the solution is unique.
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EXAMPLE 4.49. The compact map K in Example[£.36]is self adjoint, K = K*,
and ker K = 0. Thus, every element y € ¢? is orthogonal to ker K*, but this
condition is not sufficient to imply the solvability of Kz = y because the range of
K os not closed. For example,

11 1
<1’§’§"”’E""> € *\ran K.

For Fredholm operators with index zero, we get the following Fredholm alterna-
tive, which states that the corresponding linear equation has solvability properties
which are similar to those of a finite-dimensional linear system.

THEOREM 4.50. Suppose that T € L(H) is a Fredholm operator and ind T = 0.
Then one of the following two alternatives holds:
(1) kerT* =0; kerT =0; ranT = H, ranT* = H;
(2) kerT* £ 0; ker T, ker T™* are finite-dimensional spaces with the same di-
mension; ranT = (ker T*)*, ran T* = (ker T')~.

4.C. Difference quotients

Difference quotients provide a useful method for proving the weak differentia-
bility of functions. The main result, in Theorem below, is that the uniform
boundedness of the difference quotients of a function is sufficient to imply that the
function is weakly differentiable.

DEFINITION 4.51. If w : R™ — R and h € R\ {0}, the ith difference quotient
of u of size h is the function Du : R — R defined by

u(x + he;) — u(x)
h

where e; is the unit vector in the ith direction. The vector of difference quotient is

DlMu(z) =

DMy = (Di‘u, Dhu,. .., DZu) .

The next proposition gives some elementary properties of difference quotients
that are analogous to those of derivatives.

PROPOSITION 4.52. The difference quotient has the following properties.
(1) Commutativity with weak derivatives: if u, d;u € LL (R™), then

h, __ h
&Dj u = Dj 81u

(2) Integration by parts: if u € LP(R™) and v € L? (R™), where 1 < p < oo,
then

/(Df-‘u)v dx = — /u(Dzhv) dx.
(3) Product rule:
DIMuw) = ul (D?v) + (Dfu) v=u (va) + (Dfu) ol

where ul'(x) = u(x + he;).

i
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PRrROOF. Property (1) follows immediately from the linearity of the weak deriv-
ative. For (2), note that

/(Dlhu)v dx = % / [u(z + he;) — u(z)]v(z) dx
= %/u(m’)v(m’ — he;) dz’ — % /u(x)v(x) dx

== /u(:z:) [v(z — he;) —v(x)] dv

For (3), we have

he:) — hei) —
ul (D) + (D) v = ula + hes) [v(:v+ eh) v(:v)} N {u(;v—i— eh) u() ()
_u(x + heg)v(z + he;) — u(x)v(x)
N h
= DI wv),
and the same calculation with v and v exchanged. (|

THEOREM 4.53. Suppose that Q) is an open set in R™ and Q' € Q. Let
d = dist (', 00Q) > 0.
(1) If Du € LP(Q2) where 1 < p < 00, and 0 < |h| < d, then
h
|D u”LP(Q’) < | Dull e -
(2) If u € LP(2) where 1 < p < oo, and there exists a constant C such that
h
|D uHLP(Q’) <C
for all 0 < |h| < d/2, then u € W1P(Q)) and
||DU||LP(Q/) <C.

PROOF. To prove (1), we may assume by an approximation argument that u
is smooth. Then

1
u(x + he;) —u(x) = h/ Oiu(x + te;) dt,
0
and, by Jensen’s inequality,
1
lu(x + he;) — u(z)|P < |h|p/ |0;u(x + te;)|” dt.
0

Integrating this inequality with respect to x, and using Fubini’s theorem, together
with the fact that x + te; € Q if z € ' and [t] < h < d, we get

|u(z + he;) — u(z)? dz < |h|p/ |0;u(x + te;)|” dx.
o Q
Thus, || Dlul| ey < [|DPul| 1oy, and (1) follows.
To prove (2), note that since

{Du:0<|n| <d}
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is bounded in LP(€)'), the Banach-Alaoglu theorem implies that there is a sequence
{hi} such that hy — 0 as k — oo and a function v; € LP(€)') such that

DIy — v as k — oo in LP(QY).

Suppose that ¢ € C°(§Y). Then, for sufficiently small hy,

/S/ uD; " ¢ dz = /S (kau) ddz.

Taking the limit as k — oo, when D, hk¢ converges uniformly to 0;¢, we get

/u@@da@:/ v dx.
o o

Hence u is weakly differentiable and d;u = v; € LP(£)'), which proves (2). O



CHAPTER 5

The Heat and Schrodinger Equations

The heat, or diffusion, equation is
(5.1) ur = Au.
Section [4.Al derives (5.1) as a model of heat flow.

Steady solutions of the heat equation satisfy Laplace’s equation. Using (Z.4)),
we have for smooth functions that

Au(z) = lim Audx
r=0t /B (z)

lim ﬁg ][ udS
r—0+ 1 Or 9B, ()

im, 27; [][ udS—u(m)} .
r—=0t T OB,.(z)

Thus, if u is a solution of the heat equation, then the rate of change of u(x,t) with
respect to t at a point x is proportional to the difference between the value of u at
x and the average of u over nearby spheres centered at x. The solution decreases
in time if its value at a point is greater than the nearby mean and increases if its
value is less than the nearby averages. The heat equation therefore describes the
evolution of a function towards its mean. As ¢ — oo solutions of the heat equation
typically approach functions with the mean value property, which are solutions of
Laplace’s equation.
We will also consider the Schrodinger equation

I
3
|

uy = —Au.

This PDE is a dispersive wave equation, which describes a complex wave-field that
oscillates with a frequency proportional to the difference between the value of the
function and its nearby means.

5.1. The initial value problem for the heat equation

Consider the initial value problem for u(x,t) where z € R™
ug = Au for x € R™ and t > 0,

(5:2) u(z,0) = f(z) for x € R™.

We will solve (E.2)) explicitly for smooth initial data by use of the Fourier transform,
following the presentation in [34]. Some of the main qualitative features illustrated
by this solution are the smoothing effect of the heat equation, the irreversibility of
its semiflow, and the need to impose a growth condition as |z| — oo in order to
pick out a unique solution.

127
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5.1.1. Schwartz solutions. Assume first that the initial data f : R — Risa
smooth, rapidly decreasing, real-valued Schwartz function f € S (see Section[5.6.2)).
The solution we construct is also a Schwartz function of x at later times ¢ > 0, and
we will regard it as a function of time with values in §. This is analogous to
the geometrical interpretation of a first-order system of ODEs, in which the finite-
dimensional phase space of the ODE is replaced by the infinite-dimensional function
space S; we then think of a solution of the heat equation as a parametrized curve
in the vector space §. A similar viewpoint is useful for many evolutionary PDEs,
where the Schwartz space may be replaced other function spaces (for example,
Sobolev spaces).

By a convenient abuse of notation, we use the same symbol u to denote the
scalar-valued function u(z, t), where u : R™ x [0, 00) — R, and the associated vector-
valued function u(t), where u : [0,00) — S. We write the vector-valued function
corresponding to the associated scalar-valued function as u(t) = u(-,t).

DEFINITION 5.1. Suppose that (a,b) is an open interval in R. A function
u: (a,b) — S is continuous at ¢ € (a,b) if
u(t+ h) — u(t) inSash—0,
and differentiable at ¢t € (a,b) if there exists a function v € S such that
u(t+ h) — u(t)
h

The derivative v of u at ¢ is denoted by wu.(t), and if u is differentiable for every
t € (a,b), then u; : (a,b) — S denotes the map u; : ¢ — uy(t).

— v inSash—0.

In other words, u is continuous at ¢ if
u(t) = S-limu(t + h),
h—0
and w is differentiable at ¢ with derivative u,(¢) if

. u(t+h)—u(t)
wlt) = ip S,

We will refer to this derivative as a strong derivative if it is understood that we
are considering S-valued functions and we want to emphasize that the derivative is
defined as the limit of difference quotients in S.

We define spaces of differentiable Schwartz-valued functions in the natural way.
For half-open or closed intervals, we make the obvious modifications to left or right
limits at an endpoint.

DEFINITION 5.2. The space C ([a, b]; S) consists of the continuous functions
u:[a,b] = S.

The space C* (a, b; S) consists of functions u : (a,b) — S that are k-times strongly
differentiable in (a,b) with continuous strong derivatives &/u € C (a,b;S) for 0 <
j <k, and C* (a,b;S) is the space of functions with continuous strong derivatives
of all orders.

Here we write C (a,b;S) rather than C ((a,b);S) when we consider functions
defined on the open interval (a,b). The next proposition describes the relationship
between the C'-strong derivative and the pointwise time-derivative.
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PROPOSITION 5.3. Suppose that u € C(a,b;S) where u(t) = u(-,t). Then
u € CY(a,b;S) if and only if:
(1) the pointwise partial derivative Oyu(x,t) exists for every x € R™ and t €
(a7 b) "
(2) Owu(-,t) € S for every t € (a,b);
(3) the map t — dzu(-,t) belongs C (a,b;S).

PROOF. The convergence of functions in S implies uniform pointwise conver-
gence. Thus, if u(t) = u(-,t) is strongly continuously differentiable, then the point-
wise partial derivative dyu(x,t) exists for every x € R™ and dyu(-,t) = u(t) € S,
so dwu € C (a,b; S).

Conversely, if a pointwise partial derivative with the given properties exist,
then for each x € R"

u(z,t+h) —u(z,t) Dyl ) = 1 /t+h [Bsu(, s) — Opu(x, )] ds.

h h

Since the integrand is a smooth rapidly decreasing function, it follows from the
dominated convergence theorem that we may differentiate under the integral sign
with respect to z, to get

08P {u(z, t+h)— U(x,t)] _ %/tHh 2208 [D5ulz, s) — dyu(z, t)] ds.

h
Hence, if || - ||, is a Schwartz seminorm (5.72)), we have
u(t+h) —u(t 1 th
wtr ) =ul®) g < [ 10at.9) = 0l ), 5 ds
h a,B Al ) ’

< : - :
<, o 10.u(5) = Ol

and since dyu € C (a,b;S)

t+h)—u(t
lim ult+h) —ult) dpu(-,t) =0.
h—0 h a,B
It follows that ( ) 0
u(t+h) —ul(t
im | —~— P ot
s [ = outn
so w is strongly differentiable and u; = d:u € C (a, b; S). O

We interpret the initial value problem (5.2)) for the heat equation as follows: A
solution is a function u : [0,00) — S that is continuous for ¢ > 0, so that it makes
sense to impose the initial condition at ¢ = 0, and continuously differentiable for
t > 0, so that it makes sense to impose the PDE pointwise in ¢. That is, for
every ¢t > 0, the strong derivative u;(t) is required to exist and equal Au(t) where
A : S — S is the Laplacian operator.

THEOREM b.4. If f € S, there is a unique solution
(5.3) u € C([0,00);S) N C(0,00;S)

of (22). Furthermore, u € C* ([0,00);S). The spatial Fourier transform of the
solution is given by

(5.4) a(k,t) = f(k)e 7,
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and for t > 0 the solution is given by

(5:5) u(e.t) = [ T y.0f)dy
where

1 2
5.6 D(z,t) = ———— e 12I7/4,
(56) (@.0) = e
PROOF. Since the spatial Fourier transform F is a continuous linear map on
S with continuous inverse, the time-derivative of u exists if and only if the time
derivative of 4 = Fu exists, and

]:(ut) = (]-'u)t .
Moreover, u € C ([0,00);S) if and only if & € C ([0,00);S), and u € C* (0, 00; S) if
and only if & € C* (0, 00; S).

Taking the Fourier transform of (5.2)) with respect to x, we find that u(z,t) is
a solution with the regularity in (B.3)) if and only if @(k,t) satisfies
(5.7) iy = —|k]*6,  a(0)=f, aeC([0,0);S)NC(0,00;8).
Equation (7)) has the unique solution (&.4)).

To show this in detail, suppose first that @ satisfies (5). Then, from Propo-
sition 03], the scalar-valued function @(k, t) is pointwise-differentiable with respect
to t in ¢t > 0 and continuous in ¢ > 0 for each fixed k£ € R™. Solving the ODE (5.1
with k as a parameter, we find that @ must be given by ([&.4).

Conversely, we claim that the function defined by (5.4 is strongly differentiable
with derivative

(5.8) g (e, t) = — [k f(k)e~1F".
To prove this claim, note that if o, 5 € Nj are any multi-indices, the function
k0P [a(k,t + h) — a(k,t)]
has the form
[Bl—1
alk, 1) {e—W - 1} eI 3T Bbi(k, t)e (HHIK
i=0
where a(-,t),bi(-,t) € S, so taking the supremum of this expression we see that

la(t +h) —a(t)], 5 =0  ash—0.

Thus, 4(-,t) is a continuous S-valued function in ¢ > 0 for every f €S. Bya
similar argument, the pointwise partial derivative 4(-,t) in (B8] is a continuous
S-valued function. Thus, Proposition 5.3 implies that @ is a strongly continuously
differentiable function that satisfies (5.7). Hence u = F~![a] satisfies (5.3]) and is a
solution of (5.2). Moreover, using induction and Proposition [£.3] we see in a similar
way that u € C* ([0, 0);S).

Finally, from Example (.65 we have

FoH etk = (g)"/ ? omlal/at,

Taking the inverse Fourier transform of (54 and using the convolution theorem,

Theorem [5.67 we get (E.3)—(G.6). O
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The function I'(z,t) in (B6) is called the Green’s function or fundamental
solution of the heat equation in R™. It is a C*°-function of (x,t) in R™ x (0, c0),
and one can verify by direct computation that

(5.9) I,=Al  ift>0.
Also, since I'(+, t) is a family of Gaussian mollifiers, we have
r(ht)—46 inS ast—0".

Thus, we can interpret I'(z, t) as the solution of the heat equation due to an initial
point source located at x = 0. The solution is a spherically symmetric Gaussian
with spatial integral equal to one which spreads out and decays as ¢ increases; its
width is of the order v/# and its height is of the order t—"/2,

The solution at time ¢ is given by convolution of the initial data with T'(-,t).
For any f € S, this gives a smooth classical solution v € C* (R™ x [0,00)) of the
heat equation which satisfies it pointwise in ¢ > 0.

5.1.2. Smoothing. Equation (535 also gives solutions of (B.2)) for initial data
that is not smooth. To be specific, we suppose that f € LP, although one can also
consider more general data that does not grow too rapidly at infinity.

THEOREM 5.5. Suppose that 1 < p < oo and f € LP(R™). Define
u:R"™ x (0,00) = R

by (28) where T is given in (52.6). Then u € C§° (R™ x (0,00)) and uy = Au in
t>0. If1 <p<oo, then u(-,t) = f in LP ast — 0T.

PRrROOF. The Green’s function I' in (B.6) satisfies (59), and I'(-,¢t) € L9 for
every 1 < g < oo, together with all of its derivatives. The dominated convergence
theorem and Holder’s inequality imply that if f € LP and ¢ > 0, we can differentiate
under the integral sign in (B.5]) arbitrarily often with respect to (z,t¢) and that all
of these derivatives approach zero as |z|] — oo. Thus, u is a smooth, decaying
solution of the heat equation in ¢ > 0. Moreover, I''(z) = I'(z,t) is a family of
Gaussian mollifiers and therefore for 1 < p < oo we have from Theorem that
u(t)=Ttxf— fin LP as t — 0T. O

The heat equation therefore immediately smooths any initial data f € LP(R™)
to a function u(-,t) € C§°(R™). From the Fourier perspective, the smoothing
is a consequence of the very rapid damping of the high-wavenumber modes at a
rate proportional to e~k for wavenumbers |k|, which physically is caused by the
diffusion of thermal energy from hot to cold parts of spatial oscillations.

Once the solution becomes smooth in space it also becomes smooth in time. In
general, however, the solution is not (right) differentiable with respect to t at ¢t = 0,
and for rough initial data it satisfies the initial condition in an LP-sense, but not
necessarily pointwise.

5.1.3. Irreversibility. For general ‘final’ data f € S, we cannot solve the
heat equation backward in time to obtain a solution u : [T, 0] — S, however small
we choose T > 0. The same argument as the one in the proof of Theorem [5.4]
implies that any such solution would be given by (&4). If, for example, we take

f € S such that
f(k) — e~ VIFIR?
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then the corresponding solution
(ke t) = e~ tH—/IFTRT

grows exponentially as |k| — oo for every ¢t < 0, and therefore u(t) does not belong
to S (or even §’). Physically, this means that the temperature distribution f cannot
arise by thermal diffusion from any previous temperature distribution in S (or §’).
The heat equation does, however, have a backward uniqueness property, meaning
that if f arises from a previous temperature distribution, then (under appropriate
assumptions) that distribution is unique [9].

Equivalently, making the time-reversal ¢t — —t, we see that Schwartz-valued
solutions of the initial value problem for the backward heat equation

uy = —Au t>0, u(z,0) = f(x)

do not exist for every f € S. Moreover, there is a loss of continuous dependence of
the solution on the data.

ExXAMPLE 5.6. Consider the one-dimensional heat equation u; = u., with
initial data

fn(x) = e " sin(nx)
and corresponding solution

up(x,t) =e™" sin(mc)e"2t,

Then f, — 0 uniformly together with of all its spatial derivatives as n — oo, but

sup |un (z, t)| — oo
z€R

as n — oo for any ¢ > 0. Thus, the solution does not depend continuously on the
initial data in Cp°(R™). Multiplying the initial data f, by e*mQ, we can get an
example of the loss of continuous dependence in S.

It is possible to obtain a well-posed initial value problem for the backward
heat equation by restricting the initial data to a small enough space with a strong
enough norm — for example, to a suitable Gevrey space of C*°-functions whose
spatial derivatives decay at a sufficiently fast rate as their order tends to infinity.
These restrictions, however, limit the size of derivatives of all orders, and they are
too severe to be useful in applications.

Nevertheless, the backward heat equation is of interest as an inverse problem,
namely: Find the temperature distribution at a previous time that gives rise to an
observed temperature distribution at the present time. There is a loss of continu-
ous dependence in any reasonable function space for applications, because thermal
diffusion damps out large, rapid variations in a previous temperature distribution
leading to an imperceptible effect on an observed distribution. Special methods —
such as Tychonoff regularization — must be used to formulate such ill-posed inverse
problems and develop numerical schemes to solve them/[]

1J. B. Keller, Inverse Problems, Amer. Math. Month. 83 ( 1976) illustrates the difficulty of
inverse problems in comparison with the corresponding direct problems by the example of guessing
the question to which the answer is “Nine W.” The solution is given at the end of this section.
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5.1.4. Nonuniqueness. A solution u(x,t) of the initial value problem for the
heat equation on R” is not unique without the imposition of a suitable growth
condition as |z| — co. In the above analysis, this was provided by the requirement
that u(-,t) € S, but the much weaker condition that w grows more slowly than
Cel*l” as |z| — oo for some constants C, a is sufficient to imply uniqueness [9].

EXAMPLE 5.7. Consider, for simplicity, the one-dimensional heat equation
Ut = Ugy-

As observed by Tychonoff (c.f. [21]), a formal power series expansion with respect
to = gives the solution

> (n) ) r2n
u(z,t) = Z A (2(71))'
n=0

for some function g € C°(R*). We can construct a nonzero solution with zero
initial data by choosing g(t) to be a nonzero C*°-function all of whose derivatives
vanish at ¢ = 0 in such a way that this series converges uniformly for = in compact
subsets of R and ¢ > 0 to a solution of the heat equation. This is the case, for

example, if
1
g(t) = exp (—t—2> :

The resulting solution, however, grows very rapidly as |z| — oo.

A physical interpretation of this nonuniqueness it is that heat can diffuse from
infinity into an unbounded region of initially zero temperature if the solution grows
sufficiently quickly. Mathematically, the nonuniqueness is a consequence of the
the fact that the initial condition is imposed on a characteristic surface ¢ = 0 of
the heat equation, meaning that the heat equation does not determine the second-
order normal (time) derivative uy on ¢ = 0 in terms of the second-order tangential
(spatial) derivatives u, Du, D?u.

According to the Cauchy-Kowalewski theorem [14], any non-characteristic Cauchy
problem with analytic initial data has a unique local analytic solution. If t € R
denotes the normal variable and x € R" the transverse variable, then in solving
the PDE by a power series expansion in ¢ we exchange one t-derivative for one
z-derivative and the convergence of the Taylor series in x for the analytic initial
data implies the convergence of the series for the solution in ¢. This existence and
uniqueness fails for a characteristic initial value problem, such as the one for the
heat equation.

The Cauchy-Kowalewski theorem is not as useful as its apparent generality sug-
gests because it does not imply anything about the stability or existence of solutions
under non-analytic perturbations, even arbitrarily smooth ones. For example, the
Cauchy-Kowalewski theorem is equally applicable to the initial value problem for
the wave equation

Utt = Ugz, U(I,O) = f(x)a

which is well-posed in every Sobolev space H*(R), and the initial value problem for
the Laplace equation

Utt = —Ugx, U(I,O) = f('r)v
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which is ill-posed in every Sobolev space H S(R)E

5.2. Generalized solutions

In this section we obtain generalized solutions of the initial value problem
of the heat equation as a limit of the smooth solutions constructed above. In
order to do this, we require estimates on the smooth solutions which ensure that
the convergence of initial data in suitable norms implies the convergence of the
corresponding solution.

5.2.1. Estimates for the Heat equation. Solutions of the heat equation
satisfy two basic spatial estimates, one in L? and the L>°. The L? estimate fol-
lows from the Fourier representation, and the L' estimate follows from the spatial
representation. For 1 < p < oo, we let

1/p
Il = [ 117 o)

denote the spatial LP-norm of a function f; also ||f||L~ denotes the maximum or
essential supremum of | f|.

THEOREM 5.8. Let u : [0,00) = S(R™) be the solution of [22) constructed in
Theorem [5.4] and t > 0. Then

1

w2 < I fllze, lu@®)] g < WHJ‘"HLL

PROOF. By Parseval’s inequality and (5.4),
~ n — 2z ni £
lu@)lze = oyl ze = @n)" e 7] < @l = 1],

which gives the first inequality. From (G5,

ute.0l < (s i0wol) [ 1760 dv

zER™

and from (B.6])
1

(4mt)n/2”
The second inequality then follows. (I

T(z,t)] =

Using the Riesz-Thorin theorem, Theorem (.72 it follows by interpolation be-
tween (p,p’) = (2,2) and (p,p’) = (00, 1), that for 2 < p < oo

1
(5.10) utlsr < oz 1l

This estimate is not particularly useful for the heat equation, because we can de-
rive stronger parabolic estimates for ||Dul/r2, but the analogous estimate for the
Schrédinger equation is very useful.

A generalization of the L?-estimate holds in any Sobolev space H*® of functions
with s spatial L2-derivatives (see Section [5.C] for their definition). Such estimates
of L?-norms of solutions or their derivative are typically referred to as energy es-
timates, although the corresponding L?-norms may not correspond to a physical

2Finally, here is the question to the answer posed above: Do you spell your name with a “V,”
Herr Wagner?



5.2. GENERALIZED SOLUTIONS 135
energy. In the case of the heat equation, the thermal energy (measured from a
zero-point energy at u = 0) is proportional to the integral of w.

THEOREM 5.9. Suppose that f € S and u € C*([0,00);S) is the solution of
(Z2). Then for any s € R andt >0

lull e < 1f ]2z

Proor. Using (5.4) and Parseval’s identity, and writing (k) = (14 |k[?)'/2, we
find that

[l e = (2m)"

<k>se*t|k|2fHL2 < (2r

(k)*f

=l

O

We can also derive this H?®-estimate, together with an additional a space-time

estimate for Du, directly from the equation without using the explicit solution. We

will use this estimate later to construct solutions of a general parabolic PDE by the
Galerkin method, so we derive it here directly.

For 1 < p < oo and T > 0, the LP-in-time-H ®-in-space norm of a function
ue C([0,T];S) is given by

T 1/p
lull Lo o,y 00y = </0 ([u(t)|[% dt) .

The maximum-in-time- H *-in-space norm of u is

5.11 o = 5.
(5.11) lollqoryay = ma. o)

In particular, if A = (I — A)'/? is the spatial operator defined in (5.75), then

T 1/2
||’UJHL2([O)T];H5) - (/0 /n |Asu($,t)|2 dIdt) .

THEOREM 5.10. Suppose that f € S and uw € C*([0,T];S) is the solution of
(Z2). Then for any s € R

1
u s s 9 Du -Hs S = s ¢
lulloqo.rpszsy < 1 llu 1Dull 20,7714 ﬁHfHH
ProOOF. Let v = A®u. Then, since A®* : § — S is continuous and commutes
with A,
vy = Av, v(0) =g

where g = A® f. Multiplying this equation by v, integrating the result over R", and
using the divergence theorem (justified by the continuous differentiability in time
and the smoothness and decay in space of v), we get

1d [

Integrating this equation with respect to t, we obtain for any 7' > 0 that

(5.12) %/UQ(T) d:v—f—/OT/|Dv(t)|2 dxdt = %/92 dz.
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Thus,
T 1
tg%&);]/vQ(t) dz < /g2 dz, /0 /|Dv(t)|2 dzdt < 3 /g2 dz,
and the result follows. O

5.2.2. H?-solutions. In this section we use the above estimates to obtain
generalized solutions of the heat equation as a limit of smooth solutions (@3]). In
defining generalized solutions, it is convenient to restrict attention to a finite, but
arbitrary, time-interval [0, T] where T' > 0. For s € R, let C([0,T]; H*) denote the
Banach space of continuous H*-valued functions « : [0,7] — H?® equipped with the

norm (B.1T)).

DEFINITION 5.11. Suppose that T'> 0, s € R and f € H*. A function
we C(0,T); HY)
is a generalized solution of (B.2)) if there exists a sequence of Schwartz-solutions

Uy : [0,T] = S such that u, — w in C([0,T]; H®) as n — oc.

According to the next theorem, there is a unique generalized solution defined
on any time interval [0, 7] and therefore on [0, c0).

THEOREM 5.12. Suppose that T > 0, s € R and f € H*(R™). Then there is
a unique generalized solution uw € C([0,T]; H®) of (52). The solution is given by

4.

PROOF. Since S is dense in H?, there is a sequence of functions f,, € S such
that f, — f in H°. Let u, € C([0,T];S) be the solution of (52) with initial
data f,. Then, by linearity, u, — u,, is the solution with initial data f,, — f., and
Theorem 5.9 implies that

sup |lun(t) — um(t)HHs < | fn — meHs .
t€[0,T]

Hence, {u,} is a Cauchy sequence in C(][0,T]; H®) and therefore there exists a
generalized solution v € C([0,T]; H®) such that u, — u as n — oo.

Suppose that f,g € H* and u,v € C([0,T]; H®) are generalized solutions with
u(0) = f, v(0) = g. If up, v, € C([0,T];S) are approximate solutions with wu,(0) =
frns vn(0) = gp, then

[u(®) = o)l e < ut) = un (@)l o + [un(®) = oa @)l go + 0 (t) = v 4

< lu®) = un(®)llge + 1fn = gnllge + llon(t) = v(&)l]

Taking the limit of this inequality as n — oo, we find that

[u®) = vl ge <I1f = 9l -

In particular, if f = g then u = v, so a generalized solution is unique.
Finally, from (54) we have

(K, t) = e t* £ (k).

Taking the limit of this expression in C([0,T]; H*) as n — oo, where H* is the
weighted L?-space (5.74), we get the same expression for 4. O
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We may obtain additional regularity of generalized solutions in time by use of
the equation; roughly speaking, we can trade two space-derivatives for one time-
derivative.

PROPOSITION 5.13. Suppose that T > 0, s € R and f € H*(R"). Ifu €
C([0,T]; H®) is a generalized solution of (5.2), then u € C*([0,T); H*~?) and

up = Au in C([0,T]; H5=2).

PROOF. Since u is a generalized solution, there is a sequence of smooth so-
lutions u, € C*°([0,T);S) such that u, — w in C([0,T]; H®?) as n — oo. These
solutions satisfy w,; = Au,. Since A : H® — H® ? is bounded and {u,} is
Cauchy in H*®, we see that {u,;} is Cauchy in C([0,T]; H*~2). Hence there exists
v € C([0,T]; H*2) such that u,; — v in C([0,T]; H*~2). We claim that v = u;.
For each n € N and h # 0 we have

un(t+h) —un(t) 1

t+h
Y = E/t Uns(8) ds in C([0,T7];S),

and in the limit n — oo, we get that

u(t+h) —ut) 1 ~ =
- = E/t v(s)ds in C([0,T]; H52).

Taking the limit as h — 0 of this equation we find that u; = v and
w e C([0,T]; H*) N C1 ([0, T); H*2).

Moreover, taking the limit of w,; = Au, we get u; = Au in C([0,T]; H*~2). O

More generally, a similar argument shows that u € C*([0, T]; H¥~2¥) for any
k € N. In contrast with the case of ODEs, the time derivative of the solution lies
in a different space than the solution itself: w takes values in H®, but u; takes
values in H*~2. This feature is typical for PDEs when — as is usually the case —
one considers solutions that take values in Banach spaces whose norms depend on
only finitely many derivatives. It did not arise for Schwartz-valued solutions, since
differentiation is a continuous operation on S.

The above proposition did not use any special properties of the heat equation.
For t > 0, solutions have greatly improved regularity as a result of the smoothing
effect of the evolution.

PROPOSITION 5.14. Ifu € C([0,T]; H?) is a generalized solution of (3.2), where
f € H® for some s € R, then u € C*°((0,T]; H*) where H*™ is defined in (5.70]).

PROOF. If s € R, f € H®, and t > 0, then (5.4) implies that a(t) € H"
for every r € R, and therefore u(t) € H*™. It follows from the equation that
u € C*°(0,00; H®). O

For general H*-initial data, however, we cannot expect any improved regularity
in time at t = 0 beyond u € C*([0,T); H*~2¥). The H™ spatial regularity stated
here is not optimal; for example, one can prove [9] that the solution is a real-analytic
function of x for ¢t > 0, although it is not necessarily a real-analytic function of ¢.
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5.3. The Schrodinger equation

The initial value problem for the Schrédinger equation is
iuy = —Au for x € R" and t € R,

(5.13) u(z,0) = f(z) for x € R™,

where v : R" x R — C is a complex-valued function. A solution of the Schrédinger
equation is the amplitude function of a quantum mechanical particle moving freely
in R®. The function |u(-,t)|? is proportional to the spatial probability density of
the particle.

More generally, a particle moving in a potential V' : R™ — R satisfies the
Schrédinger equation

(5.14) iy = —Au + V(z)u.

Unlike the free Schrédinger equation (5.13)), this equation has variable coefficients
and it cannot be solved explicitly for general potentials V.

Formally, the Schrodinger equation (B.I3) is obtained by the transformation
t — —it of the heat equation to ‘imaginary time.” The analytical properties of
the heat and Schrodinger equations are, however, completely different and it is
interesting to compare them. The proofs are similar, and we leave them as an
exercise (or see [34]).

The Fourier solution of (.13 is

(5.15) ak,t) = e F f(k).

The key difference from the heat equation is that these Fourier modes oscillate
instead of decay in time, and higher wavenumber modes oscillate faster in time.
As a result, there is no smoothing of the initial data (measuring smoothness in the
L2-scale of Sobolev spaces H®) and we can solve the Schrédinger equation both
forward and backward in time.

THEOREM 5.15. For any f € S there is a unique solution u € C®(R;S) of
(Z13). The spatial Fourier transform of the solution is given by (513), and

uli, 1) = / Tz — y.t)f(y) dy

where

1 Qo2
— —i|x|* /4t
I(x,t) Arit) 2 e .

We get analogous L? estimates for the Schrodinger equation to the ones for the
heat equation.
THEOREM 5.16. Suppose that f € S and u € C°(R;S) is the solution of (B.13).
Then for allt € R,
1
lu@®ll g2 < 1Flzes Nu@®llp < WWHLI,
and for 2 < p < oo,

1
(5.16) u(®)]lr < WHJCHLP’-
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Solutions of the Schrodinger equation do not satisfy a space-time estimate anal-
ogous to the parabolic estimate (5.12)) in which we ‘gain’ a spatial derivative. In-
stead, we get only that the H®-norm is conserved. Solutions do satisfy a weaker
space-time estimate, called a Strichartz estimate, which we derive in Section [(.6.11

The conservation of the H*-norm follows from the Fourier representation (515,
but let us prove it directly from the equation.

THEOREM 5.17. Suppose that f € S and u € C™® (R;S) is the solution of
(213). Then for any s € R

lull s = I fllgr-  for every t € R.
PROOF. Let v = A’u, so that ||u(t)||gs = ||v(t)]| 2. Then
wy = —Av
and v(0) = A®f. Multiplying this PDE by the conjugate ¢ and subtracting the
complex conjugate of the result, we get
i (Vv + v7;) = vVAD — TAw.
We may rewrite this equation as
Ov|* +V - [i (vDv — vDw)] = 0.
If v = u, this is the equation of conservation of probability where |u|? is the proba-
bility density and i (uD@ — @Dw) is the probability flux. Integrating the equation
over R™ and using the spatial decay of v, we get

d
E/|’U|2d$ =0,

and the result follows. O

We say that a function v € C' (R; H®) is a generalized solution of (BI3) if it is
the limit of smooth Schwartz-valued solutions uniformly on compact time intervals.
The existence of such solutions follows from the preceding H *-estimates for smooth
solutions.

THEOREM 5.18. Suppose that s € R and f € H*(R™). Then there is a unique
generalized solution u € C (R; H®) of (5.13) given by
a(k) = e~ f(k).
Moreover, for any k € N, we have u € C* (R; HS’Qk).

Unlike the heat equation, there is no smoothing of the solution and there is no
H*-regularity for t # 0 beyond what is stated in this theorem.

5.4. Semigroups and groups

The solution of an n x n linear first-order system of ODEs for (t) € R™,
Uy = A,
may be written as
i(t) = e'i(0) —00 <t <00
where ef4 : R — R” is the matrix exponential of tA. The finite-dimensionality of
the phase space R™ is not crucial here. As we discuss next, similar results hold for
any linear ODE in a Banach space generated by a bounded linear operator.
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5.4.1. Uniformly continuous groups. Suppose that X is a Banach space.
We denote by £(X) the Banach space of bounded linear operators A : X — X
equipped with the operator norm

| Aullx
[Allzcx)=sup :
ueX\{0} [l x
We say that a sequence of bounded linear operators converges uniformly if it con-
verges with respect to the operator norm.
For A € L(X) and t € R, we define the operator exponential by the series

1 1
(5.17) etA:I+tA+§t2A2+-~-+—'A"+....
. n.

This operator is well-defined. Its properties are similar to those of the real-valued
exponential function e for a € R and are proved in the same way.

THEOREM 5.19. If A € L(X) and t € R, then the series in (5.17) converges
uniformly in L(X). Moreover, the function t — et belongs to C*> (R; L(X)) and
for every s,t € R

GSAetA — e(eriE)A7 ietA — AetA.
dt
Consider a linear homogeneous initial value problem
(5.18) uy = Au, u(0) = f € X, u € CH(R; X).

The solution is given by the operator exponential.

THEOREM 5.20. The unique solution u € C*(R; X) of (.18) is given by
u(t) = e'f.

EXAMPLE 5.21. For 1 < p < oo, let A : LP(R) — LP(R) be the bounded
translation operator

Af(x) = flz+1).
The solution u € C*°(R; LP) of the differential-difference equation
ut(xvt) :u(x+1,t), u(x,O) = f(I)
is given by

oo n

u(zx,t) = Z %f(x—l—n)

n=0

EXAMPLE 5.22. Suppose that a € L'(R™) and define the bounded convolution
operator A : L?(R") — L*(R") by Af = a* f. Consider the IVP

wot) = [ alo-pu@)dy  u@0) = fl) € R

Taking the Fourier transform of this equation and using the convolution theorem,
we get
ay(k,t) = (2m)"a(k)a(k,t),  a(k,0) = f(k).
The solution is
Uk, t) = e AR £y,
It follows that

ula, 1) = / oz — v, 1) (y) dy
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where the Fourier transform of g(z,t) is given by

1 n
Sty — @m)"a(k)t
Since a € L'(R"), the Riemann-Lebesgue lemma implies that @ € Co(R™), and
therefore g(-,t) € Cy(R™) for every t € R. Since convolution with g corresponds
to multiplication of the Fourier transform by a bounded multiplier, it defines a
bounded linear map on L?(R™).

The solution operators T(t) = e*4 of (5.I8) form a uniformly continuous one-
parameter group. Conversely, any uniformly continuous one-parameter group of
transformations on a Banach space is generated by a bounded linear operator.

DEFINITION 5.23. Let X be a Banach space. A one-parameter, uniformly
continuous group on X is a family {T(¢) : ¢ € R} of bounded linear operators
T(t) : X — X such that:

(1) T(0) = I;
(2) T(s)T(t) = T(s+1t) for all s,t € R;
(3) T(h) — I uniformly in £(X) as h — 0.

THEOREM 5.24. If {T(t) : t € R} is a uniformly continuous group on a Banach
space X, then:
(1) T e ™ (R; L(X));
(2) A =T(0) is a bounded linear operator on X ;
(3) T(t) = e for every t € R.

Note that the differentiability (and, in fact, the analyticity) of T(t) with respect
to t is implied by its continuity and the group property T(s)T(¢t) = T(s+t). This is
analogous to what happens for the real exponential function: The only continuous
functions f: R — R that satisfy the functional equation

(5.19) £(0) =1, f(&)f@t)=f(s+t) foralls,teR

are the exponential functions f(t) = e for a € R, and these functions are analytic.

Some regularity assumption on f is required in order for (5.19) to imply that f
is an exponential function. If we drop the continuity assumption, then the function
defined by f(0) =1 and f(¢) = 0 for t # 0 also satisfies (519). This function and
the exponential functions are the only Lebesgue measurable solutions of ([19)). If
we drop the measurability requirement, then we get many other solutions.

EXAMPLE 5.25. If f = e9 where g : R — R satisfies

9(0)=0,  g(s)+g(t)=g(s+1),

then f satisfied (5I9). The linear functions g(t) = at satisfy this functional equa-
tion for any a € R, but there are many other non-measurable solutions. To “con-
struct” examples, consider R as a vector space over the field Q of rational num-
bers, and let {e, € R : a € I} denote an algebraic basis. Given any values
{¢ca € R: a € I} define g : R — R such that g(e,) = ¢, for each a € I, and if
T =) Tty is the finite expansion of z € R with respect to the basis, then

g (Z xaea> = Zxaca.
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5.4.2. Strongly continuous semigroups. We may consider the heat equa-
tion and other linear evolution equations from a similar perspective to the Banach
space ODEs discussed above. Significant differences arise, however, as a result of
the fact that the Laplacian and other spatial differential operators are unbounded
maps of a Banach space into itself. In particular, the solution operators associated
with unbounded operators are strongly but not uniformly continuous functions of
time, and we get solutions that are, in general, continuous but not continuously dif-
ferentiable. Moreover, as in the case of the heat equation, we may only be able to
solve the equation forward in time, which gives us a semigroup of solution operators
instead of a group.

Abstracting the notion of a family of solution operators with continuous tra-
jectories forward in time, we are led to the following definition.

DEFINITION 5.26. Let X be a Banach space. A one-parameter, strongly contin-
uous (or Cp) semigroup on X is a family {T(¢) : ¢ > 0} of bounded linear operators
T(t) : X — X such that

(1) T(0) = I;

(2) T(s)T(t) = T(s+t) for all s,t > 0;

(3) T(h)f — f strongly in X as h — 0T for every f € X.
The semigroup is said to be a contraction semigroup if |T(¢)|| < 1 for all ¢ > 0,
where || - || denotes the operator norm.

The semigroup property (2) holds for the solution maps of any well-posed au-
tonomous evolution equation: it says simply that we can solve for time s + ¢t by
solving for time ¢ and then for time s. Condition (3) means explicitly that

IT#)f = fllxy =0  ast— 07

If this holds, then the semigroup property (2) implies that T(¢t + h)f — T(t)f
in X as h — 0 for every t > 0, not only for ¢ = 0 [8]. The term ‘contraction’
in Definition is not used in a strict sense, and the norm of the solution of a
contraction semigroup is not required to be strictly decreasing in time; it may for
example, remain constant.

The heat equation

(5.20) uy = Au, u(z,0) = f(x)

is one of the primary motivating examples for the theory of semigroups. For definite-
ness, we suppose that f € L2, but we could also define a heat-equation semigroup
on other Hilbert or Banach spaces, such as H® or LP for 1 < p < oc.

From Theorem with s = 0, for every f € L? there is a unique generalized
solution w : [0,00) — L? of (5.20), and therefore for each ¢t > 0 we may define a
bounded linear map T(t) : L? — L? by T(t) : f — u(t). The operator T(t) is
defined explicitly by

TO)=1, T@H)f=T'xf fort>0,
T(t)f (k) = e~ f ().

where the * denotes spatial convolution with the Green’s function I''(z) = I'(z,t)

given in (5.6]).

We also use the notation

(5.21)

T(t) = et?
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and interpret T(t) as the operator exponential of tA. The semigroup property then
becomes the usual exponential formula
e(s-l—t)A — GSAetA.

THEOREM 5.27. The solution operators {T(t) : t > 0} of the heat equation
defined in [5.21) form a strongly continuous contraction semigroup on L*(R™).

PROOF. This theorem is a restatement of results that we have already proved,
but let us verify it explicitly. The semigroup property follows from the Fourier
representation, since

e~ (sHOIKI? _ —slk|? j—t[k|*
It also follows from the spatial representation, since
st =T% %
The probabilistic interpretation of this identity is that the sum of independent
Gaussian random variables is a Gaussian random variable, and the variance of the
sum is the sum of the variances.

Theorem (.12] with s = 0, implies that the semigroup is strongly continuous
since t — T(t) f belongs to C ([0, 00); L?) for every f € L?. Finally, it is immediate
from (5.21) and Parseval’s theorem that || T(¢)|| < 1 for every t > 0, so the semigroup
is a contraction semigroup. O

An alternative way to view this result is that the solution maps
Tt):ScL*—-SclL?
constructed in Theorem [5.4] are defined on a dense subspace S of L?, and are
bounded on L2, so they extend to bounded linear maps T(t) : L? — L2, which
form a strongly continuous semigroup.

Although for every f € L? the trajectory t — T(t)f is a continuous function
from [0, 00) into L?, it is not true that ¢ — T(t) is a continuous map from [0, o)
into the space £(L?) of bounded linear maps on L? since T(t+h) does not converge
to T(t) as h — 0 uniformly with respect to the operator norm.

Proposition implies a solution ¢ — T(t)f belongs to C* ([0,00); L?) if
f € H? but for f € L?\ H? the solution is not differentiable with respect to ¢ in L?
at t = 0. For every ¢ > 0, however, we have from Proposition 514 that the solution
belongs to C*° (0, 00; H*). Thus, the the heat equation semiflow maps the entire
phase space L? forward in time into a dense subspace H> of smooth functions. As
a result of this smoothing, we cannot reverse the flow to obtain a map backward in
time of L? into itself.

5.4.3. Strongly continuous groups. Conservative wave equations do not
smooth solutions in the same way as parabolic equations like the heat equation,
and they typically define a group of solution maps both forward and backward in
time.

DEFINITION 5.28. Let X be a Banach space. A one-parameter, strongly con-
tinuous (or Cp) group on X is a family {T(¢) : t € R} of bounded linear operators
T(t) : X — X such that

(1) T(0) = I;
(2) T(s)T(t) =T(s+t) for all s,t € R;
(3) T(h)f — f strongly in X as h — 0 for every f € X.
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If X is a Hilbert space and each T(¢) is a unitary operator on X, then the group is
said to be a unitary group.

Thus {T(¢) : t € R} is a strongly continuous group if and only if {T(¢) : ¢ > 0}
is a strongly continuous semigroup of invertible operators and T(—t) = T~1(#).

THEOREM 5.29. Suppose that s € R. The solution operators {T(t) : t € R} of
the Schrédinger equation {513) defined by

— i 2 A
(5.22) (T(B)f) (k) = e "* F (k).
form a strongly continuous, unitary group on H*(R™).

Unlike the heat equation semigroup, the Schrodinger equation is a dispersive
wave equation which does not smooth solutions. The solution maps {T(¢) : ¢t € R}
form a group of unitary operators on L? which map H® onto itself (c.f. Theo-
rem [B.I7). A trajectory u(t) belongs to C'(R; L?) if and only if w(0) € H?, and
u € C¥(R; L?) if and only if u(0) € H**. If u(0) € L2\ H?, then u € C(R; L?)
but w is nowhere strongly differentiable in L? with respect to time. Nevertheless,
the continuous non-differentiable trajectories remain close in L? to the differen-
tiable trajectories. This dense intertwining of smooth trajectories and continuous,
non-differentiable trajectories in an infinite-dimensional phase space is not easy to
imagine and has no analog for ODEs.

The Schrodinger operators T(t) = €2 do not form a strongly continuous group
on LP(R™) when p # 2. Suppose, for contradiction, that T(t) : L? — LP is bounded
for some 1 < p < 00, p # 2 and t € R\ {0}. Then since T(—t) = T™*(¢), duality
implies that T(—t) : L — L?" is bounded, and we can assume that 1 < p < 2
without loss of generality. From Theorem B.16, T(t) : LP — L*" is bounded, and
thus for every f € LP N ¥ c L2

[fllze = ITOT(=6)fll L < CLIT(=0)fll o < CLO Sl Lo -
This estimate is false if p # 2, so T(¢) cannot be bounded on LP.

5.4.4. Generators. Given an operator A that generates a semigroup, we may
define the semigroup T(t) = e*4 as the collection of solution operators of the
equation u; = Au. Alternatively, given a semigroup, we may ask for an operator A
that generates it.

DEFINITION 5.30. Suppose that {T(¢) : ¢ > 0} is a strongly continuous semi-
group on a Banach space X. The generator A of the semigroup is the linear operator
in X with domain D(A),

A:DA) CX— X,
defined as follows:
(1) f € D(A) if and only if the limit
LTSS
h—0t h

exists with respect to the strong (norm) topology of X;
(2) if f € D(A), then
Af = Tim [M} '

h—0t h
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To describe which operators are generators of a semigroup, we recall some
definitions and results from functional analysis. See [§] for further discussion and
proofs of the results.

DEFINITION 5.31. An operator A : D(A) C X — X in a Banach space X is
closed if whenever {f,} is a sequence of points in D(A) such that f, — f and
Afn, — gin X as n — oo, then f € D(A4) and Af = g.

Equivalently, A is closed if its graph
G(A) = {(f.9) € X x X : f € D(A) and Af = g}
is a closed subset of X x X.

THEOREM 5.32. If A is the generator of a strongly continuous semigroup {T(t)}
on a Banach space X, then A is closed and its domain D(A) is dense in X.

EXAMPLE 5.33. If T(t) is the heat-equation semigroup on L?, then the L2-limit
T(h)f —

iy [T 1]

h—0+ h
exists if and only if f € H?2, and then it is equal to Af. The generator of the
heat equation semigroup on L? is therefore the unbounded Laplacian operator with
domain H?,

A H*(R™) c L*(R™) — L*(R™).

If f, = fin L? and Af, — ¢ in L?, then the continuity of distributional deriva-
tives implies that Af = g and elliptic regularity theory (or the explicit Fourier
representation) implies that f € H2. Thus, the Laplacian with domain H?(R") is
a closed operator in L?(R™). It is also self-adjoint.

Not every closed, densely defined operator generates a semigroup: the powers
of its resolvent must satisfy suitable estimates.

DEFINITION 5.34. Suppose that A: D(A) C X — X is a closed linear operator
in a Banach space X and D(A) is dense in X. A complex number A € C is in the
resolvent set p(A) of Aif A\l — A: D(A) C X — X is one-to-one and onto. If
A € p(A), the inverse

(5.23) RMA) =M-A)"" XX
is called the resolvent of A.

The open mapping (or closed graph) theorem implies that if A is closed, then
the resolvent R(A, A) is a bounded linear operator on X whenever it is defined.
This is because (f, Af) — A\f — Af is a one-to-one, onto map from the graph G(A)
of A to X, and G(A) is a Banach space since it is a closed subset of the Banach
space X x X.

The resolvent of an operator A may be interpreted as the Laplace transform of
the corresponding semigroup. Formally, if

a(N) = /000 u(t)e M dt

is the Laplace transform of u(¢), then taking the Laplace transform with respect to
t of the equation
uy = Au u(0) = f,



146 5. THE HEAT AND SCHRODINGER EQUATIONS

we get
At — f = Ad.
For A € p(A), the solution of this equation is
a(X) = R(\ A)f.
This solution is the Laplace transform of the time-domain solution
u(t) = T(t)f
with R(\, 4) = T(t), or

(M —A)" = / e Mt dt.
0

This identity can be given a rigorous sense for the generators A of a semigroup, and
it explains the connection between semigroups and resolvents. The Hille-Yoshida
theorem provides a necessary and sufficient condition on the resolvents for an op-
erator to generate a strongly continuous semigroup.

THEOREM 5.35. A linear operator A : D(A) C X — X in a Banach space X
is the generator of a strongly continuous semigroup {T(t);t > 0} on X if and only
if there exist constants M > 1 and a € R such that the following conditions are
satisfied:

(1) the domain D(A) is dense in X and A is closed;
(2) every A € R such that A > a belongs to the resolvent set of A;
(3) if A>a and n € N, then

M
(A—a)"
where the resolvent R(\, A) is defined in (223).

In that case,

(5.25) IT(#)| < Me® for allt > 0.

(5.24) [R(A, A" <

This theorem is often not useful in practice because the condition on arbitrary
powers of the resolvent is difficult to check. For contraction semigroups, we have
the following simpler version.

COROLLARY 5.36. A linear operator A : D(A) C X — X in a Banach space X
is the generator of a strongly continuous contraction semigroup {T(t);t > 0} on X
if and only if:
(1) the domain D(A) is dense in X and A is closed;
(2) every A € R such that A > 0 belongs to the resolvent set of A;
(3) if A> 0, then

1
(5.26) IROA)] < 5.
This theorem follows from the previous one since
n n 1
1RO A< IR AT < 57

The crucial condition here is that M = 1. We can always normalize a = 0, since if
A satisfies Theorem [5.35] with @ = «, then A — al satisfies Theorem [5.35 with a =
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0. Correspondingly, the substitution u = e*v transforms the evolution equation
uy = Au to vy = (A — al)v.

The Lumer-Phillips theorem provides a more easily checked condition (that A
is ‘m-dissipative’) for A to generate a contraction semigroup. This condition often
follows for PDEs from a suitable energy estimate.

DEFINITION 5.37. A closed, densely defined operator A: D(A) C X — X in a
Banach space X is dissipative if for every A > 0

(5.27) NIFI<IAI=A)fl| - for all £ € D(A).

The operator A is maximally dissipative, or m-dissipative for short, if it is dissipa-
tive and the range of A\l — A is equal to X for some A > 0.

The estimate (5.27) implies immediately that A\] — A is one-to-one. It also
implies that the range of A\l — A : D(A) C X — X is closed. To see this, suppose
that g, belongs to the range of A\ — A and g, — g in X. If g, = (A — A) f,,, then
(EZ17) implies that {f,} is Cauchy since {g,} is Cauchy, and therefore f,, — f for
some f € X. Since A is closed, it follows that f € D(A) and (AI — A)f = g. Hence,
g belongs to the range of \I — A.

The range of A\I — A may be a proper closed subspace of X for every A > 0;
if, however, A is m-dissipative, so that Al — A is onto X for some A > 0, then one
can prove that AI — A is onto for every A > 0, meaning that the resolvent set of A
contains the positive real axis {A > 0}. The estimate (527 is then equivalent to
(E26). We therefore get the following result, called the Lumer-Phillips theorem.

THEOREM 5.38. An operator A: D(A) C X — X in a Banach space X is the
generator of a contraction semigroup on X if and only if:
(1) A is closed and densely defined;
(2) A is m-dissipative.

EXAMPLE 5.39. Consider A : H?(R") C L?*(R") — L*(R"). If f € H?, then
using the integration-by-parts property of the weak derivative on H? we have for
A > 0 that

102 = 2) 71 = [ Of - A? do
:/[A2f2—2AfAf+(Af)2] dz
= [[er+anspr+ @] as
> /\2/f2 dx.

Hence,
Alfllez < (A= A) Fll 2

and A is dissipative. The range of A\ — A is equal to L? for any A > 0, as one
can see by use of the Fourier transform (in fact, I — A is an isometry of H? onto
L?). Thus, A is m-dissipative. The Lumer-Phillips theorem therefore implies that
A : H? C L? — L? generates a strongly continuous semigroup on L?(R"), as we
have seen explicitly by use of the Fourier transform.
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Thus, in order to show that an evolution equation
up = Au u(0) = f

in a Banach space X generates a strongly continuous contraction semigroup, it is
sufficient to check that A : D(A) C X — X is a closed, densely defined, dissipative
operator and that for some A > 0 the resolvent equation

Af—Af=y
has a solution f € X for every g € X.
EXAMPLE 5.40. The linearized Kuramoto-Sivashinsky (KS) equation is
ur = —Au — A%y,

This equation models a system with long-wave instability, described by the back-
ward heat-equation term —Awu, and short wave stability, described by the forth-
order diffusive term —AZ?u. The operator

A HYR™) c L*(R™) — L*(R"), Au = —Au — A%y

generates a strongly continuous semigroup on L?(R™), or H*(R"). One can verify
this directly from the Fourier representation,

[er A 7](k) = et (=1 f k),
but let us check the hypotheses of the Lumer-Phillips theorem instead. Note that
3
. — < — or a > 0.
5.28 kI? — |k|* 5 forall [k >0

We claim that A = A— aJ is m-dissipative for o < 3/16. First, A is densely defined

and closed, since if f, € H~4 and f, — f, Af, — g in L2, the Fourier representation
implies that f € H* and Af = g. If f € H*, then using (5.28), we have

[rr=Ar] = [ =i+ w1ty | Foo|

n

> A/n (k)
> Al fl72,

dk

2
’dk

which means that A is dissipative. Moreover, A — A: H* — L? is one-to-one and
onto for any A > 0, since (A — A)f = g if and only if

FLy — 9(k)
J(k) = Ao — k|2 + |k[*

Thus, A is m-dissipative, so it generates a contraction semigroup on L2. It follows
that A generates a semigroup on L2?(R™) such that

tA 3t/16
e Hg(m) <M,
corresponding to M =1 and a = 3/16 in (5.25).

Finally, we state Stone’s theorem, which gives an equivalence between self-
adjoint operators acting in a Hilbert space and strongly continuous unitary groups.
Before stating the theorem, we give the definition of an unbounded self-adjoint
operator. For definiteness, we consider complex Hilbert spaces.
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DEFINITION 5.41. Let H be a complex Hilbert space with inner-product
(,):HxH—C.
An operator A: D(A) C H — H is self-adjoint if:

(1) the domain D(A) is dense in H;

(2) x € D(A) if and only if there exists z € H such that (z, Ay) = (z,y) for
every y € D(A);

(3) (z,Ay) = (Ax,y) for all z,y € D(A).

Condition (2) states that D(A) = D(A*) where A* is the Hilbert space adjoint
of A, in which case z = Az, while (3) states that A is symmetric on its domain.
A precise characterization of the domain of a self-adjoint operator is essential; for
differential operators acting in LP-spaces, the domain can often be described by the
use of Sobolev spaces. The next result is Stone’s theorem (see e.g. [44] for a proof).

THEOREM 5.42. An operator iA : D(iA) C H — H in a complex Hilbert space
H is the generator of a strongly continuous unitary group on H if and only if A is
self-adjoint.

EXAMPLE 5.43. The generator of the Schrodinger group on H*(R"™) is the self-
adjoint operator

iA:D(IA) C HS(R") — H*(R"),  D(iA) = H*T?(R").
ExamPLE 5.44. Consider the Klein-Gordon equation
Uy — Au+u=20
in R™. We rewrite this as a first-order system
U = v, v = Au,

which has the form w; = Aw where
U 0 1
w_(v>’ A_<A—I O>'

H=H'R®") & R")

with the inner product of w; = (u1,v1), we = (ug,ve) defined by

We let

(w1, wa)y = (u1,u2) g1 + (v1,v2) 2, (U1,u2) 1 = /(uluz + Duy - Dug) dx.
Then the operator
A:DA CH—H, DA =HR")® H R")

is self-adjoint and generates a unitary group on H.
We can instead take

H=L*R")oH'(R"), DA =HR")® L*R")

and get a unitary group on this larger space.
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5.4.5. Nonhomogeneous equations. The solution of a linear nonhomoge-
neous ODE

(5.29) ug = Au + g, u(0) = f

may be expressed in terms of the solution operators of the homogeneous equation
by the variation of parameters, or Duhamel, formula.

THEOREM 5.45. Suppose that A : X — X is a bounded linear operator on a
Banach space X and T(t) = et? is the associated uniformly continuous group. If
f€X and g € C(R; X), then the solution u € C*(R; X) of [5.29) is given by

t

(5.30) u(t) =T@)f + /0 T(t—s)g(s)ds.

This solution is continuously strongly differentiable and satisfies the ODE (5.29)
pointwise in ¢ for every ¢t € R. We refer to such a solution as a classical solution. For
a strongly continuous group with an unbounded generator, however, the Duhamel
formula (£30) need not define a function u(t) that is differentiable at any time ¢
even if g € C(R; X).

EXAMPLE 5.46. Let {T(¢) : t € R} be a strongly continuous group on a Banach
space X with generator A : D(A) C X — X, and suppose that there exists go € X
such that T(t)go ¢ D(A) for every t € R. For example, if T(t) = "> is the
Schrédinger group on L#(R™) and go ¢ H?(R™), then T(t)go ¢ H*(R") for every
t € R. Taking g(t) = T(t)go and f = 0 in (530) and using the semigroup property,
we get

u(t) = /O T(t — s)T(s)gods = /O T(t)go ds = tT(t)go.

This function is continuous but not differentiable with respect to t, since T(¢)f is
differentiable at ¢ if and only if T(t9)f € D(A).

It may happen that the function w(¢) defined in (E30) is is differentiable with
respect to t in a distributional sense and satisfies (5.29) pointwise almost everywhere
in time. We therefore introduce two other notions of solution that are weaker than
that of a classical solution.

DEFINITION 5.47. Suppose that A be the generator of a strongly continuous
semigroup {T(¢) : t > 0}, f € X and g € L' ([0,T]; X). A function u : [0,T] — X
is a strong solution of (5.29) on [0, 77 if:

(1) u is absolutely continuous on [0,7] with distributional derivative u; €
L'(0,T; X);
(2) u(t) € D(A) pointwise almost everywhere for ¢ € (0,T);
(3) wu(t) = Au(t) + g(t) pointwise almost everywhere for ¢ € (0,7);
(4) w(0) = f.
A function w : [0,7] — X is a mild solution of (5:29) on [0, T if u is given by (5.30)
for t € [0,T7.

Every classical solution is a strong solution and every strong solution is a mild
solution. As Example [5.46] shows, however, a mild solution need not be a strong
solution.
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The Duhamel formula provides a useful way to study semilinear evolution equa-
tions of the form

(5.31) ur = Au+ g(u)
where the linear operator A generates a semigroup on a Banach space X and
g:DF)cX =X

is a nonlinear function. For semilinear PDEs, g(u) typically depends on u but none
of its spatial derivatives and then (B3] consists of a linear PDE perturbed by a
zeroth-order nonlinear term.

If {T(¢)} is the semigroup generated by A, we may replace (&.31)) by an integral
equation for v: [0,T] = X

(5.32) u(t) = T(t)u(0) + /0 T(t — s)g (u(s)) ds.

We then try to show that solutions of this integral equation exist. If these solutions
have sufficient regularity, then they also satisfy (5.31]).
In the standard Picard approach to ODEs, we would write (B.31) as

(5.33) u(t) = u(0) +/O [Au(s) + g (u(s))] ds.

The advantage of (5.32)) over (5.33)) is that we have replaced the unbounded operator
A by the bounded solution operators {T(¢)}. Moreover, since T(t—s) acts on g(u(s))
it is possible for the regularizing properties of the linear operators T to compensate
for the destabilizing effects of the nonlinearity F. For example, in Section
we study a semilinear heat equation, and in Section to prove the existence of
solutions of a nonlinear Schrodinger equation.

5.4.6. Non-autonomous equations. The semigroup property T(s)T(t) =
T(s+1t) holds for autonomous evolution equations that do not depend explicitly on
time. One can also consider time-dependent linear evolution equations in a Banach
space X of the form

up = A(t)u
where A(t) : D(A(t)) € X — X. The solution operators T(¢;s) from time s to
time ¢ of a well-posed nonautonomous equation depend separately on the initial
and final times, not just on the time difference; they satisfy

T(t;s)T(s;r) = T(t;7) for r < s <t.

The time-dependence of A makes such equations more difficult to analyze from
the semigroup viewpoint than autonomous equations. First, since the domain of
A(t) depends in general on ¢, one must understand how these domains are related
and for what times a solution belongs to the domain. Second, the operators A(s),
A(t) may not commute for s # ¢, meaning that one must order them correctly with
respect to time when constructing solution operators T(¢; s).

Similar issues arise in using semigroup theory to study quasi-linear evolution
equations of the form

ur = A(u)u
in which, for example, A(u) is a differential operator acting on u whose coefficients
depend on u (see e.g. [44] for further discussion). Thus, while semigroup theory
is an effective approach to the analysis of autonomous semilinear problems, its
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application to nonautonomous or quasilinear problems often leads to considerable
technical difficulties.

5.5. A semilinear heat equation

Consider the following initial value problem for u : R™ x [0,T] — R:
(5.34) ur = Au+ du — yu'™, u(z,0) = g(x)

where A\,v € R and m € N are parameters. This PDE is a scalar, semilinear
reaction diffusion equation. The solution u = 0 is linearly stable when A < 0 and
linearly unstable when A > 0. The nonlinear reaction term is potentially stabilizing
if ¥ > 0 and m is odd or m is even and solutions are nonnegative (they remain
nonegative by the maximum principle). For example, if m = 3 and v > 0, then
the spatially-independent reaction ODE wu; = Au — yu® has a supercritical pitchfork
bifurcation at u = 0 as A passes through 0. Thus, (534) provides a model equation
for the study of bifurcation and loss of stability of equilbria in PDEs.

We consider (534]) on R™ since this allows us to apply the results obtained ear-
lier in the Chapter for the heat equation on R™. In some respects, the behavior this
IBVP on a bounded domain is simpler to analyze. The negative Laplacian on R"
does not have a compact resolvent and has a purely continuous spectrum [0, c0). By
contrast, negative Laplacian on a bounded domain, with say homogeneous Dirich-
let boundary conditions, has compact resolvent and a discrete set of eigenvalues
A1 < Ay < A3 < .... As a result, only finitely many modes become unstable as A
increases, and the long time dynamics of (534) is essentially finite-dimensional in
nature.

Equations of the form

ur = Au+ f(u)
on a bounded one-dimensional domain were studied by Chafee and Infante (1974),
so this equation is sometimes called the Chafee-Infante equation. We consider here
the special case with

(5.35) flu) = Au—~u™

so that we can focus on the essential ideas. We do not attempt to obtain an optimal
result; our aim is simply to illustrate how one can use semigroup theory to prove the
existence of solutions of semilinear parabolic equations such as (.34]). Moreover,
semigroup theory is not the only possible approach to such problems. For example,
one can also use a Galerkin method.

5.5.1. Motivation. We will use the linear heat equation semigroup to refor-
mulate (5.34)) as a nonlinear integral equation in an appropriate function space and
apply a contraction mapping argument.

To motivate the following analysis, we proceed formally at first. Suppose that
A = —A generates a semigroup e ‘4 on some space X, and let F be the non-
linear operator F'(u) = f(u), meaning that F' is composition with f regarded as
an operator on functions. Then (534) maybe written as the abstract evolution
equation

up = —Au+ F(u), u(0) = g.
Using Duhamel’s formula, we get

u(t) = e t4 te_(t_s)A u(s)) ds.
0= [ F(u(s)) d
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We use this integral equation to define mild solutions of the equation.

We want to formulate the integral equation as a fixed point problem u = ®(u)
on a space of Y-valued functions u : [0,7] — Y. There are many ways to achieve
this. In the framework we use here, we choose spaces Y C X such that: (a)
F :Y — X is locally Lipschitz continuous; (b) e *4 : X — Y for ¢ > 0 with
integrable operator norm as ¢t — 0*. This allows the smoothing of the semigroup
to compensate for a loss of regularity in the nonlinearity.

As we will show, one appropriate choice in 1 < n < 3 space dimensions is
X = L?’(R") and Y = H?*(R") for n/4 < a < 1. Here H?**(R") is the L*
Sobolev space of fractional order 2« defined in Section [F.Cl We write the order of
the Sobolev space as 2a because H?*(R") = D (A%) is the domain of the ath-power
of the generator of the semigroup.

5.5.2. Mild solutions. Let A denote the negative Laplacian operator in L2,
(5.36) A:D(A) C L*(R™) — L*(R™), A=A, D(A) = H*(R™).

We define A as an operator acting in L? because we can study it explicitly by use
of the Fourier transform.

As discussed in Section 5.4.2] A is a closed, densely defined positive operator,
and —A is the generator of a strongly continuous contraction semigroup

{e7t:t >0}

on L?(R™). The Fourier representation of the semigroup operators is

(5.37) et LAR™) = L2(R™),  (e—tAR)(k) = e FPAk).
If ¢ > 0 we have for any o > 0 that
et LEHR™) — H2*(R™).

This property expresses the instantaneous smoothing of solutions of the heat equa-
tion c.f. Proposition [(5.14
We define the nonlinear operator

(5.38) F: H*(R™) — L*(R"), F(h)(z) = Ah(x) — yh™(x).

In order to ensure that F takes values in L? and has good continuity properties,
we assume that o > n/4. The Sobolev embedding theorem (Theorem [5.79) implies
that H2*(R") — Co(R™). Hence, if h € H?*, then h € L? N Cy, so h € LP for
every 2 < p < oo, and F(h) € L? N Cy. We then define mild H?*-valued solutions

of (534) as follows.

DEFINITION 5.48. Suppose that T > 0, a > n/4, and g € H**(R"). A mild
H?*-valued solution of (5.34]) on [0, 7] is a function

ue C([0,T); H**(R™))

such that

t
(5.39) u(t) = e g —|—/ e IAR (u(s)) ds for every 0 <¢ < T,
0

where e~*4 is given by (5.37), and F is given by (5.35).
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5.5.3. Existence. In order to prove a local existence result, we choose « large
enough that the nonlinear term is well-behaved by Sobolev embedding, but small
enough that the norm of the semigroup maps from L? into H2® is integrable as
t — 07. As we will see, this is the case if n/4 < a < 1, so we restrict attention to
1 < n < 3 space dimensions.

THEOREM 5.49. Suppose that 1 <n < 3 and n/4 < a < 1. Then there exists
T > 0, depending only on o, n, ||g||g2e, and the coefficients of f, such that (5.34)
has a unique mild solution u € C ([O,T]; HQO‘) in the sense of Definition [5.48

PRrROOF. We write (5:39) as
u =)

(5.40) @ C (0.7 H*) = C (10, T); H>),

t
D(u)(t) = e g + / e DA (u(s)) ds.
0
We will show that ® defined in (5:40) is a contraction mapping on a suitable ball in
C ([0, T); H*>*). We do this in a series of Lemmas. The first Lemma is an estimate
of the norm of the semigroup operators on the domain of a fractional power of the

generator.

LEMMA 5.50. Let e~ be the semigroup operator defined in [5.37) and a > 0.
Ift > 0, then
e LA(R™) — H*(R™)
and there is a constant C' = C(a,n) such that
Cet
—tA
He HL(L2,H2<’<) = G

PROOF. Suppose that h € L?(R™). Using the Fourier representation (5.31) of

e~ as multiplication by e~t** and the definition of the H 2a_norm, we get that

||eftAthq206 _ (271')”/ (1 + |k|2)20¢ 672t\k\2 }Al(k;)r dk
]Rn

2
< (2m)" sup {(1 + (k2> 6*2’5"“'2} / h(k:)‘ dk.
Hence, by Parseval’s theorem,
le™ | o < MR 12
where
o 1/2
M= (27T)n/2 sup {(1 + |/€|2)2 6_2t‘k‘2} '
keR?
Writing 1 + |k|? = z, we have
C t
M = (2m)"2et sup [z%e7"] < <.
z>1 te
and the result follows. O

Next, we show that ® is a locally Lipschitz continuous map on the space
C ([0, T]; H**(R™)).
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LEMMA 5.51. Suppose that o > n/4. Let ® be the map defined in [5.70) where
F is given by (5.38), A is given by (5.36) and g € H?**(R™). Then
(5.41) ®:C ([0,T); H**(R™)) — C ([0, T]; H**(R™))
and there exists a constant C = C(a,m,n) such that

1909 = #0)lequrir
< CT (14 Il oy ey + 1018 G0y 00 ) 18 = Voo e

Jor every u,v € C ([0, T]; H**).

PROOF. We write @ in (5.40) as

Bu)(t) = g+ B)(t),  (u)(t) = /0 == (u(s)) ds.

Since g € H** and {e~*4 : ¢ > 0} is a strongly continuous semigroup on H?“, the
map t — e *4¢g belongs to C ([O, T]; HQO‘). Thus, we only need to prove the result
for .

The fact that ¥(u) € C ([0,T]; H?**) if uw € C ([0,T]; H**) follows from the
Lipschitz continuity of ¥ and a density argument. Thus, we only need to prove the
Lipschitz estimate.

If u,v € C ([0,T]; H**), then using Lemma 550 we find that

tog(t—s)
)0 = ¥ @Ol < C [ T IF (a(s) = P (o) 2 ds
<C s IF (u(s) = Fo()lys | 7=

0<s<T

Evaluating the s-integral, with o < 1, and taking the supremum of the result over
0<t<T, we get

(5.42) 19(w) = U)o o120y < CT ™ |F () = F () 1 (0,7,12)
From (5.35), if g,h € Cy C H** we have
1E(g) = F (M)llL> < [A[llg = hll2 + [ llg™ = ™[] 2

and
m m m—1 m—1
lg™ = Bl 2 < © (lgllg="+ II7=") llg = Al =

Hence, using the Sobolev inequality ||g||z= < C||g||g2e for a > n/4 and the fact
that ||g]lz2 < ||gl g2+, we get that

1F(g) = F(W)l g2 < C (1 + llglgz’ + IRll5za") g = hll gz

which means that F : H2® — L? is locally Lipschitz continuousfl The use of this
result in (5.42) proves the Lemma. O

3Actually7 under the assumptions we make here, F : H2* — H2® ig locally Lipschitz con-
tinuous as a map from H2% into itself, and we don’t need to use the smoothing properties of the
heat equation semigroup to obtain a fixed point problem in C([0, T]; H2®), so perhaps this wasn’t
the best example to choose! For stronger nonlinearities, however, it would be necessary to use the
smoothing.
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The existence theorem now follows by a standard contraction mapping argu-
ment. If ||g|| g2« = R, then

He_tAgHHm <R forevery 0 <t <T
~t4} is a contraction semigroup on H2®. Therefore, if we choose
E= {U e C([0,T); H** - llulleo,m; 20y < QR}
we see from Lemma [B.51] that ® : F — E if we choose T > 0 such that
CT'"*(142R™ ') =6R

where 0 < # < 1. Moreover, in that case

since {e

[2(w) = ()l (o,7); 120y < 01w =l 0,77 120 for every u,v € E.

The contraction mapping theorem then implies the existence of a unique solution
ue k. (I

This result can be extended and improved in many directions. In particular, if
A is the negative Laplacian acting in LP(R"),

A:W?P(R™) C LP(R"™) — LP(R™), A=-A.

then one can prove that —A is the generator of a strongly continuous semigroup on
LP? for every 1 < p < oo. Moreover, we can define fractional powers of A

A% D(A%) C LP(R™) — LP(R™).

If we choose 2p > n and n/2p < a < 1, then Sobolev embedding implies that
D(A%*) — Cp and the same argument as the one above applies. This gives the
existence of local mild solutions with values in D(A®) in any number of space
dimensions. The proof of the necessary estimates and embedding theorems is more
involved that the proofs above if p # 2, since we cannot use the Fourier transform
to obtain out explicit solutions.

More generally, this local existence proof extends to evolution equations of the
form ([41], §15.1)

uy + Au = F(u),

where we look for mild solutions v € C([0,T]; X) taking values in a Banach space
X and there is a second Banach spaces Y such that:

(1) e7* : X — X is a strongly continuous semigroup for ¢ > 0;
(2) F: X —Y is locally Lipschitz continuous;
(3) e7*4:Y — X for t > 0 and for some o < 1

He_tAHL(ny) < o forO<t<T.

In the above example, we used X = H?* and Y = L2. If A is a sectorial operator
that generates an analytic semigroup on Y, then one can define fractional powers A*
of A, and the semigroup {e~*4} satisfies the above properties with X = D(A*) for
0 <« <1 [36]. Thus, one gets a local existence result provided that F : D(A%) —
L? is locally Lipschitz, with an existence-time that depends on the X-norm of the
initial data.

In general, the X-norm of the solution may blow up in finite time, and one gets
only a local solution. If, however, one has an a priori estimate for ||u(t)||x that is
global in time, then global existence follows from the local existence result.
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5.6. The nonlinear Schrodinger equation

The nonlinear Schrédinger (NLS) equation is
(5.43) iur = —Au — ANu|%u

where A € R and « > 0 are constants. In many applications, such as the asymptotic
description of weakly nonlinear dispersive waves, we get a = 2, leading to the
cubically nonlinear NLS equation.

A physical interpretation of (5.43)) is that it describes the motion of a quantum
mechanical particle in a potential V' = —AJu|* which depends on the probability
density |u|? of the particle c.f. (GI4). If X # 0, we can normalize A = +1 so the
magnitude of A is not important; the sign of X is, however, crucial.

If A > 0, then the potential becomes large and negative when |u|?> becomes
large, so the particle ‘digs’ its own potential well; this tends to trap the particle
and further concentrate is probability density, possibly leading to the formation of
singularities in finite time if n > 2 and « > 4/n. The resulting equation is called
the focusing NLS equation.

If A < 0, then the potential becomes large and positive when |u|?> becomes
large; this has a repulsive effect and tends to make the probability density spread
out. The resulting equation is called the defocusing NLS equation. The local L2-
existence result that we obtain here for subcritical nonlinearities 0 < o < 4/n is,
however, not sensitive to the sign of .

The one-dimensional cubic NLS equation

g+ Uge + AMu?u =0

is completely integrable. If A > 0, this equation has localized traveling wave so-
lutions called solitons in which the effects of nonlinear self-focusing balance the
tendency of linear dispersion to spread out the the wave. Moreover, these solitons
preserve their identity under nonlinear interactions with other solitons. Such lo-
calized solutions exist for the focusing NLS equation in higher dimensions, but the
NLS equation is not integrable if n > 2, and in that case the soliton solutions are
not preserved under nonlinear interactions.

In this section, we obtain an existence result for the NLS equation. The linear
Schrédinger equation group is not smoothing, so we cannot use it to compensate for
the nonlinearity at a fixed time as we did in Section for the semilinear equation.
Instead, we use some rather delicate space-time estimates for the linear Schrodinger
equation, called Strichartz estimates, to recover the powers lost by the nonlinearity.
We derive these estimates first.

5.6.1. Strichartz estimates. The Strichartz estimates for the Schrodinger
equation (I3 may be derived by use of the interpolation estimate in Theorem [5.16]
and the Hardy-Littlewood-Sobolev inequality in Theorem B.771 The space-time
norm in the Strichartz estimate is L¢(R) in time and L"(R™) in space for suitable
exponents (g, r), which we call an admissible pair.

DEFINITION 5.52. The pair of exponents (g, r) is an admissible pair if

n
5.44 - ==
( ) q 2 r



158 5. THE HEAT AND SCHRODINGER EQUATIONS

where 2 < ¢ < co and

(5.45) 2<r< ifn>3

or2<r<ooifn=1,2.

The Strichartz estimates continue to hold for some endpoints with ¢ = 2 or
q = 00, but we will not consider these cases here.

THEOREM 5.53. Suppose that {T(t) : t € R} is the unitary group of solution
operators of the Schridinger equation on R™ defined in (Z22) and (q,r) is an
admissible pair as in Definition [5.52.

(1) For f € L*([R"™), let u(t) = T(t)f. Then u € LY (R;L"), and there is a
constant C(n,r) such that
(5.46) [l o Lry < CIS A2

(2) Forge LY (R; L"), let
v(t) = /_OO T(t — s)g(s) ds.

Then v € LY (R; L™ ) N C(R; L?) and there is a constant C(n,r) such that

(5.47) ||v||Loo(]R;L2) <C ”g”Lq/(R;Lr’) )
(5.48) ||U||Lq(]R<;Lr) <C HgHLQ’(]R;LT’) :

PROOF. By a density argument, it is sufficient to prove the result for smooth
functions. We therefore assume that g € C°(R;S) is a smooth Schwartz-valued
function with compact support in time and f € §. We prove the inequalities in

reverse order.
Using the interpolation estimate Theorem [5.16] we have for 2 < r < oo that

> lg(s)ll
||U(t)||y < /OO (47T|t _ S|)n(1/271/7“) ds.

If r is admissible, then 0 < n(1/2 —1/r) < 1. Thus, taking the L%-norm of this
inequality with respect to ¢ and using the Hardy-Littlewood-Sobolev inequality
(Theorem [BE.77) in the result, we find that

||U||Lq(1R;Lr) <C ”gHLP(]R;L’”')
where p is given by

=1+4-+
q

If ¢, r satisfy (5:44]), then p = ¢/, and we get (2.4S).
Using Fubini’s theorem and the unitary group property of T(t), we have

0Oy = [ [ T 190). T = 5)9(9) s s

1 n n
r 2

K=

~

N /_OO /_OO (T(s =7)g(r), 9(s)) L2 (gn drds
= /_OO (U(S)7g(8))L2(Rn) dS.
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Using Holder’s inequality and (548)) in this equation, we get

2 2
o2 @y < 10l o 19w gy < C 9120 gy -
Taking the supremum of this inequality over ¢ € R, we obtain (5.47). In fact, since

v € O(R;L?) is an L?-solution of the homogeneous Schrédinger equation and
[v(t)]l 12 gny is independent of ¢.
If feS ult)=T{)f, and g € CX(R;S), then using (L.48) we get

| w00 i~ [ w0590,

— 00 — 00

= (7. renamar) )

<Wflee| [ T-nateyae
—0o0 L2
<O fllge HgHLq’(R;LT/) .
It then follows by duality and density that
S (u(t), g(8)) 2 dt
fllpaggiey = suD <Clfl
geC (R;S) HQ”Lq/ (R;L™")
which proves (5.46). O

This estimate describes a dispersive smoothing effect of the Schrodinger equa-
tion. For example, the L"-spatial norm of the solution may blow up at some time,
but it must be finite almost everywhere in ¢. Intuitively, this is because if the
Fourier modes of the solution are sufficiently in phase at some point in space and
time that they combine to form a singularity, then dispersion pulls them apart at
later times.

Although the above proof of the Schrédinger equation Strichartz estimates is
elementary, in the sense that given the interpolation estimate for the Schrodinger
equation and the one-dimensional Hardy-Littlewood-Sobolev inequality it uses only
Holder’s inequality, it does not explicitly clarify the role of dispersion (beyond the
dispersive decay of solutions in time). An alternative point of view is in terms of
restriction theorems for the Fourier transform.

The Fourier solution of the Schrédinger equation (BI3) is

w(z,t) = | flk)ereriklt g
Rn

Thus, the space-time Fourier transform 4(k, ) of u(z,t),

1

a(k, 1) = 2t

/u(x,t)eik'w""”t dxdt,
is a measure supported on the paraboloid 7 + |k|?> = 0. This surface has non-
singular curvature, which is a geometrical expression of the dispersive nature of the
Schrédinger equation. The Strichartz estimates describe a boundedness property
of the restriction of the Fourier transform to curved surfaces.
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As an illustration of this phenomenon, we state the Tomas-Stein theorem on
the restriction of the Fourier transform in R™*! to the unit sphere S™.

THEOREM 5.54. Suppose that f € LP(R" 1) with

2n + 4
1<p<
=P= n+4

and let g = f o Then there is a constant C(p,n) such that

9l 2oy < C 1l -

5.6.2. Local L2-solutions. In this section, we use the Strichartz estimates
for the linear Schrodinger equation to obtain a local existence result for solutions
of the nonlinear Schrédinger equation with initial data in L2.

If X is a Banach space and T > 0, we say that v € C([0,T]; X) is a mild
X-valued solution of (43)) if it satisfies the Duhamel-type integral equation

(5.49) u=T)f+ i/\/o T(t — s) {|u|*(s)u(s)} ds for t € [0,T]

where T (t) = e*2 is the solution operator of the linear Schrédinger equation defined
by (522). If a solution of (5.49)) has sufficient regularity then it is also a solution of
(E43), but here we simply take (5.49) as our definition of a solution. We suppose
that ¢ > 0 for definiteness; the same arguments apply for ¢ < 0.

Before stating an existence theorem, we explain the idea of the proof, which
is based on the contraction mapping theorem. We write (5.49) as a fixed-point
equation

(5.50) u= ®(u) D(u)(t) = T(t)f +iX¥(u)(t),

(5.51) W(u)(t) = /0 T(t — ) {[u]*(s)u(s)} ds.

We want to find a Banach space F of functions u : [0,7] — L" and a closed ball
B C E such that ® : B — B is a contraction mapping when 7" > 0 is sufficiently
small.

As discussed in Section [F.43] the Schrodinger operators T(t) form a strongly
continuous group on L only if p = 2. Thus if f € L?, then

®:C ([O,T]; L2/(“+1)) —C([0,T); L?),

but ® does not map the space C ([0, T]; L") into itself for any exponent 1 < r < oco.
If « is not too large, however, there are exponents ¢, r such that

(5.52) ®:LY(0,T;L") — L*(0,T;L").

This happens because, as shown by the Strichartz estimates, the linear solution
operator T can regain the space-time regularity lost by the nonlinearity. (For a
brief discussion of vector-valued LP-spaces, see Section [6.A])

To determine values of g, r for which ([.52)) holds, we write

L9(0,T;L") = L{L,
for short, and consider the action of ® defined in (E50)— (51 on such a space.

First, consider the term Tf in (5.50) which is independent of u. Theorem [5.53]
implies that Tf € L{L" if f € L? for any admissible pair (¢, ).
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Second, consider the nonlinear term ¥(u) in (@5I). We have

T a/r 1/a
|||u|au||w:[/ (/ lul“‘““)dw) dt]
te 0 Rn
T q(a+1)/r(a+1)
[ ([ wrerva) "
0 n

+1
= ”u”zg(a“)L;W“) :

(a+1)/q(a+1)

Thus, if u € L& L7 then |u|®u € L?L1* where
(5.53) @ = g(a+1), r1 = ry(a+1).
If (g2,72) is an admissible pair, then the Strichartz estimate (5.48) implies that
W(u) € LEL.
In order to ensure that ¥ preserves the L] -norm of u, we need to choose r = r; = 79,
which implies that r = '(a + 1), or
(5.54) r=a+2.
If r is given by (G.54), then it follows from Definition that
(g2,72) = (¢, +2)
is an admissible pair if
4(a+2)
no
and 0 < a <4/(n—2),or 0 < a < oo if n=1,2. In that case, we have

U LI Let? 5 LILoet?

(5.55) q=

where
(5.56) ¢ =q'(a+1).

In order for ¥ to map L{LS*? into itself, we need L{* D L} or ¢ < g. This
condition holds if @ +2 < g or @ < 4/n. In order to prove that ® is a contraction
we will interpolate in time from L{' to L], which requires that ¢; < q or o < 4/n.
A similar existence result holds in the critical case & = 4/n but the proof requires
a more refined argument which we do not describe here.

Thus according to this discussion,

®: LILoT? 5 LIfot?

if ¢ is given by (&53) and 0 < a < 4/n. This motivates the hypotheses in the
following theorem.

THEOREM 5.55. Suppose that 0 < a < 4/n and
4(a+2)

no
For every f € L?(R™), there exists

T= T(||f||L2an7a7)\) >0
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and a unique solution u of ([5-49) with
ue C([0,T]; L*(R™)) N L7 (0, T; L*T*(R™)) .
Moreover, the solution map f +— w is locally Lipschitz continuous.
PrOOF. For T > 0, let E be the Banach space
E=C([0,T};L*) n L9(0,T; L**?)

with norm

T 1/‘1
(5.57) lull 5 = max fu(t)| .- + / la(t)4rs dt
[0,7] 0

and let ® be the map in (E50)—(@.51). We claim that ®(u) is well-defined for u € E
and ®: F — E.

The preceding discussion shows that ®(u) € LIL3T2 if u € LIL2T2. Writing
CiL2 = C([0,T]; L?), we sce that T(:)f € C;L2 since f € L? and T is a strongly
continuous group on L?. Moreover, (E47) implies that ¥(u) € C;L2 since W¥(u)
is the uniform limit of smooth functions W(uy) such that uy — u in L{LEF2 c.f.
E). Thus, @ : E — E.

Next, we estimate ||®(u)|| g and show that there exist positive numbers

T=T(fllzz,n, o A), a=a(|fllrzsn )
such that ® maps the ball
(5.58) B={ucE:|u|g<a}

into itself.
First, we estimate | T f||g. Since T is a unitary group, we have

(5.59) ITflle.rz = 1fllr2
while the Strichartz estimate (5.46) implies that
(5.60) ITfllpapg+s < CllflLe-
Thus, there is a constant C = C'(n, «) such that

(5.61) ITflle < ClIfllL2-

In the rest of the proof, we use C' to denote a generic constant depending on n and
a.
Second, we estimate ||¥(u)||g where U is given by (551]). The Strichartz esti-

mate (A7) gives

1 @)llc.rz < Clul™ L ooy

1
(562) S OHU’HZI(Q+1)L(Q+2)/(Q+1)
t z

< Clul2fl
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where ¢; is given by (B56). If ¢ € LP(0,T) and 1 < p < g, then Holder’s inequality
with r = ¢/p > 1 gives

T
9l e, 1) = </0 1-|o(t)|P dt)
(5.63) N
< (/ 1 dt) (/ 6(0) dt)

< Tl/p_l/q||¢||Lq(0,T)-

1/p

1/r 1/p

Using this inequality with p = ¢; in (0.62), we get

(5.64) 1 @W)llc,z2 < CTJul7y,

2
LILg™

where 0 = (a+1)(1/q1 — 1/q) > 0 is given by

. f=1- .
(5.65) 0

We estimate ||¥(u)|[ja a+2 in a similar way. The Strichartz estimate (£.48)
and the Holder estimate (5.63]) imply that

(5.66) [0 gy < Ol era < CT S
Thus, from (564) and (5.66]), we have
(567 19 () 5 < Ol 57y

Using (5.61)) and (B.67)), we find that there is a constant C' = C'(n, ) such that
(5.68) 12l < ITfllp + INT® @] < Cllfllze + CINT lullgy,

LILg*?
for all u € E. We choose positive constants a, T such that
a>2C|fllr2,  0<20NT%> < 1.

Then (B.68) implies that ® : B — B where B C E is the ball (558]).
Next, we show that ® is a contraction on B. From (550) we have

(5.69) D(u) — @(v) = iA[T(u) — ¥(v)].
Using the Strichartz estimates (5.47)—(E48) in (551) as before, we get
(5.70) ¥ (u) = ¥@)llp < Cllful = |ol*v [l g or2r -

For any « > 0 there is a constant C'(«) such that
[|w]|w — 2|2 | < C (Jw]* + |2|*) |w — 2] for all w, z € C.

Using the identity
, a+2

2
(a+2)="—+
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and Holder’s inequality with r = a + 1, ' = (o + 1)/, we get that

(o+2) ety
= ol g = ( [ ultu = ool o)
, o\ a2y
<o ([ ul 1l o )

, , 1/7" (a+2)’
<o ([ ul oy as)

, 1/r(a+2)’
(/ |u — v|r(0‘+2) da:)

< C (lullfare + ollfgr2) u = vl o2

We use this inequality in (2.70) followed by Holder’s inequality in time to get

T q 1/4'
[¥() - ()] < ( | [tz +olzzee] = ol dt)
T . . o 1/p'q
<C / [||u||Lg+2 + ||v||Lg+2] dt
0
T 1/pd
|u— 11|| Lo dt
</O L -

Taking p = ¢/q' > 1 we get

T 1/pq
||w<u>—w<v>||Esc< | o5 + peonzze) o ) = vl gpes

Interpolating in time as in (5.63]), we have

T T ro ! T 1/T
J, e ‘“<</ 1‘“””dt> (/ (e 1552 dt>
0

and taking ap’q’'r = ¢, which implies that 1/p'¢'r’ = 6 where 6 is given by (5.65)),

we get
T 1/r
0
(/ lu(@22% d ) < T flu— vl s

It therefore follows that

(5.71) () = O) 5 < CT (lullfypges + Nollfypge ) llu— vl gpeee

1/r'

Using this result in (G.69]), we get
1@(u) = @) p < CINIT (lully + lvl) lu = vl g -
Thus if u,v € B,
1®(u) = @(0) p < 2CINTa ||u — v| ;.
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Choosing T' > 0 such that 2C|\|[T%® < 1, we get that ® : B — B is a contraction,
so it has a unique fixed point in B. Since we can choose the radius a of B as large
as we wish by taking T" small enough, the solution is unique in F.

The Lipshitz continuity of the solution map follows from the contraction map-
ping theorem. If ®; denotes the map in (L.50), ®y,, P, : B — B are contractions,
and up, ug are the fixed points of ®f,, ®4,, then

lur —uallp < Cllf1 — fallpe + K |Jur — uzl|

where K < 1. Thus
C

1-K

If1— fall 2

lur — sz <
O

This local existence theorem implies the global existence of L2-solutions for
subcritical nonlinearities 0 < o < 4/n because the existence time depends only the
L2-norm of the initial data and one can show that the L2-norm of the solution is
constant in time.

For more about the extensive theory of the nonlinear Schrédinger equation and
other nonlinear dispersive PDEs see, for example, [6, [29], [39), [40].



166 5. THE HEAT AND SCHRODINGER EQUATIONS

Appendix
May the Schwartz be with youﬂ

In this section, we summarize some results about Schwartz functions, tempered
distributions, and the Fourier transform. For complete proofs, see [24), [34].

5.A. The Schwartz space

Since we will study the Fourier transform, we consider complex-valued func-
tions.

DEFINITION 5.56. The Schwartz space S(R™) is the topological vector space of
functions f : R™ — C such that f € C*°(R") and

220 f(z) = 0 as || = oo
for every pair of multi-indices «, 8 € Nj. For o, 8 € N§j and f € S(R™) let

(5.72) 1105 = sup 2207 £

A sequence of functions {fy : k € N} converges to a function f in S(R"™) if
[fn = fllas — 0 as k — 0o
for every «, 8 € Nj.

That is, the Schwartz space consists of smooth functions whose derivatives
(including the function itself) decay at infinity faster than any power; we say, for
short, that Schwartz functions are rapidly decreasing. When there is no ambiguity,
we will write S(R™) as S.

EXAMPLE 5.57. The function f(z) = e~17I* belongs to S(R™). More generally,
if p is any polynomial, then g(x) = p(x) e~lel® belongs to S.

EXAMPLE 5.58. The function

f@) =

(1+ [af?)*

does not belongs to S for any k € N since |z|?* f(x) does not decay to zero as

EXAMPLE 5.59. The function f : R — R defined by
fz) = e~ sin (emz)
does not belong to S(R) since f/(x) does not decay to zero as |z| — oo.

The space D(R™) of smooth complex-valued functions with compact support
is contained in the Schwartz space S(R™). If f — f in D (in the sense of Defini-
tion B.8)), then fr — f in S, so D is continuously embedded in S. Furthermore, if
f eS8, and n e C(R™) is a cutoff function with ng(z) = n(z/k), then nif — f in
S as k — 00, so D is dense in S.

4Spacoballs
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The topology of S is defined by the countable family of semi-norms || - ||q.8
given in (5.72)). This topology is not derived from a norm, but it is metrizable; for
example, we can use as a metric

casllf = gllas
d(f,g)= » bk
oo 1T If = 9glla,s

where the c, g > 0 are any positive constants such that Za,BeNg Cq,3 CONVeErges.
Moreover, S is complete with respect to this metric. A complete, metrizable topo-
logical vector space whose topology may be defined by a countable family of semi-
norms is called a Fréchet space. Thus, S is a Fréchet space.

If we want to make explicit that a limit exists with respect to the Schwartz
topology, we write

f = S-lim fk;
k—o0

and call f the S-limit of {fx}.
If f = fask — ocoin S, then 0 f; — 0%f for any multi-index o € Njj. Thus,
the differentiation operator 9% : § — S is a continuous linear map on S.

5.A.1. Tempered distributions. Tempered distributions are distributions
(c.f. Section [B3) that act continuously on Schwartz functions. Roughly speaking,
we can think of tempered distributions as distributions that grow no faster than a
polynomial at inﬁnityE

DEFINITION 5.60. A tempered distribution 7" on R"™ is a continuous linear
functional T': S(R™) — C. The topological vector space of tempered distributions
is denoted by S'(R™) or §’. If (T, f) denotes the value of T' € S’ acting on f € S,
then a sequence {T}} converges to T in &', written T, — T, if

(Tw, [) = (T, f) for every f € S.

Since D C S is densely and continuously embedded, we have S’ C D’. More-
over, a distribution 7' € D’ extends uniquely to a tempered distribution T' € &’ if
and only if it is continuous on D with respect to the topology on S.

Every function f € L] . defines a regular distribution Ty € D’ by

loc

(Ty, ¢) = /fgbd:z: for all ¢ € D.

If |f| < p is bounded by some polynomial p, then Ty extends to a tempered dis-
tribution Ty € &', but this is not the case for functions f that grow too rapidly at
infinity.

EXAMPLE 5.61. The locally integrable function f(z) = el?” defines a regular
distribution Ty € D’ but this distribution does not extend to a tempered distribu-
tion.

EXAMPLE 5.62. If f(x) = e®cos(e¥), then Ty € D'(R) extends to a tempered
distribution T' € §’(R) even though the values of f(z) grow exponentially as z — oc.

5The name ‘tempered distribution’ is short for ‘distribution of temperate growth,” meaning
polynomial growth.
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This tempered distribution is the distributional derivative 7' = T} of the regular
distribution T, where f = ¢’ and g(z) = sin(e®):

(fio) =—(9,¢') = — /sin(ex)qﬁ(a:) dx for all ¢ € S.

The distribution 7" is decreasing in a weak sense at infinity because of the rapid
oscillations of f.

EXAMPLE 5.63. The series

> 6™ (@ —n)

neN

where 6(™) is the nth derivative of the d-function converges to a distribution in
D’'(R), but it does not converge in S’(R) or define a tempered distribution.

We define the derivative of tempered distributions in the same way as for dis-
tributions. If o € Nj is a multi-index, then

(0°T, ¢) = (—1)l*T,09).

We say that a C°°-function f is slowly growing if the function and all of its deriva-
tives are of polynomial growth, meaning that for every a € Nj there exists a
constant C, and an integer N, such that

0°f(2)] < Co (14 J2) ™ .

If f is C* and slowly growing, then f¢ € S whenever ¢ € S, and multiplication by
f is a continuous map on S. Thus for T € §’, we may define the product fT € S’
by

(fT,0) = (T, fo).

5.B. The Fourier transform

The Schwartz space is a natural one to use for the Fourier transform. Differenti-
ation and multiplication exchange roles under the Fourier transform and therefore so
do the properties of smoothness and rapid decrease. As a result, the Fourier trans-
form is an automorphism of the Schwartz space. By duality, the Fourier transform
is also an automorphism of the space of tempered distributions.

5.B.1. The Fourier transform on S.
DEFINITION 5.64. The Fourier transform of a function f € S(R™) is the func-
tion f: R™ — C defined by

(5.73) flk) = (2710” / f(x)e™*2 d,

The inverse Fourier transform of f is the function f : R” — C defined by
f@) = [ 1w a.

We generally use = to denote the variable on which a function f depends and
k to denote the variable on which its Fourier transform depends.
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EXAMPLE 5.65. For o > 0, the Fourier transform of the Gaussian

1 2 2
_ —|z|*/20
f((E) - (271'02)”/2 €

is the Gaussian

o 1 2112
RS Y
F0) = o

The Fourier transform maps differentiation to multiplication by a monomial
and multiplication by a monomial to differentiation. As a result, f € S if and only
if feS,and f,, — fin S if and only if f,, — f in S.

THEOREM 5.66. The Fourier transform F : S — S defined by F : f — f s a
continuous, one-to-one map of S onto itself. The inverse F~1:8 = S is given by
Frifw f.IffeS, then

Floof] = (ik)*f,  F[(—ix)’f] = d°F.

The Fourier transform maps the convolution product of two functions to the
pointwise product of their transforms.

THEOREM b5.67. If f,g € S, then the convolution h = fxg € S, and

h=(2m)" fg.
/f?d:z:: (ﬁ)”/f“gdk.
/IfI2 dz = (27r)"/|f|2dk.

5.B.2. The Fourier transform on &’. The main reason to introduce tem-
pered distributions is that their Fourier transform is also a tempered distribution.
If ¢, € S, then by Fubini’s theorem

[oids= [ o) | s [vt0e ] da
:/ [(zlon / dla)e™ dw} Y(y) dy

= /q?np dz.

This motivates the following definition for the Fourier transform of a tempered
distribution which is compatible with the one for Schwartz functions.

If f,g €S, then

In particular,

DEFINITION 5.68. If T € &', then the Fourier transform 7' € &' is the distribu-
tion defined by

(T,¢) =(T,¢$)  forall ¢ cS.
The inverse Fourier transform T' € & is the distribution defined by

(T,¢) = (T, )  forall € S.
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We also write T = FT and T = F~'T. The linearity and continuity of the
Fourier transform on & implies that T is a linear, continuous map on S, so the
Fourier transform of a tempered distribution is a tempered distribution. The in-
vertibility of the Fourier transform on S implies that F : 8" — &’ is invertible with
inverse F~!1: 8 — &',

EXAMPLE 5.69. If § is the delta-function supported at 0, (4, ¢) = ¢(0), then

(.01 = 6.:6) =60 = oz [t o= {510,

Thus, the Fourier transform of the J-function is the constant function (27)~™. We
may write this Fourier transform formally as

o(x) = (271)" /e”” dk.

This result is consistent with Example [5.651 We have for the Gaussian §-sequence
that

1

I P 0 SN : /
o)l e ) inS asoc— 0.

The corresponding Fourier transform of this limit is

L w2

—_— ] /
@) @) inS" aso— 0.

If T € &, it follows directly from the definitions and the properties of Schwartz
functions that

(0°T, ¢) = (0°T, @) = (—1)/*NT, 0*¢) = (T, (ik)*¢) = (T, (ik)*¢) = ((ik)"T’, §),
with a similar result for the inverse transform. Thus,
§oT = (ik)°T,  (—iz)PT = 9°T.

The Fourier transform does not define a map of the test function space D
into itself, since the Fourier transform of a compactly supported function does not,
in general, have compact support. Thus, the Fourier transform of a distribution
T € D’ is not, in general, a distribution T e D’; this explains why we define the
Fourier transform for the smaller class of tempered distributions.

The Fourier transform maps the space D onto a space Z of real-analytic func-
tionsE and one can define the Fourier transform of a general distribution T' € D’ as
an ultradistribution 7" € Z’ acting on Z. We will not consider this theory further
here.

6A function ¢ : R — C belongs to Z(R) if and only if it extends to an entire function ¢ : C — C
with the property that, writing z = xz+14y, there exists a > 0 and for each k = 0,1,2,... a constant
C such that

‘qub(z)‘ < Cre®lyl,



5.B. THE FOURIER TRANSFORM 171
5.B.3. The Fourier transform on L!. If f € L}(R"), then

\ [rweteail < 1516

so we may define the Fourier transform f directly by the absolutely convergent
integral in (B.73). Moreover,

i) < s [ 11 d

It follows by approximation of f by Schwartz functions that f is a uniform limit of
Schwartz functions, and therefore f € Cy is a continuous function that approaches
zero at infinity. We therefore get the following Riemann-Lebesgue lemma.

THEOREM 5.70. The Fourier transform is a bounded linear map F : L*(R™) —
Co(R™) and

1

(2m)

1, < G 1411
The range of the Fourier transform on L' is not all of Cy, however, and it is
difficult to characterize.

5.B.4. The Fourier transform on L2. The next theorem, called Parseval’s
theorem, states that the Fourier transform preserves the L?-inner product and
norm, up to factors of 2. It follows that we may extend the Fourier transform by
density and continuity from S to an isomorphism on L? with the same properties.
Explicitly, if f € L2, we choose any sequence of functions fi € S such that fp
converges to f in L2 as k — co. Then we define f to be the L2-limit of the fj.
Note that it is necessary to use a somewhat indirect approach to define the Fourier
transform on L?; since the Fourier integral in (5.73) does not converge if f € L?\ L.

THEOREM 5.71. The Fourier transform F : L*(R™) — L?(R") is a one-to-one,
onto bounded linear map. If f,g € L?(R"), then

/fﬁd:vz (2w)"/f§dk.
/IfI2 dz = (27r)"/|f|2dk.

5.B.5. The Fourier transform on LP. The boundedness of the Fourier
transform F : LP — L? for 1 < p < 2 follows from its boundedness for F :
L' — L*> and F : L? — L? by use of the following Riesz-Thorin interpolation
theorem.

In particular,

THEOREM 5.72. Let Q be a measure space and 1 < pg,p1 < 00, 1 < qo,q1 < 0.
Suppose that
T:LP(Q)+ LP(Q) = LY(Q) + LT (Q)
is a linear map such that T : LP () — L%(Q) fori=0,1 and

1Tl a0 < Mollfllres  I1Tfllpa < Myllfll o
for some constants My, My. If0 < 0 <1 and
1 1-6 6 1 1-6 6
== + == +—,

» po p 4 @ @
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then T : LP(Q}) — L1(Q2) maps LP(2) into L1(Q) and
1Tl < Mo MY 1Sl -

In this theorem, LP° ()4 LP*(Q2) denotes the vector space of all complex-valued
functions of the form f = fo + f1 where fo € LP°(Q) and f1 € LP*(Q). Note that
if go = p{, and ¢1 = p}, then ¢ = p’. An immediate consequence of this theorem
and the L!-L? estimates for the Fourier transform is the following Hausdorff-Young
theorem.

THEOREM 5.73. Suppose that 1 < p < 2. The Fourier transform is a bounded

linear map F : LP(R™) — L¥ (R") and
1
IF Nl < 2 £l e -

If 1 < p < 2, the range of the Fourier transform on LP is not all of Lp,, and there
exist functions f € L*" whose inverse Fourier transform is a tempered distribution
that is not regular. Correspondingly, if p > 2 the range of F : LP — S’ contains
non-regular distributions. For example, 1 € L* and F(1) = 4.

5.C. The Sobolev spaces H*(R")

A function belongs to L? if and only if its Fourier transform belongs to L?, and
the Fourier transform preserves the L2-norm. As a result, the Fourier transform
provides a simple way to define L2-Sobolev spaces on R”, including ones of fractional
and negative order. This approach does not generalize to LP-Sobolev spaces with
p # 2, since there is no simple way to characterize when a function belongs to L?
in terms of its Fourier transform.

We define a function () : R™ — R by

(@) = (1 + 2]

This function grows linearly at infinity, like |z|, but is bounded away from zero.
(There should be no confusion with the use of angular brackets to denote a duality

pairing.)

1/2

DEFINITION 5.74. For s € R, the Sobolev space H*(R"™) consists of all tempered
distributions f € &’'(R™) whose Fourier transform f is a regular distribution such

that
[

The inner product and norm of f,g € H® are defined by

f(/g)‘2 dk < .

e = 2 [ 250930 a1, = (200" ( [ i dk>1/2.

Thus, under the Fourier transform, H*(R") is isomorphic to the weighted L>2-
space

(5.74) HYR™) ={f:R" - C: (k) f € L*},
with inner product

(f ’ f’) o = @m)" / (k) fg dk.
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The Sobolev spaces {H* : s € R} form a decreasing scale of Hilbert spaces with H*
continuously embedded in H” for s > r. If s € N is a positive integer, then H*(R"™)
is the usual Sobolev space of functions whose weak derivatives of order less than
or equal to s belong to L?(R™), so this notation is consistent with our previous
notation.

We may give a spatial description of H® for general s € R in terms of the
pseudo-differential operator A : 8" — &’ with symbol (k) defined by

—

(5.75) A= =) ANk = R F(R).
Then f € H® if and only if A®f € L?, and

G = [ e 1y = ([t )

Thus, roughly speaking, a function belongs to H? if it has s weak derivatives (or
integrals if s < 0) that belong to L2.

1/2

EXAMPLE 5.75. If § € S'(R™), then § = (27)~" and
- 1
2s 2 o 2s
/(k) 82 dk = o /<k> dk

converges if 2s < —n. Thus, § € H*(R") if s < —n/2, which is precisely when
functions in H® are continuous and pointwise evaluation at 0 is a bounded linear
functional. More generally, every compactly supported distribution belongs to H*®
for some s € R.

EXAMPLE 5.76. The Fourier transform of 1 € &', given by 1 = 6, is not a
regular distribution. Thus, 1 ¢ H*® for any s € R.

We let

(5.76) H*=(\H*, H>*=|]JH"
seR sER
Then S C H>® C H=°° C & and by the Sobolev embedding theorem H> C C§°.

5.D. Fractional integrals

One way to approach fractional integrals and derivatives is through potential
theory.

5.D.1. The Riesz potential. For 0 < a < n, we define the Riesz potential
I, :R" - R by

11 207 /21 (o /2
Ia@) =~ g =TT T2

Yo || I'n/2—a/2)
Since a > 0, we have I, € LL (R").

loc

The Riesz potential of a function ¢ € S is defined by

_ L)
I, * ¢(x) = o / P dy.

The Fourier transform of this equation is

(Tn + 8)(k) = ﬁ b(k).
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Thus, we can interpret convolution with I, as a homogeneous, spherically symmet-
ric fractional integral operator of the order a. We write it symbolically as

Inx¢=1|D|"" ¢,

where |D] is the operator with symbol |k|. In particular, if n > 3 and a = 2, the
potential I is the Green’s function of the Laplacian operator,

—AlL =6.

If we consider
|D|™*: LP(R™) — LY(R™)
as a map from LP to L9, then a scaling argument similar to the one for the Sobolev
embedding theorem implies that the map can be bounded only if

1 1 «
5.77 - _Z
(5.77) "

The following Hardy-Littlewood-Sobolev inequality states that this map is, in fact,
bounded for 1 < p < n/a. The proof (see e.g. [18] or [27]) uses the boundedness
of the Hardy-Littlewood maximal function on L? for 1 < p < oco.

THEOREM 5.77. Suppose that 0 < a < n, 1 < p < n/a, and q is defined by
(> 77). If f € LP(R™), then I, * f € LY(R™) and there exists a constant C(n, o, p)
such that
o * fllpa < Clfllyr  for every f € LP(R™).

This inequality may be thought of as a generalization of the Gagliardo-Nirenberg
inequality in Theorem to fractional derivatives. If & = 1, then ¢ = p* is the
Sobolev conjugate of p, and writing f = |D|g we get

g1l < C DI Lo -

5.D.2. The Bessel potential. The Bessel potential corresponds to the op-
erator
A= = (I = A) 2 = (1+|D]>) "%
where A is defined in (B.75) and o > 0. The operator A~% is a non-homogeneous,
spherically symmetric fractional integral operator; it plays an analogous role for
non-homogeneous Sobolev spaces to the fractional derivative |D|~® for homoge-
neous Sobolev spaces.

If €S, then

A ad) (k) — 1 )

E)0) = e U0
Thus, by the convolution theorem,

A_a(b = Ga * ¢
where
1
(5.78) Go=F ' |——]| -
(14 [k]2)*

For any 0 < o < oo, this distributional inverse transform defines a positive function
that is smooth in R™ \ {0}. For example, if o = 2, then G; is the Green’s function
of the Helmholtz equation

—AGsy + Gy = 6.
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Unlike the kernel I, of the Riesz transform, however, there is no simple explicit
expression for G.

For large k, the Fourier transform of the Bessel potential behaves asymptotically
like the Riesz potential and the potentials have the same singular behavior at x —
0. For small k, the Bessel potential behaves like 1 — (a/2)|k|?, and it decays
exponentially as |z| — oo rather than algebraically like the Riesz potential. We
therefore have the following estimate.

PROPOSITION 5.78. Suppose that 0 < a < n and G, is the Bessel potential
defined in [5.78). Then there exists a constant C = C(a,n) such that

0 < Galz) < fo<|z] <1,  0<Golz)<e /2 f|z] >1.

|:L-|n—o¢
Finally, we state a version of the Sobolev embedding theorem for fractional
L2-Sobolev spaces.
THEOREM 5.79. If0 < s <n/2 and
1

1
qg 2 n’
then H*(R™) < L1(R™) and there exists a constant C = C(n,s) such that
1l e < M1 grs -

Ifn/2 < s < oo, then H*(R™) — Co(R™) and there exists a constant C = C(n, s)
such that

S

1flpee < I1f [l g -

PROOF. The result for s < n/2 follows from Proposition and the Hardy-
Littlewood-Sobolev inequality c.f. [18].
If s > n/2, we have for f € S that

/ f(k)et*= dk‘
< [ i
<

/ 1
T+ k)

([ ) (fawer
<l

since the first integral converges when 2s > n. Since S is dense in H®, it follows
that this inequality holds for every f € H® and that f € Cj since f is the uniform
limit of Schwartz functions. O

[fll L = sup
zER™

1+ kPR ’f(k)’ dk

f(k:)‘2 dk>1/2






CHAPTER 6

Parabolic Equations

The theory of parabolic PDEs closely follows that of elliptic PDEs and, like
elliptic PDEs, parabolic PDEs have strong smoothing properties. For example,
there are parabolic versions of the maximum principle and Harnack’s inequality,
and a Schauder theory for Holder continuous solutions [28]. Moreover, we may
establish the existence and regularity of weak solutions of parabolic PDEs by the
use of L2—energy estimates.

6.1. The heat equation

Just as Laplace’s equation is a prototypical example of an elliptic PDE, the
heat equation

(6.1) ur = Au+ f

is a prototypical example of a parabolic PDE. This PDE has to be supplemented
by suitable initial and boundary conditions to give a well-posed problem with a
unique solution. As an example of such a problem, consider the following IBVP
with Dirichlet BCs on a bounded open set Q@ C R™ for u : £ x [0,00) — R:

uy = Au+ f(z,t) forzx € Q and t > 0,
(6.2) u(z,t) =0 for x € 09 and t > 0,
u(z,0) = g(z) for x € Q.

Here f : Q x (0,00) - R and g :  — R are a given forcing term and initial
condition. This problem describes the evolution in time of the temperature u(x,t)
of a body occupying the region €2 containing a heat source f per unit volume, whose
boundary is held at fixed zero temperature and whose initial temperature is g.

One important estimate (in L°°) for solutions of ([€2)) follows from the maxi-
mum principle. If f <0, corresponding to ‘heat sinks,’ then for any T > 0,

~max u < max [O, max g] .
Qx[0,T] Q
To derive this inequality, note that if u is a smooth function which attains a max-
imumm at x € Qand 0 < ¢t < T,thenuy =0if0 <t <Toru >0ift =T
and Au < 0. Thus u; — Au > 0 which is impossible if f < 0, so u attains its
maximum on 9 x [0,T], where u = 0, or at ¢ = 0. The result for f < 0 follows by
a perturbation argument. The physical interpretation of this maximum principle in
terms of thermal diffusion is that a local “hotspot” cannot develop spontaneously
in the interior when no heat sources are present. Similarly, if f > 0, we have the
minimum principle

~min @ > min [O, min g] .

Qx[0,T] Q

177
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Another basic estimate for the heat equation (in L?) follows from an integration
of the equation. We multiply (G.I) by w, integrate over Q, apply the divergence
theorem, and use the BC that u = 0 on 92 to obtain:

1d 9 2 _
% Qu d:v—l—/Q|Du| dx—/ﬂfud:v.

Integrating this equation with respect to time and using the initial condition, we
get

1 ‘ ‘ 1
(6.3) —/u2(x,t)dx+/ | Dul® d.’L’dS:/ fud:vds+—/92 dx.
2 Ja 0 Jo 0 Jo 2 Ja

For 0 <t < T, we have from the Cauchy inequality with € that

t t 1/2 t 1/2
/ / fudzds < (/ / 12 da:ds) (/ / u? dxds)
0 JQ 0 JQ 0 JQ
1 [T T
§—/ dexds—i-e/ /uzdzzrds
de Jo Ja 0o Ja

1 /7
< —/ /dexds—i—eT max /qux.
4e Jo Ja 0<t<T Jq

Thus, taking the supremum of ([G3) over ¢ € [0,7] and using this inequality with
€T = 1/4 in the result, we get

1 r r 1
—max/ u?(z,t) d:v—i—/ /|Du|2 dxdth/ /dexdt—i— —/ g% du.
4 10,17 Jo o Ja o Ja 2 Ja

It follows that we have an a priori energy estimate of the form

64  lullim oy + el 2z < C (1 1z0.o) + lgllz)

where C' = C(T) is a constant depending only on 7. We will use this energy esti-
mate to construct weak solutionsll The parabolic smoothing of the heat equation
is evident from the fact that if f = 0, say, we can estimate not only the solution u
but its derivative Du in terms of the initial data g.

6.2. General second-order parabolic PDEs

The qualitative properties of (G.I)) are almost unchanged if we replace the Lapla-
cian —A by any uniformly elliptic operator L on Qx(0,T). We write L in divergence
form as

(6.5) L=- Z 9; (¢ 95u) + ij(?ju +cu

ij=1 j=1
where a'/(z,t), b(x,t), c(z,t) are coefficient functions with a® = a’/t. We assume
that there exists § > 0 such that

(6.6) > a(x, )68 > 018> for all (z,t) € @ x (0,T) and £ € R™.

5,J=1

Hn fact, we will use a slightly better estimate in which 1 flL2(0,7;12) is replaced by the

weaker norm || fll L2 o, 7 g1y
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The corresponding parabolic PDE is then

(6.7) ut—l—ZbJau—l—cu—Za a’d;u) + f.

1,7=1

Equation (6.7) describes evolution of a temperature field u under the combined
effects of diffusion a%/, advection b, linear growth or decay c, and external heat

sources f.
The corresponding IBVP with homogeneous Dirichlet BCs is
up + Lu = f,
(6.8) u(z,t) =0 for x € 92 and t > 0,
u(z,0) = g(x) for x € Q.

Essentially the same estimates hold for this problem as for the heat equation. To
begin with, we use the L2-energy estimates to prove the existence of suitably defined
weak solutions of (G.8]).

6.3. Definition of weak solutions

To formulate a definition of a weak solution of (6.8]), we first suppose that the
domain €, the coefficients of L, and the solution u are smooth. Multiplying (6.7]),
by a test function v € C°(2), integrating the result over 2, and applying the
divergence theorem, we get

(6.9) (ue(t),v) 2 +a(u(t),vit) = (f(t),v)2 for0<t<T

where (-, )2 denotes the L2-inner product

(U, )2 = /Q u(z)v(zx) de,

and a is the bilinear form associated with L

a(u,v;t) Z/Q (z,t)0iu(x)0ju(x) dx

7,j=1

(6.10)
+ Z /Q Y (z,t)0ju(zx)v(x) do + /Q c(x, tyu(x)v(z) dx.

In ([69), we have switched to the “vector-valued” viewpoint, and write u(t) = u(-, t).
To define weak solutions, we generalize ([6.9]) in a natural way. In order to
ensure that the definition makes sense, we make the following assumptions.

ASSUMPTION 6.1. The set Q C R™ is bounded and open, T > 0, and:
(1) the coefficients of a in [G10) satisfy a*, b7, c € L>(2 x (0,T));
(2) a¥ = a’t for 1 <i,j <n and the uniform ellipticity condition ([6.0) holds
for some constant 8 > 0;

(3) feL?(0,T; H X)) and g € L*().

Here, we allow f to take values in H~1(Q) = H}(Q). We denote the duality
pairing between H~1(Q) and Hg () by

() H Y Q) x HY(Q) - R
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Since the coefficients of a are uniformly bounded in time, it follows from Theo-

rem [£.21] that
a: Hy(Q) x HYQ) x (0,T) = R.
Moreover, there exist constants C' > 0 and v € R such that for every u,v € Hg(£2)
(6.11) Cllull? < alu, ust) + y]lulle,
(6.12) ja(u, v; )| < Cllull gy o]l gz -

We then define weak solutions of (G.8]) as follows.

DEFINITION 6.2. A function u : [0,T] — Hg () is a weak solution of (6.8) if:
(1) we L?(0,T; H§(Q)) and uy € L* (0,T; H(2));
(2) For every v € H}(Q),

(6.13) (ut(t), v) +a (u(t),v;t) = (f(t),v)
for t pointwise a.e. in [0, 7] where a is defined in ([GI0);
(3) uw(0) =g

The PDE is imposed in a weak sense by (6.13) and the boundary condition
u = 0 on 9O by the requirement that u(t) € H}(Q). Two points about this
definition deserve comment.

First, the time derivative u; in (613) is understood as a distributional time
derivative; that is u; = w if

T T
(6.14) /0¢(t)u(t)dt=—/o ¢ (t)w(t) dt

for every ¢ : (0,T7) — R with ¢ € C(0,T). This is a direct generalization of
the notion of the weak derivative of a real-valued function. The integrals in (6.14)
are vector-valued Lebesgue integrals (Bochner integrals), which are defined in an
analogous way to the Lebesgue integral of an integrable real-valued function as the
L'-limit of integrals of simple functions. See Section [6.A] for further discussion of
such integrals and the weak derivative of vector-valued functions. Equation (613)
may then be understood in a distributional sense as an equation for the weak
derivative u; on (0,7).

Second, it is not immediately obvious that the initial condition u(0) = ¢ in
Definition makes sense. We do not explicitly require any continuity on u, and
since u € L? (O, T; H} (Q)) is defined only up to pointwise everywhere equivalence
in t € [0,T] it is not clear that specifying a pointwise value at ¢ = 0 imposes
any restriction on u. As shown in Theorem [6.41] however, the conditions that
ue L?(0,T; H}(Q)) and uy € L? (0,T; H~1(Q)) imply that u € C ([0,7T]; L*()).
Therefore, identifying u with its continuous representative, we see that the initial
condition makes sense.

We then have the following existence result, whose proof will be given in the
following sections.

THEOREM 6.3. Suppose that the conditions in Assumption [6.1] are satisfied.
Then for every f € L*(0,T;H'(Q)) and g € H(Q) there is a unique weak
solution

ue C([0,T]; L*()) N L* (0,T; Hy ()
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of (6.8), in the sense of Definition [6.2, with u; € L? (O,T;H’l(Q)). Moreover,
there is a constant C, depending only on 2, T, and the coefficients of L, such that

lull oo 0,712y + HUHLz(o,T;H[}) + lwell 20, ,-1) < C (Hf”L%O,T;H*l) + HQHL2) .

6.4. The Galerkin approximation

The basic idea of the existence proof is to approximate u : [0, 7] — Hg(2) by
functions uy : [0,7] — En that take values in a finite-dimensional subspace Ey C
H} () of dimension N. To obtain the uy, we project the PDE onto Ex, meaning
that we require that uy satisfies the PDE up to a residual which is orthogonal
to En. This gives a system of ODEs for uy, which has a solution by standard
ODE theory. Each uy satisfies an energy estimate of the same form as the a priori
estimate for solutions of the PDE. These estimates are uniform in IV, which allows
us to pass to the limit N — oo and obtain a solution of the PDE.

In more detail, the existence of uniform bounds implies that the sequence {uy}
is weakly compact in a suitable space and hence, by the Banach-Alaoglu theorem,
there is a weakly convergent subsequence {up, } such that uy, — u as k — oo.
Since the PDE and the approximating ODEs are linear, and linear functionals are
continuous with respect to weak convergence, the weak limit of the solutions of the
ODE:s is a solution of the PDE. As with any similar compactness argument, we get
existence but not uniqueness, since it is conceivable that different subsequences of
approximate solutions could converge to different weak solutions. We can, however,
prove uniqueness of a weak solution directly from the energy estimates. Once we
know that the solution is unique, it follows by a compactness argument that we
have weak convergence uy — w of the full approximate sequence. One can then
prove that the sequence, in fact, converges strongly in L?(0,T; Hg).

Methods such as this one, in which we approximate the solution of a PDE by
the projection of the solution and the equation into finite dimensional subspaces, are
called Galerkin methods. Such methods have close connections with the variational
formulation of PDEs. For example, in the time-independent case of an elliptic PDE
given by a variational principle, we may approximate the minimization problem for
the PDE over an infinite-dimensional function space E by a minimization problem
over a finite-dimensional subspace Ex. The corresponding equations for a critical
point are a finite-dimensional approximation of the weak formulation of the original
PDE. We may then show, under suitable assumptions, that as N — oo solutions
upy of the finite-dimensional minimization problem approach a solution w of the
original problem.

There is considerable flexibility the finite-dimensional spaces E one uses in a
Galerkin method. For our analysis, we take

(6.15) En = {wy,ws,...,wN)

to be the linear space spanned by the first N vectors in an orthonormal basis
{wy : k € N} of L*(Q), which we may also assume to be an orthogonal basis of
H}(Q). For definiteness, take the wy(z) to be the eigenfunctions of the Dirichlet
Laplacian on €:

(6.16) — Awp = Mpw wy € H& (Q) for k € N.



182 6. PARABOLIC EQUATIONS

From the previous existence theory for solutions of elliptic PDEs, the Dirichlet

Laplacian on a bounded open set is a self-adjoint operator with compact resolvent,

so that suitably normalized set of eigenfunctions have the required properties.
Explicitly, we have

‘ 1 ifj=k, ‘ oA if g =k,
/Qw]wkd:v—{ 0 ik /QDw] Dwkd:v—{ 0 ifj £k
We may expand any u € L?(£2) in an L2-convergent series as

u(z) = Z Fwy(z)

keN

where ¢* = (u,wy);» and u € L*() if and only if

Z |Ck|2 < Q.

keN

Similarly, u € H}(Q), and the series converges in H} (1), if and only if

Z)\k ‘ck|2 < Q.

keN

We denote by Py : L%(Q) — Eny C L?(Q) the orthogonal projection onto Ey
defined by

N
(6.17) Py <Z ckwk> = chwk.

keN

We also denote by Py the orthogonal projections Py : H}(Q) — Ex C H}(Q) or
Py : H Q) - Ex C H71(Q2), which we obtain by restricting or extending Py
from L2?(Q2) to HI(Q) or H~1(Q), respectively. Thus, Py is defined on H{ () by
6I7) and on H~1(2) by

(Pyu,v) = (u, Pyv) for all v € H}(Q).

While this choice of Ey is convenient for our existence proof, other choices are
useful in different contexts. For example, the finite-element method is a numer-
ical implementation of the Galerkin method which uses a space Ex of piecewise
polynomial functions that are supported on simplices, or some other kind of el-
ement. Unlike the eigenfunctions of the Laplacian, finite-element basis functions,
which are supported on a small number of adjacent elements, are straightforward to
construct explicitly. Furthermore, one can approximate functions on domains with
complicated geometry in terms of the finite-element basis functions by subdividing
the domain into simplices, and one can refine the decomposition in regions where
higher resolution is required. The finite-element basis functions are not exactly
orthogonal, but they are almost orthogonal since they overlap only if they are sup-
ported on nearby elements. As a result, the associated Galerkin equations involve
sparse matrices, which is crucial for their efficient numerical solution. One can ob-
tain rigorous convergence proofs for finite-element methods that are similar to the
proof discussed here (at least, if the underlying equations are not too complicated).
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6.5. Existence of weak solutions

We proceed in three steps:

(1) Construction of approximate solutions;
(2) Derivation of energy estimates for approximate solutions;
(3) Convergence of approximate solutions to a solution.

After proving the existence of weak solutions, we will show that they are unique
and make some brief comments on their regularity and continuous dependence
on the data. We assume throughout this section, without further comment, that
Assumption holds.

6.5.1. Construction of approximate solutions. First, we define what we
mean by an approximate solution. Let Ey be the N-dimensional subspace of H{ ()

given in ([GI5)—(@I0) and Py the orthogonal projection onto En given by (617).

DEFINITION 6.4. A function uy : [0,T] — Ey is an approximate solution of
©3) if:
(1) un € L?(0,T; Eyn) and uy; € L*(0,T; En);
(2) for every v € En

(6.18) (une(t),v) 2 + a(un(t), vit) = (f(t),v)
pointwise a.e. in t € (0,7T);
(3) ’U,N(O) ZPNg.

Since uy € HY(0,T; Ey), it follows from the Sobolev embedding theorem for
functions of a single variable ¢ that uy € C([0,T]; En), so the initial condition (3)
makes sense. Condition (2) requires that uy satisfies the weak formulation ([G.13)
of the PDE in which the test functions v are restricted to En. This is equivalent
to the condition that

unt + PnLuy = Py f
for ¢t € (0,T) pointwise a.e., meaning that uy takes values in En and satisfies the
projection of the PDE onto ENE

To prove the existence of an approximate solution, we rewrite their definition
explicitly as an IVP for an ODE. We expand

N
(6.19) un(t) = Z ks (t)wy,
k=1

where the cX; : [0, T] — R are absolutely continuous scalar coefficient functions. By
linearity, it is sufficient to impose (6.18) for v = ws,...,wy. Thus, (6I9) is an
approximate solution if and only if

k€ L¥0,T), &, eL?0,T) forl<k<N,
and {ck,...,cN} satisfies the system of ODEs

N
(6.20) Nt Y ey =1, A0)=g¢g/ forl1<j<N
k=1

2More generally, one can define approximate solutions which take values in an N-dimensional
space En and satisfy the projection of the PDE on another N-dimensional space Fp. This
flexibility can be useful for problems that are highly non-self adjoint, but it is not needed here.
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where
ajk(ﬂ:a(wjawk;t)a fj(t): <f(t>awj>a gj :(ngj)L2-
Equation (6.20) may be written in vector form for ¢': [0,7] — RY as

—

(6.21) e+ Alt)en = f(t),  n(0)=g
where
EN:{C}\[?"'?c%}T? f: {f17"'7fN}T7 52{917"'79N}T7
and A : [0, 7] — RY*N is a matrix-valued function of ¢ with coefficients (a/%); x—1 n.

PROPOSITION 6.5. For every N € N, there exists a unique approxrimate solution
un : [0, T] = En of (&8).

PROOF. This result follows by standard ODE theory. We give the proof since
the coefficient functions in (2] are bounded but not necessarily continuous func-

tions of ¢t. This is, however, sufficient since the ODE is linear.
From Assumption [6] and (612)), we have

(6.22) Ae L= (0,T;RVN) . fe L2 (0,T;RY).
Writing (6:21)) as an equivalent integral equation, we get

iy =®(Cy),  ®(Cn) (t)_g_/() A(s)aN(s)ds+/0 f(s) ds.

If follows from ([6.22) that ® : C ([0, T.J;RY) — C ([0, T.];RY) for any 0 < T, < T'.
Moreover, if 7,7 € C ([0, T,]; RY) then

12 (D) = @ (Dl Lo (0,1 )m) < ML = qll oo (0,7,
where
M= sup [[AQ)]-
0<t<T
Hence, if MT, < 1, the map & is a contraction on C ([O,T*];RN). The contrac-
tion mapping theorem then implies that there is a unique solution on [0, T}] which
extends, after a finite number of applications of this result, to a solution ¢y €
C ([0,T); RY). The corresponding approximate solution satisfies uny € C ([0, T]; En).
Moreover,
int = ®(Gn)e = —Aéy + f € L (0,T;RY),

which implies that ux; € L? (0, T; Ey). O

6.5.2. Energy estimates for approximate solutions. The derivation of
energy estimates for the approximate solutions follows the derivation of the a priori
estimate ([64) for the heat equation. Instead of multiplying the heat equation by
u, we take the test function v = uy in the Galerkin equations.

PROPOSITION 6.6. There exists a constant C, depending only on T, Q, and the
coefficient functions a”, b, ¢, such that for every N € N the approximate solution
un constructed in Proposition satisfies

el o 07525 e o,y Hluwell ooz 1y < € (Il pagozuny + gl ) -
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PROOF. Taking v = upn(t) € En in (618), we find that

(une(t), un(t)) 2 + a(un (t), un (8);t) = (f(t), un(t))

pointwise a.e. in (0,7). Using this equation and the coercivity estimate ([G.IT), we
find that there are constants 8 > 0 and —oco < v < oo such that

1d 2 2 2
> lunllze + Bllunllgy < (f,un) +7llunlze
2 dt 0
pointwise a.e. in (0,7, which implies that
1d

5 (€7 lunlZ2) + B flunfy < ™7 f,un).

Integrating this inequality with respect to ¢, using the initial condition uy(0) =
Pyg, and the projection inequality |Pngl|;2 < ||g]| 2, we get for 0 <t < T that

1 _ b 1 o
(6:23) 3¢ fux @OF+5 [ 2yl ds < G lalte+ [ e (fun)ds,
0 0

It follows from the definition of the H ! norm, the Cauchy-Schwartz inequality,
and Cauchy’s inequality with € that

t t
[ e tumyds < [l funly ds
0 0

t 1/2 t
<([emeistas) ([ e iy o)
1/2
t s ) /
< C”f”[,?(o,T;Hfl) o € ||UN||H3 ds

t
2 ﬂ —2~s 2
<l +5 | € vl ds

and using this result in ([@23]) we get

1

t
_ 2 B —2ns 2 1 2 2

se 2 lun (t)] 72 + —/ e lunlgn ds < 5 lglle + C N f L2001y -

2 2 Jo 0 2

Taking the supremum of this equation with respect to ¢ over [0,T], we find that
there is a constant C' such that

2 2 2 2
(6.24) ||UN||L°°(0,T;L2) + ||UN||L2(0,T;H5) <C (HQHL? + ||f||L2(O,T;H*1)) :
To estimate upn¢, we note that since un(t) € En

||UJNt(t)||H,1 = sup M

veEN\{0} ||U||H3
From ([6I8) and (B12) we have
(une(t),v) 2 < la (un (t),v:1)| + [(£(2), )]
< C (lun )Ly + 17Ol ) ol

for every v € Hg, and therefore

eI+ < € (luw (@l +15@I3 )

1/2
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Integrating this equation with respect to t and using ([6.24)) in the result, we obtain

2 2 2
(6.25) HuNt”L?(O,T;H*l) <C (HQHL2 + ”fHL?(O,T;H*l)) :
Equations (@24 and (628) complete the proof. O

6.5.3. Convergence of approximate solutions. Next we prove that a sub-
sequence of approximate solutions converges to a weak solution. We use a weak
compactness argument, so we begin by describing explicitly the type of weak con-
vergence involved.

We identify the dual space of L? (0,T; H}(Q2)) with L? (0,7; H~(2)). The
action of f € L? (0,T; H1()) on u € L? (0, T; H}(2)) is given by

T
(fou)) = / (f,u) dt

where ((-,-)) denotes the duality pairing between L> (O, T; H_l) and L? (O, T; H&),
and (-, -) denotes the duality pairing between H ! and H{.
Weak convergence uy — u in L? (0,T; H3(£2)) means that

T T
/0 (f(t),un(t))dt —>/0 (f(t),u(t))dt for every f € L* (0,T; H~(Q)).

Similarly, fy — f in L? (O T, H_l(Q)) means that

/ (fn(t),u(t)) dt — / ) dt for every u € L? (0, T; H}(2)).
If uy — u weakly in L? (O T; HO )) and fy — f strongly in L? (0,T; H'(2)),
or conversely, then (fn,un) E

PROPOSITION 6.7. A subsequence of approzimate solutions converges weakly in
L?(0,T; H*(2)) to a weak solution

ue C([0,T]; L*()) N L? (0,T; Hy ()
of (6.8) with u; € L* (O,T; H_l(Q)). Moreover, there is a constant C' such that

lull o 0,752y + Null 2o, ymyy + el 2o -1y < C (Hf||L2(O.,T;H*1) + HQHLQ) :
PROOF. Proposition[6.6limplies that the approximate solutions {uy } are bounded
in L? (0,T; Hj(£2)) and their time derivatives {ux;} are bounded in L? (0,T; H ().
It follows from the Banach-Alaoglu theorem (Theorem [[LT9) that we can extract a
subsequence, which we still denote by {uy}, such that
uy —u in L? (O,T;H&), uns — up in L? (O,T;H‘l).

Let ¢ € C°(0,T) be a real-valued test function and w € E)j for some M € N.
Taking v = ¢(t)w in (6I8) and integrating the result with respect to ¢, we find
that for N > M

T T
/0 {(une(t), d(Ew) 12 + a (un (£), S(t)w: 1)} di = /O (F(1), d(E)w) dt.

3Tt is, of course, not true that fy — f and uny — w implies (fn,un) — (f,u). For example,
sin Nwz — 0 in L2(0,1) but (sin N7z, sin Nwx) 2 — 1/2.
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We take the limit of this equation as N — oo. Since the function ¢ — ¢(t)w belongs
to L2(0,T; H}), we have

T T
/ ey dw) 2 dt = (e, )} = (e, ) = / (ur, ) dt.
0 0

Moreover, the boundedness of a in ([6I12) implies similarly that

T T
| etun®.owit) dt > [ a (o), o0wst) dr
0 0

It therefore follows that u satisfies

T T
6.26 : Jwit)] dt = Lw) dt.
(6.26) | el +atuwnya= [ otru
Since this holds for every ¢ € C°(0,T'), we have

(6.27) (ug, w) + a (u,w;t) = (f,w)

pointwise a.e. in (0,T) for every w € Ejs. Moreover, since

U P

MeN

is dense in H{, this equation holds for every w € H{}, and therefore u satisfies
GII).

Finally, to show that the limit satisfies the initial condition u(0) = g, we use the
integration by parts formula Theorem [6.42] with ¢ € C'*°([0, T]) such that ¢(0) =1
and ¢(T') = 0 to get

/ " e dt = (u(0), ) — / " gulusu.

Thus, using ([@27), we have

(u(0), w) 2/0 ¢ (u, w) —l—/o o [(f,w) — a(u,w;t)] dt.

Similarly, for the Galerkin appoximation with w € Ej; and N > M, we get

T T
(g, ) = / b, w) + / S, w) — a (un, wit)] dr.

Taking the limit of this equation as N — oo, when the right-hand side converges
to the right-hand side of the previosus equation, we find that (u(0),w) = (g, w) for
every w € Ejs, which implies that «(0) = g. O

6.5.4. Uniqueness of weak solutions. If uy, us are two solutions with the
same data f, g, then by linearity u = u; — ug is a solution with zero data f = 0,
g = 0. To show uniqueness, it is therefore sufficient to show that the only weak
solution with zero data is u = 0.

Since u(t) € H(£2), we may take v = u(t) as a test function in ([G.I3)), with
f =0, to get

<U’t7u> +a (U,’U,; t) = 07
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where this equation holds pointwise a.e. in [0, 7] in the sense of weak derivatives.
Using (646]) and the coercivity estimate (6.11), we find that there are constants
£ >0 and —oo < v < oo such that

1d 2 2 2
5o el + 8l <l
It follows that L d
2 2
sl <vlul, () =0,

and since ||u(0)||2 = 0, Gronwall’s inequality implies that ||u(t)||L2 = 0 for all
t>0,s0u=0.

In a similar way, we get continuous dependence of weak solutions on the data.
If u; is the weak solution with data f;, g; for i = 1,2, then there is a constant C'
independent of the data such that

lur = wallpoe o,7;22) + lur = u2llp20,75my)
<C (I = Poll oy + o = g2ll2)

6.5.5. Regularity of weak solutions. For operators with smooth coeffi-
cients on smooth domains with smooth data f, g, one can obtain regularity results
for weak solutions by deriving energy estimates for higher-order derivatives of the
approximate Galerkin solutions uy and taking the limit as N — oco. A repeated
application of this procedure, and the Sobolev theorem, implies, from the Sobolev
embedding theorem, that the weak solutions constructed above are smooth, classi-
cal solutions if the data satisfy appropriate compatibility relations. For a discussion
of this regularity theory, see §7.1.3 of [9].

6.6. A semilinear heat equation

The Galerkin method is not restricted to linear or scalar equations. In this
section, we briefly discuss its application to a semilinear heat equation. For more
information and examples of the application of Galerkin methods to nonlinear evo-
lutionary PDEs, see Temam [43].

Let 2 C R™ be a bounded open set, T" > 0, and consider the semilinear,
parabolic IBVP for u(z,t)

ur = Au — f(u) in Qx (0,7),

(6.28) u=0 on 002 x (0,7,
u(z,0) = g(x) on 2 x {0}.
We suppose, for simplicity, that
2p—1
(6.29) flw) = Z cpu®
k=0

is a polynomial of odd degree 2p — 1 > 1. We also assume that the coeflicient
cop—1 > 0 of the highest degree term is positive. We then have the following global
existence result.

THEOREM 6.8. Let T > 0. For every g € L?(S2), there is a unique weak solution
ue C([0,T]; L*()) N L* (0,T; Hy()) N L* (0,T; L* (1)) .
of (€.28)-(6.29).
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The proof follows the standard Galerkin method for a parabolic PDE. We will
not give it in detail, but we comment on the main new difficulty that arises as a
result of the nonlinearity.

To obtain the basic a priori energy estimate, we multiplying the PDE by u,

<%u2> + | Duf? + uf(u) = div(uDu),

and integrate the result over €2, using the divergence theorem and the boundary
condition, which gives
1d
2dt
Since uf(u) is an even polynomial of degree 2p with positive leading order coeffi-
cient, and the measure |Q| is finite, there are constants A > 0, C' > 0 such that

AHuHng < /Quf(u)dx—FC.

Hw;+WDm@fgLuﬂwdx:o

We therefore have that
1 2 T 2 T L oo
(6.30) ssup flullpe + [ [[Dullp. dt+A | lully, dt < CT + 5 |lgll7:-
2 0,1 0 0 2

Note that if ||u||z2» is finite then ||f(w)||ze is finite for ¢ = (2p)’, since then
q(2p — 1) = 2p and

waMSA/wW%”m+csAmm%+a
Q Q

Thus, in giving a weak formulation of the PDE, we want to use test functions
v € HY Q)N L*P(Q)

so that both (Du, Dv)r2 and (f(u),v)p2 are well-defined.
The Galerkin approximations {uy } take values in a finite dimensional subspace
En C H(2) N L?(Q) and satisfy

unt = Auny + Py f(un),

where Py is the orthogonal projection onto Ex in L?(f2). These approximations
satisfy the same estimates as the a priori estimates in ([G30). The Galerkin ODEs
have a unique local solution since the nonlinear terms are Lipschitz continuous
functions of uy. Moreover, in view of the a priori estimates, the local solutions
remain bounded, and therefore they exist globally for 0 < ¢ < oo.

Since the estimates (6.30) hold uniformly in N, we extract a subsequence that
converges weakly (or weak-star) uy — wu in the appropriate topologies to a limiting
function

ue L>(0,T;L%) N L*(0,T; Hy) N L* (0, T; L*).
Moreover, from the equation
u, € L* (0, T3 H™') + L9(0,T; L9)

where ¢ = (2p)’ is the Holder conjugate of 2p.
In order to prove that w is a solution of the original PDE, however, we have to
show that

(6.31) f(un) = f(u)
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in an appropriate sense. This is not immediately clear because of the lack of weak
continuity of nonlinear functions; in general, even if f (uy) — f converges, we may
not have f = f(u). To show (6.31), we use the compactness Theorem stated
below. This theorem and the weak convergence properties found above imply that
there is a subsequence of approximate solutions such that

UN — U strongly in L2(0,T; L?).

This is equivalent to strong-L? convergence on €2 x (0,7). By the Riesz-Fischer
theorem, we can therefore extract a subsequence so that uy(x,t) — u(z,t) point-
wise a.e. on Q x (0,T). Using the dominated convergence theorem and the uniform
bounds on the approximate solutions, we find that for every v € H}(Q) N L?P(Q)

(f (un (@), v) g2 = (f (u(®), v) >
pointwise a.e. on [0, T].

Finally, we state the compactness theorem used here.

THEOREM 6.9. Suppose that X — Y < Z are Banach spaces, where X, Z
are reflexive and X is compactly embedded in Y. Let 1 < p < co. If the functions
un : (0,T) — X are such that {un} is uniformly bounded in L*(0,T; X) and {un+}
is uniformly bounded in LP(0,T;Z), then there is a subsequence that converges
strongly in L*(0,T;Y).

The proof of this theorem is based on Ehrling’s lemma.

LEMMA 6.10. Suppose that X — Y < Z are Banach spaces, where X is
compactly embedded in'Y . For any € > 0 there exists a constant C¢ such that

[ully < ellullx +Cellullz -

PROOF. If not, there exists € > 0 and a sequence {uy} in X with [Ju,||X =1
such that

(6.32) ||un||y > € ”uon +n HunHz

for every n € N. Since {u,} is bounded in X and X is compactly embedded in Y,
there is a subsequence, which we still denote by {u,} that converges strongly in Y,
to u, say. Then {||u,||y} is bounded and therefore u = 0 from ([632). However,
(@32) also implies that |ju,|y > € for every n € N, which is a contradiction. O

If we do not impose a sign condition on the nonlinearity, then solutions may
‘blow up’ in finite time, as for the ODE wu; = u3, and then we do not get global
existence.

EXAMPLE 6.11. Consider the following one-dimensional IBVP [20] for u(z,t)
m0<z<1t>0:

Ut = Ugg + ’U,S,
(6.33) w(0,8) = u(1,t) = 0,
u(z,0) = g(z).

Suppose that u(x,t) is smooth solution, and let

1
c(t) = /0 u(z,t) sin(rx) da



6.6. A SEMILINEAR HEAT EQUATION 191

denote the first Fourier sine coefficient of w. Multiplying the PDE by sin(wz),
integrating with respect to « over (0, 1), and using Green’s formula to write

/ Uy (2, t) sin(mz) de = [uy sin(rx) — mu Cos(w)x]é — 2 / u(z,t) sin(rz) dx
0 0

= —n’c,

we get that

d 1
e —7T2C+/ u® sin(mz) de.

Now suppose that g(x) > 0. Then the maximum principle implies that u(z,t) > 0
for all 0 < z < 1, ¢t > 0. It then follows from Hélder inequality that

1usin7mc T = 1 uw?sin(mz 13 sin(rz)]?/? da
| wsin(ra) s = [ sin(ra)]* pingra)*

< ([ wsintrr) ) ([ sty
< (%)2/3( USSH(wx)dx)lﬁ

7T2

1
/ ud sin(mwzx) da:>—03
0 4

dc 9 14
= > _ z )
priR m ( c+ 40 )
Thus, if ¢(0) > 2, Gronwall’s inequality implies that
c(t) = y(t)
where y(t) is the solution of the ODE

2/3

Hence

and therefore

This solution is given explicitly by
2

y(t) = 1 _ 62772(t—t*)

This solution approaches infinity as ¢ — t; where, with y(0) = ¢(0),

c(0)

Therefore no smooth solution of ([G33]) can exist beyond t = t,.

The argument used in the previous example does not prove that ¢(t) blows up at
t = t.. It is conceivable that the solution loses smoothness at an earlier time — for
example, because another Fourier coefficient blows up first — thereby invalidating
the argument that ¢(¢) blows up. We only get a sharp result if the quantity proven
to blow up is a ‘controlling norm,” meaning that local smooth solutions exist so
long as the controlling norm remains finite.
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EXAMPLE 6.12. Beale-Kato-Majda (1984) proved that solutions of the incom-
pressible FEuler equations from fluid mechanics in three-space dimensions remain
smooth unless

t
/ ||W(5)|‘Loo(R3) ds — oo ast —t,
0

where w(-, t) = curlu(-,t) denotes the vorticity (the curl of the fluid velocity u(x, t)).
Thus, the L! (O,T;LOO(R3;R3)))-n0rm of w is a controlling norm for the three-
dimensional incompressible Euler equations. It is open question whether or not
this norm can blow up in finite time.
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6.7. The Navier-Stokes equation

Leray (1934) used a Galerkin method to prove the global existence of weak
solutions of the incompressible Navier-Stokes equations. In the case of three space
dimensions, Leray’s result has not been essentially improved upon since then, and
the smoothness and uniqueness of these weak solutions remains an open question
We briefly describe Leray’s result here and indicate the main ideas of its proof. For
a detailed discussion, see e.g. [38].

The incompressible Navier-Stokes equations for the velocity u(x,t) € R™ and
pressure p(x,t) € R of a viscous fluid flowing in n space dimensions, where n = 2, 3,
and subject to an external body force f(x,t) € R™ is the following nonlinear system
of PDEs:

u+u-Vu+ Vp=vAu—+f,

(6-34) divu = 0.

These equations express conservation of momentum and incompressibility, respec-
tively. Here, v > 0 is the kinematic viscosity of the fluid, which we assume is
constant. In Cartesian component form, with u = (u1,...,un), £ = (f1,--+, fn),
and x = (z1,...,2,), these equations are

n n
Ui + Zujajui + Oip = Vzajajui + fi

= j=1

i 8juj =0.
j=1

The analysis described here is based on treating the Navier-Stokes equations
as a nonlinear perturbation of the linear parabolic Stokes equations

u; + Vp=vAu+f.

(6:35) divu = 0.

These equations apply to low-Reynolds number (high nondimensionalized viscosity)
flows, which is the typical regime for small-scale flows (e.g. colloidal particles or
spermatoza).

Alternatively, one can think of the Navier-Stokes equations as a parabolic per-
turbation of the first-order, nonlinear incompressible Euler equations,

u;+u-Vu+ Vp =f,

(6.36) divu = 0.

These equations apply to high-Reynolds number (low viscosity) flows, which is the
typical regime for large-scale flows (e.g. airplanes or oceans). The nonlinearity
of the Euler equations makes them difficult to analyze, especially in three space
dimensions ] Moreover, the higher-order viscous term vAu in the Navier-Stokes
equation is a singular perturbation of the Euler equations, and the limiting behav-
ior of the Navier-Stokes equations as v — 0 is a subtle issue, which is not fully
understood even now.

ts resolution is one of the seven Clay Mathematics Institute’s Millennium Problems.
5With the exception of irrotational flows in which curlu = 0, when the Euler equations
reduce to the linear Laplace equation.
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Typical initial and boundary conditions for the Navier-Stokes equations in a
bounded domain Q C R" are

u=uyy fort=0, u=0 on 9.

The boundary condition u = 0 is the ‘no-slip’ condition, which states that a viscous
fluid ‘sticks’ to the boundary, assumed here to be stationary. We give an initial
condition for the velocity u, only, not the pressure. The Navier-Stokes equations do
not give an evolution equation for the pressure; instead, the pressure is determined
at each time from the velocity field u by the elliptic equation

—Ap=div(u-Vu) —divf

which follows by taking the divergence of the momentum equation.

A convenient way to eliminate the pressure is to project the Navier-Stokes
equations onto divergence-free vector fields. Let L?(€2;R") denote the space of
square-integrable functions u : 2 — R™ with inner product

(u,v) = / u-vdx.
Q

Let C2% (€2 R™) be the space of smooth, compactly supported vector fields u : Q —
R™ such that diva = 0, and G(Q;R") the space of square-integrable functions
v :  — R" such that v = V¢ for some ¢ € H*(Q). If u € CZ% (% R") and
v € G(;R™), then

(u,v);2 = /Qu-V¢dx= —/Q(divu)¢dx: 0.

Thus, the divergence-free vector-fields are orthogonal to the gradients.
We let
L (4 R") = O, (B R™)
denote the closure of C2% (Q;R") in L? (Q;R™); that is, L2 (Q;R™) consists of the

square-intgerable, divergence-free vector fields. We then have the orthogonal direct
sum

L*(%R") = L7 (KR @ G4 R™),
and any u € L? (Q;R") may be written uniquely as
u=v+Ve¢  whereve L2 (QR") and Vo € G(;R™).

This is called the Helmholtz decomposition of u. We denote by P the orthogonal
projection onto divergence-free vector fields

P:L?(R") — L2 (Q;R™) C L (Q;R™), P:urv.

We may then write the Navier-Stokes equations (6.34)) for u : (0,T) — L2 (Q;R™)
as

u; + P[u-Vu] = vAu+ Pf.

Alternatively, we may formulate the equations in a weak sense by using divergence-
free test functions whose integral against Vp vanishes to get

(u, v) 2+ (u-Vu,v) . = v (Au,v) + (f,v) for all v € CZ%, (€ R™).
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A convenient basis for the Galerkin approximations is provided by the eigen-
functions wy, of the steady Stokes operator,

Aw + Vp = vAw.
(6.37) divw =0,
w € Hy (S R™).
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Appendix

In this appendix, we summarize some results about the integration and differ-
entiation of Banach-space valued functions of a single variable. In a rough sense,
vector-valued integrals of integrable functions have similar properties, often with
similar proofs, to scalar-valued L!-integrals. Nevertheless, the existence of different
topologies (such as the weak and strong topologies) in the range space of integrals
that take values in an infinite-dimensional Banach space introduces significant new
issues that do not arise in the scalar-valued case.

6.A. Vector-valued functions

Suppose that X is a real Banach space with norm || - || and dual space X'.
Let 0 < T < oo, and consider functions f : (0,7) — X. We will generalize some
of the definitions in Section B.Al for real-valued functions of a single variable to
vector-valued functions.

6.A.1. Measurability. If E C (0,7T), let

(t) = 1 iftekE,
XEW =N 0 ifteE,

denote the characteristic function of E.

DEFINITION 6.13. A simple function f: (0,7) — X is a function of the form

N
(059 =S e,
j=1
where F1,..., Ey are Lebesgue measurable subsets of (0,7) and ¢1,...,cy € X.

DEFINITION 6.14. A function f : (0,7) — X is strongly measurable, or mea-
surable for short, if there is a sequence {f, : n € N} of simple functions such that
fn(t) = f(t) strongly in X (i.e. in norm) for ¢ a.e. in (0,7).

Measurability is preserved under natural operations on functions.

(1) If f:(0,T) — X is measurable, then || f| : (0,7) — R is measurable.

(2) If f:(0,T) — X is measurable and ¢ : (0,7) — R is measurable, then
of :(0,T) — X is measurable.

(3) If {fn : (0,T) — X} is a sequence of measurable functions and f,(t) —
f(¢t) strongly in X for ¢ pointwise a.e. in (0,T), then f: (0,7) — X is
measurable.

We will only use strongly measurable functions, but there are other definitions
of measurability. For example, a function f : (0,7) — X is said to be weakly
measurable if the real-valued function (w, f) : (0,7) — R is measurable for every
w € X’'. This amounts to a ‘coordinatewise’ definition of measurability, in which
we represent a vector-valued function by its real-valued coordinate functions. For
finite-dimensional, or separable, Banach spaces these definitions coincide, but for
non-separable spaces a weakly measurable function need not be strongly measur-
able. The relationship between weak and strong measurability is given by the
following Pettis theorem (1938).
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DEFINITION 6.15. A function f : (0,7) — X taking values in a Banach space
X is almost separably valued if there is a set E C (0,7T) of measure zero such that
f((0,T)\ E) is separable, meaning that it contains a countable dense subset.

This definition is equivalent to the condition that f ((0,7)\ E) is included in
a closed, separable subspace of X.

THEOREM 6.16. A function f : (0,T) — X is strongly measurable if and only
if it is weakly measurable and almost separably valued.

Thus, if X is a separable Banach space, f : (0,7) — X is strongly measurable if
and only (w, f) : (0,7) — R is measurable for every w € X’. This theorem therefore
reduces the verification of strong measurability to the verification of measurability
of real-valued functions.

DEFINITION 6.17. A function f : [0,7] — X taking values in a Banach space
X is weakly continuous if (w, f) : [0,7] — R is continuous for every w € X’. The
space of such weakly continuous functions is denoted by C,, ([0, T]; X).

Since a continuous function is measurable, every almost separably valued,
weakly continuous function is strongly measurable.

EXAMPLE 6.18. Suppose that H is a non-separable Hilbert space whose dimen-
sion is equal to the cardinality of R. Let {e;: ¢ € (0,1)} be an orthonormal basis
of H, and define a function f: (0,1) — H by f(¢) = e;. Then f is weakly but not
strongly measurable. If K C [0,1] is the standard middle thirds Cantor set and
{é;:t € K} is an orthonormal basis of H, then g : (0,1) — H defined by ¢(t) =0
ift ¢ K and g(t) = &, if t € K is almost separably valued since | K| = 0; thus, g is
strongly measurable and equivalent to the zero-function.

EXAMPLE 6.19. Define f : (0,1) — L*°(0,1) by f(t) = x(o,r)- Then f is not
almost separably valued, since || f(¢t) — f(s)||lr~ = 1 for t # s, so f is not strongly
measurable. On the other hand, if we define g : (0,1) — L?(0,1) by g(t) = X(0,1),
then g is strongly measurable. To see this, note that L?(0,1) is separable and for
every w € L%(0,1), which is isomorphic to L2(0,1)’, we have

1 t
(090) 2 = [ w)xon(e)ds = [ w(w)d.
0 0
Thus, (w,g)z2 : (0,1) = R is absolutely continuous and therefore measurable.

6.A.2. Integration. The definition of the Lebesgue integral as a supremum
of integrals of simple functions does not extend directly to vector-valued integrals
because it uses the ordering properties of R in an essential way. One can use
duality to define X-valued integrals | f dt in terms of the corresponding real-valued
integrals [(w, f) dt where w € X', but we will not consider such weak definitions of
an integral here.

Instead, we define the integral of vector-valued functions by completing the
space of simple functions with respect to the L'(0,T; X)-norm. The resulting in-
tegral is called the Bochner integral, and its properties are similar to those of the
Lebesgue integral of integrable real-valued functions. For proofs of the results stated
here, see e.g. [44].
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DEFINITION 6.20. Let
N
f= Z CiXE;
j=1

be the simple function in ([G38). The integral of f is defined by

T N
/ fdt =Y c¢;|E;| € X
0 =1

where |E;| denotes the Lebesgue measure of E;.

The value of the integral of a simple function is independent of how it is rep-
resented in terms of characteristic functions.

DEFINITION 6.21. A strongly measurable function f : (0,7) — X is Bochner
integrable, or integrable for short, if there is a sequence of simple functions such
that f,(¢t) — f(t) pointwise a.e. in (0,7) and

T
i [ 1f = full =0,
n—oo 0

The integral of f is defined by

T T
/ fdt= lim [ f,dt,
0 n— o0 0

where the limit exists strongly in X.

The value of the Bochner integral of f is independent of the sequence {f,} of
approximating simple functions, and
T
< [ 1l
0

/Odet

Moreover, if A: X — Y is a bounded linear operator between Banach spaces X, Y
and f:(0,7) — X is integrable, then Af : (0,7) — Y is integrable and

(6.39) A ( /Odet) _ /OT Afd.

More generally, this equality holds whenever A : D(A) C X — Y is a closed linear
operator and f : (0,7) — D(A), in which case fOT fdt € D(A).

EXAMPLE 6.22. If f : (0,7) — X is integrable and w € X', then (w, f) :
(0,T) — R is integrable and

<w, /Odet> _ /OT<w,f> .

EXAMPLE 6.23. If J : X — Y is a continuous embedding of a Banach space X
into a Banach space Y, and f : (0,T7) — X, then

J( /Odet) _ /OTW.

Thus, the X and Y valued integrals agree, and we can identify them.
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The following result, due to Bochner (1933), characterizes integrable functions
as ones with integrable norm.

THEOREM 6.24. A function f: (0,T) — X is Bochner integrable if and only if
it is strongly measurable and
T
/0 £ dt < oc.

Thus, in order to verify that a measurable function f is Bochner integrable
one only has to check that the real valued function ||f]| : (0,7) — R, which is
necessarily measurable, is integrable.

EXAMPLE 6.25. The functions f : (0,1) — H in Example (GI8) and f :
(0,1) — L°°(0,1) in Example ([6.I9) are not Bochner integrable since they are not
strongly measurable. The function g : (0,1) — H in Example (6.I8) is Bochner
integrable, and its integral is equal to zero. The function g : (0,1) — L?(0,1) in
Example (6.19) is Bochner integrable since it is measurable and ||g(t)|| > = t*/? is
integrable on (0,1). We leave it as an exercise to compute its integral.

The dominated convergence theorem holds for Bochner integrals. The proof is
the same as for the scalar-valued case, and we omit it.

THEOREM 6.26. Suppose that f, : (0,T) — X is Bochner integrable for each
n €N,

fa(t) = f(t) as n — oo strongly in X fort a.e. in (0,T),
and there is an integrable function g : (0,T) — R such that
/@] < g(t) fort a.e. in (0,T) and every n € N.
Then f:(0,T) — X is Bochner integrable and

/fndt—>/ f dt, /0|\fn—f||dt—>0 as n — oo.

The definition and properties of LP-spaces of X-valued functions are analogous
to the case of real-valued functions.

DEFINITION 6.27. For 1 < p < oo the space LP(0,T; X) consists of all strongly
measurable functions f : (0,7) — X such that

T
|l de < o
0

equipped with the norm

T 1/17
”f”Lp(O,T;X) = </0 17117 dt) .

The space L (0,T; X) consists of all strongly measurable functions f : (0,7) — X
such that

1F oy = sup [[F(®)]] < oo,
t€(0,T)

where sup denotes the essential supremum.
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As usual, we regard functions that are equal pointwise a.e. as equivalent, and
identify a function that is equivalent to a continuous function with its continuous
representative.

THEOREM 6.28. If X is a Banach space and 1 < p < oo, then LP(0,T;X) is a
Banach space.

Simple functions of the form
f(t) = Z CiXE; (t)7
i=1

where ¢; € X and F; is a measurable subset of (0,7T), are dense in LP(0,T; X). By
mollifying these functions with respect to ¢, we get the following density result.

PROPOSITION 6.29. If X is a Banach space and 1 < p < oo, then the collection
of functions of the form

f@t) = Zciqﬁi(t) where ¢; € C°(0,T) and ¢; € X
i=1

is dense in LP(0,T; X).

The characterization of the dual space of a vector-valued LP-space is analogous
to the scalar-valued case, after we take account of duality in the range space X.

THEOREM 6.30. Suppose that 1 < p < oo and X is a reflezive Banach space
with dual space X'. Then the dual of LP(0,T;X) is isomorphic to LY (0,T;X")

where
1 1
— _l’_ J—
p p

The action of f € LP (0,T; X") on u € LP(0,T; X) is given by

/

T
(f o)) = / (), u(t)) dt,

where the double brackets denote the LV (X')-LP(X) duality pairing and the single
brackets denote the X'-X duality pairing.

The proof is more complicated than in the scalar case and some condition on
X is required. Reflexivity is sufficient (as is the condition that X' is separable).

6.A.3. Differentiability. The definition of continuity and pointwise differ-
entiability of vector-valued functions are the same as in the scalar case. A function
f:(0,T) — X is strongly continuous at ¢t € (0,7T) if f(s) — f(t) strongly in X as
s — t, and f is strongly continuous in (0,7 if it is strongly continuous at every
point of (0,7). A function f is strongly differentiable at ¢t € (0,7"), with strong
pointwise derivative fi(t), if

o [FE+R) - 1))
0 [0
where the limit exists strongly in X, and f is continuously differentiable in (0,7T) if

its pointwise derivative exists for every ¢ € (0,7") and f; : (0,7) — X is a strongly
continuously function.
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The assumption of continuous differentiability is often too strong to be useful,
so we need a weaker notion of the differentiability of a vector-valued function.
As for real-valued functions, such as the step function or the Cantor function, the
requirement that the strong pointwise derivative exists a.e. in (0, T) does not lead to
an effective theory. Instead we use the notion of a distributional or weak derivative,
which is a natural generalization of the definition for real-valued functions.

Let L] .(0,T; X) denote the space of measurable functions f : (0,7) — X that
are integrable on every compactly supported interval (a,b) € (0,7T). Also, as usual,
let C°(0,T) denote the space of smooth, real-valued functions ¢ : (0,7) — R with
compact support, supp ¢ € (0,7).

DEFINITION 6.31. A function f € L{ (0,7;X) is weakly differentiable with
weak derivative f; = g € L, (0,T; X) if

T T
(6.40) /0 ¢ fdt = _/0 g dt for every ¢ € C°(0,T).

The integrals in (G:40) are understood as Bochner integrals. In the commonly
occurring case where J : X < Y is a continuous embedding, f € Llloc(O, T; X), and
(Jf)e € LL,.(0,T;Y), we have from Example [6.23] that

J (/OT¢’fdt> :/Oqu’det: —/OT¢(Jf)tdt

Thus, we can identify f with Jf and use (6.40) to define the Y-valued derivative
of an X-valued function. We then write, for example, that f € LP(0,7;X) and
fe € LU0, T;Y) if f(t) is L in ¢ with values in X and its weak derivative f;(¢) is
L% in t with values in Y.

If f:(0,T) — R is a scalar-valued, integrable function, then the Lebesgue
differentiation theorem, Theorem [[.2T] implies that the limit

%li’%h/

exists and is equal to f(t) for ¢ pointwise a.e. in (0, 7). The same result is true for
vector-valued integrals.

THEOREM 6.32. Suppose that X is a Banach space and f € L'(0,T; X), then
= Jm g /

PROOF. Since f is almost separably valued, we may assume that X is separable.
Let {c, € X : n € N} be a dense subset of X, then by the Lebesgue differentiation
theorem for real-valued functions

for t pointwise a.e. in (0,T).

t+h
1) = el = Jim 2 [ 17() = el ds
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for every n € N and ¢ pointwise a.e. in (0,7). Thus, for all such ¢ € (0,7) and
every n € N, we have

t+h
nmwp?l 1£(s) — F(®)] ds

h—0 h
t+h
sggy%A (1F(5) = eall + 17 (2) = eal) ds
< 20|(t) - eul).

Since this holds for every c,, it follows that

) 1 t+h
tmsup 2 [ 1£(6) = S0 ds =0,

—0
Therefore
1 t+h 1 t+h
lim sup —/ f(s)ds— f(t)|| < limsup — / I (s) = f@®)| ds =0,
h—0 h t h—0 h t
which proves the result. (|

The following corollary corresponds to the statement that a regular distribution
determines the values of its associated locally integrable function pointwise almost
everywhere.

COROLLARY 6.33. Suppose that f : (0,T) — X is locally integrable and

T
/ ofdt =0 for every ¢ € C°(0,T).
0

Then f =0 pointwise a.e. on (0,T).

PROOF. Choose a sequence of test functions 0 < ¢,, < 1 whose supports are
contained inside a fixed compact subset of (0,7") such that ¢,, — X(t,14-) pointwise,
where X (¢,¢+n) is the characteristic function of the interval (¢,¢ + h) C (0,7). If
fe Lt (0,T;X), then by the dominated convergence theorem

loc

t+h T
/t f(s)ds = lim ; On(8)f(s)ds.

n—r00

Thus, if [, ¢fds =0 for every ¢ € C2°(0,T), then

t+h
/ f(s)ds=0

for every (t,t + h) C (0,7). It then follows from the Lebesgue differentiation
theorem, Theorem [6.32] that f = 0 pointwise a.e. in (0, 7). O

We also have a vector-valued analog of Proposition [B.0] that the only functions
with zero weak derivative are the constant functions. The proof is similar.

PROPOSITION 6.34. Suppose that f : (0,T) — X is weakly differentiable and
f'=0. Then f is equivalent to a constant function.
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PROOF. The condition that the weak derivative f’ is zero means that
T
(6.41) / fo'dt=0 for all ¢ € C°(0,T).
0

Choose a fixed test function n € C2°(0,T) whose integral is equal to one, and
represent an arbitrary test function ¢ € C°(0,T) as

¢=An+’

where A € R and ¢ € C2°(0,T') are given by

T t
A= / odt,  w(t) = / [6(s) — An(s)] ds.
If
T
c:/ nfdte X,
0

then (G.4T]) implies that

T
(6.42) / (f—c)pdt=0 for all ¢ € C°(0,T),
0
and Corollary [6.33] implies that f = ¢ pointwise a.e. on (0,7). O

It also follows that a function is weakly differentiable if and only if it is the
integral of an integrable function.

THEOREM 6.35. Suppose that X is a Banach space and f € L*(0,T; X). Then
f is weakly differentiable with integrable derivative fy = g € L*(0,T; X) if and only
if

(6.43) ft)=co —l—/o g(s)ds

pointwise a.e. in (0,T). In that case, f is differentiable pointwise a.e. and its
pointwise derivative coincides with its weak derivative.

PRrROOF. If f is given by (6.43), then

. t+h
frn =@ _1 Je

and the Lebesgue differentiation theorem, Theorem [6.32] implies that the strong
derivative of f exists pointwise a.e. and is equal to g.
We also have that

HWH = %/tt% lg(s)]| ds.



204 6. PARABOLIC EQUATIONS

Extending f by zero to a function f: R — X, and using Fubini’s theorem, we get

/R f(t+hh _H dt<%/R</tt+h|g(s)|| ds> dt
<i/ (/Oh|g<s+t>| ds> dt

L gt o)) ar) as
h 0 R
< / lg(®)l dt.

If ¢ € C°(0,T), this estimate justifies the use of the dominated convergence theo-
rem and the previous result on the pointwise a.e. convergence of f; to get

[ otorwan= [ [£EB=00] 1

T — J—
=~ Jim | o(0) [W} dt

h—0

/ o(t)

which shows that g is the weak derivative of f.
Conversely, if f; = g € L*(0,T) in the sense of weak derivatives, let

f(t) = / o(s) ds.

Then the previous argument implies that ft = g, so the weak derivative (f — f )t
is zero. Proposition [6.34] then implies that f — f is constant pointwise a.e., which

gives ([6.43). O

We can also characterize the weak derivative of a vector-valued function in
terms of weak derivatives of the real-valued functions obtained by duality.

PROPOSITION 6.36. Let X be a Banach space with dual X'. If f,g € L*(0,T; X),
then f is weakly differentiable with fi = g if and only if for every w € X'

IN

(6.44) (w, ) =(w,9) as a real-valued weak derivative in (0,T).

dt
Proor. If f; =g, then

T T
/ o' fdt = —/ ¢g dt for all ¢ € C°(0,T).
0 0

Acting on this equation by w € X’ and using the continuity of the integral, we get

/ & w, fd / d{w, g) dt for all ¢ € C°(0,T)
which is ([6:44). Conversely, if ([6.44]) holds, then

T
<w,/ (&' f+ ¢g) dt>=0 for all w € X/,
0



6.A. VECTOR-VALUED FUNCTIONS 205

which implies that

T
| @r+og =0
0
Therefore f is weakly differentiable with f; = g. (|

A consequence of these results is that any of the natural ways of defining what
one means for an abstract evolution equation to hold in a weak sense leads to the
same notion of a solution. To be more explicit, suppose that X < Y are Banach
spaces with X continuously and densely embedded in Y and F' : X x (0,7) — Y.
Then a function u € L'(0,T; X) is a weak solution of the equation

uy = F(u,t)

if it has a weak derivative u; € L1(0,T;Y) and us = F(u,t) for t pointwise a.e. in
(0, T). Equivalent ways of stating this property are that

t
u(t) = ug —|—/ F (u(s),s) ds for ¢ pointwise a.e. in (0,7);
0

or that p
pn (w,u(t)) = (w, F (u(t),t)) for every w € Y’

in the sense of real-valued weak derivatives. Moreover, by approximating arbitrary
smooth functions w : (0,7) — Y’ by linear combinations of functions of the form
w(t) = ¢(t)w, we see that this is equivalent to the statement that

T T
—/ (we(t), u(t)) dt = / (w(t), F (u(t),t)) dt for every w € C° (0,T;Y").
0 0

We define Sobolev spaces of vector-valued functions in the same way as for
scalar-valued functions, and they have similar properties.

DEFINITION 6.37. Suppose that X is a Banach space, k € N, and 1 < p < oc.
The Banach space W¥*?(0,T; X) consists of all (equivalence classes of) measurable
functions w : (0,7) — X whose weak derivatives of order 0 < j < k belong to
LP(0,T; X). If 1 < p < oo, then the W¥P-norm is defined by

. 1/p
. p
lulhweroir = | 3 |Jotu] at] s
j=1
if p = oo, then
el = sup [[0fu]]

1<5<k
If p=2, and X = H is a Hilbert space, then W*2(0,T;H) = H*(0,T;H) is the
Hilbert space with inner product

T
(u,v)Hk(O)T;H) —/0 (u(t),v(t)),, dt.

The Sobolev embedding theorem for scalar-valued functions of a single variable
carries over to the vector-valued case.

THEOREM 6.38. If 1 < p < oo and u € WP(0,T; X), then u € C([0,T]; X).
Moreover, there exists a constant C = C(p,T) such that

”U”Lw(o,T;X) <C ”uHWl,p(o,T;X) .
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PROOF. From Theorem [6.35, we have

Ju(®) = ) < [ )] dr

Since |lu¢|| € L*(0,T), its integral is absolutely continuous, so u is uniformly con-
tinuous on (0,7") and extends to a continuous function on [0, 7.
If h:(0,T) — R is defined by h = ||ul|, then

[h(t) = ()| < [lu(t) —u(s)]l S/ [[ue ()| dr.

It follows that h is absolutely continuous and |h:| < |lut|| pointwise a.e. on (0,T).
Therefore, by the Sobolev embedding theorem for real valued functions,

Hu||L°°(O,T;X) = Hh”Loo(o,T) <C Hh”WLP(O,T) <C HUHWLP(O,T;X)'
O

6.A.4. The Radon-Nikodym property. Although we do not use this dis-
cussion elsewhere, it is interesting to consider the relationship between weak differ-
entiability and absolute continuity in the vector-valued case.

The definition of absolute continuity of vector-valued functions is a natural
generalization of the real-valued definition. We say that f : [0,7] — X is absolutely
continuous if for every € > 0 there exists a § > 0 such that

N
SIS () = Fltar) < €
n=1

for every collection {[to, t1], [t2,t3], ..., [En—1,tn]} of non-overlapping subintervals
of [0, 7] such that

N
> ftn —tna| < 6.
n=1

Similarly, f : [0,7] — X is Lipschitz continuous on [0, T if there exists a constant
M > 0 such that

IF(s) = f@) < M|s —t for all s,t € [0,T].

It follows immediately that a Lipschitz continuous function is absolutely continuous
(with 6 = €/M).

A real-valued function is weakly differentiable with integrable derivative if and
only if it is absolutely continuous c.f. Theorem[3.60l This is one of the few properties
of real-valued integrals that does not carry over to Bochner integrals in arbitrary
Banach spaces. It follows from the integral representation in Theorem that
every weakly differentiable function with integrable derivative is absolutely contin-
uous, but it can happen that an absolutely continuous vector-valued function is not
weakly differentiable.

EXAMPLE 6.39. Define f : (0,1) — L*(0,1) by
f@) =tx0,9-

Then f is Lipschitz continuous, and therefore absolutely continuous. Nevertheless,
the derivative f’(t) does not exist for any ¢ € (0,1) since the limit as h — 0 of the
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difference quotient
ft+h)—f(@t)
h
does not converge in L'(0, 1), so by Theorem [6.35 f is not weakly differentiable.

A Banach space for which every absolutely continuous function has an inte-
grable weak derivative is said to have the Radon-Nikodym property. Any reflexive
Banach space has this property but, as the previous example shows, the space
L'(0,1) does not. One can use the Radon-Nikodym property to study the geomet-
ric structure of Banach spaces, but this question is not relevant for our purposes.
Most of the spaces we use are reflexive, and even if they are not, we do not need
an explicit characterization of the weakly differentiable functions.

6.B. Hilbert triples

Hilbert triples provide a useful framework for the study of weak and variational
solutions of PDEs. We consider real Hilbert spaces for simplicity. For complex
Hilbert spaces, one has to replace duals by antiduals, as appropriate.

DEFINITION 6.40. A Hilbert triple consists of three separable Hilbert spaces
Vo H=V
such that V is densely embedded in H, H is densely embedded in V', and
(f,v) = (f,v)y for every f € H and v € V.

Hilbert triples are also referred to as Gelfand triples, variational triples, or
rigged Hilbert spaces. In this definition, (-,-) : V' x ¥V — R denotes the duality
pairing between V' and V, and (-,-);, : H x H — R denotes the inner product on
H. Thus, we identify: (a) the space V with a dense subspace of H through the
embedding; (b) the dual of the ‘pivot’ space H with itself through its own inner
product, as usual for a Hilbert space; (c) the space H with a subspace of the dual
space V', where H acts on V through the H-inner product, not the V-inner product.

In the elliptic and parabolic problems considered above involving a uniformly
elliptic, second-order operator, we have

V= H}Q), H=L*Q), V' =H1(Q),

where @ C R™ is a bounded open set. Nothing will be lost by thinking about
this case. The embedding H{ (2) — L2(f) is inclusion. The embedding L?(2) —
H~1(Q) is defined by the identification of an L2-function with its corresponding
regular distribution, and the action of f € L?(Q) on a test function v € H}(Q) is
given by

() = [ fode
Q
The isomorphism between V and its dual space V' is then given by
~A: Hi(Q) — H Q).

Thus, a Hilbert triple allows us to represent a ‘concrete’ operator, such as —A, as
an isomorphism between a Hilbert space and its dual.
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As suggested by this example, in studying evolution equations such as the heat
equation u; = Awu, we are interested in functions u that take values in V whose
weak time-derivatives u; takes values in V’. The basic facts about such functions
are given in the next theorem, which states roughly that the natural identities for
time derivatives hold provided that the duality pairings they involve make sense.

THEOREM 6.41. Let V < H — V' be a Hilbert triple. If u € L*(0,T;V) and
ug € L*(0, T3 V"), then u € C([0,T); H). Moreover:
(1) for any v € V, the real-valued function t — (u(t),v),, is weakly differen-
tiable in (0,T) and

d
(6.45) L (w(t). 00y = (). )
(2) the real-valued function t — ||u(t)||3, is weakly differentiable in (0,T) and
d
(6.16) Ll = 2

(3) there is a constant C' = C(T) such that

(6.47) Hu||L°°(O,T;H) <C (||UHL2(0,T;V) + ||ut||L2(o,T;V/)) :

PROOF. We extend u to a compactly supported map @ : (—00,00) — V with
i € L3(R;V’). For example, we can do this by reflection of u in the endpoints of
the interval [4]: Write u = ¢u + 1u on [0,T] where ¢,1 € C°(R) are nonnegative
test functions such that ¢ + ¢ =1 on [0,7T] and supp ¢ C [—T/4,3T /4], supp ¢ C
[T/4,5T/4]; then extend ¢u, hu to compactly supported, weakly differentiable
functions v, w : (—o0,00) — V defined by

o(t)u(t) if0<t<T,
v(t) = { d(—thu(—t) if —T <t <0,

0 if [¢| > T,

D(t)u(t) if0<t<T,
w(t) = L (2T — u(2T —t) if T <t < 2T,

0 if|t—T|>T,

and finally define 4 = v + w. Next, we mollify the extension @ with the standard
mollifier ° : R — R to obtain a smooth approximation

o0
u=nxue€ CPR;V), ut(t) = / ne(t — s)u(s)ds.

— 00
The same results that apply to mollifiers of real-valued functions apply to these
vector-valued functions. As e — 07, we have: u¢ — win L2(0,T;V), u§ = 0 *u; —
ug in L?(0,T;V’), and uf(t) — u(t) in V for t pointwise a.e. in (0,7). Moreover,
as a consequence of the boundedness of the extension operator and the fact that
mollification does not increase the norm of a function, there exists a constant 0 <
C < 1 such that for all 0 < € < 1, say,

(6.48) C”ueHL?(R;v) < Hu”m(o,T;v) < ”ueHL?(R;V)-

Since u€ is a smooth V-valued function and V < H, we have

(6.49)  (u(t),u(t))y = /7 dis (u(s),u(s))4y ds = 2/ (ug(s),u(s))y ds.

— 00
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Using the analogous formula for u¢ — u’, the duality estimate and the Cauchy-
Schwartz inequality, we get

Hue(t) — u‘s(t)Hj_[ < 2/7 Hui(s) — ug(s)‘ v ut(s) — u‘;(s)Hv ds
<2 H“E - UgHN(R;w) ’ue - u5HL2(R;V) :

Since {u¢} is Cauchy in L*(R;V) and {u§} is Cauchy in L*(R;)’), it follows that
{uc} is Cauchy in C,(R;H), and therefore converges uniformly on [0, 7] to a func-
tion v € C([0,T]; H). Since u® converges pointwise a.e. to u, it follows that u is
equivalent to v, so u € C([0,T]; H) after being redefined, if necessary, on a set of
measure zero.

Taking the limit of ([6.49) as € — 0T, we find that for ¢ € [0, 7]

()13, = Ilu(0)3, + 2/0 (us(s),u(s)) ds,

which implies that Hu||i : [0,T] — R is absolutely continuous and ([G.46]) holds.
Moreover, ([6.47) follows from ([648), [6.49), and the Cauchy-Schwartz inequality.

Finally, if ¢ € C2°(0,T) is a test function ¢ : (0,7) — R and v € V, then
v € C(0,T;V). Therefore, since uf — uy in L2(0,T; V"),

T T
/ (ug, gvy dt —>/ (ug, Pu) dt.
0 0

Also, since u€ is a smooth V-valued function,

T T T
/ (ug, pv) dt = —/ ¢ (uf,v) dt — —/ @' (u,v) dt
0 0 0
We conclude that for every ¢ € C°(0,T) and v € V

T T
/ o (ug,v) dt:—/ ¢ {u,v) dt
0 0
which is the weak form of (645). O

We further have the following integration by parts formula.

THEOREM 6.42. Suppose that u,v € L?(0,T;V) and us,v; € L?(0,T;V"). Then

T T
/ (s v) dt = (u(T), o(T)), — (u(0), 0(0)), — / (u, vr) dt.
0 0

PROOF. This result holds for smooth functions u,v € C*°([0,T]; V). Therefore
by density and Theorem [6.41] it holds for all functions u,v € L%(0,7;V) with
Ut, Vg € L2(O,T;V/). (Il






CHAPTER 7

Hyperbolic Equations

Hyperbolic PDEs arise in physical applications as models of waves, such as
acoustic, elastic, electromagnetic, or gravitational waves. The qualitative properties
of hyperbolic PDEs differ sharply from those of parabolic PDEs. For example,
they have finite domains of influence and dependence, and singularities in solutions
propagate without being smoothed.

7.1. The wave equation
The prototypical example of a hyperbolic PDE is the wave equation
(7.1) usr = Au.
To begin with, consider the one-dimensional wave equation on R,
Utt = Ugg-
The general solution is the d’Alembert solution
u(z,t) = flx —t) +glxz+1)

where f, g are arbitrary functions, as one may verify directly. This solution de-
scribes a superposition of two traveling waves with arbitrary profiles, one propa-
gating with speed one to the right, the other with speed one to the left.
Let us compare this solution with the general solution of the one-dimensional
heat equation
Ut = Ugz,
which is given for ¢ > 0 by

1 e
th/Re = f (y) dy.

Some of the qualitative properties of the wave equation that differ from those of
the heat equation, which are evident from these solutions, are:

u(z,t) =

(1) the wave equation has finite propagation speed and domains of influence;
(2) the wave equation is reversible in time;

(3) solutions of the wave equation do not become smoother in time;

(4) the wave equation does not satisfy a maximum principle.

A suitable IBVP for the wave equation with Dirichlet BCs on a bounded open
set Q C R" for u: Q2 x R — R is given by

Uy = Au forx € Q and t € R,
(7.2) u(z,t) =0 for x € 002 and t € R,
u(z,0) = g(x), we(x,0) = h(x) for z € Q.

211
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We require two initial conditions since the wave equation is second-order in time.
For example, in two space dimensions, this IBVP would describe the small vibra-
tions of an elastic membrane, with displacement z = u(z, y,t), such as a drum. The
membrane is fixed at its edge 02, and has initial displacement ¢ and initial velocity
h. We could also add a nonhomogeneous term to the PDE, which would describe
an external force, but we omit it for simplicity.

7.1.1. Energy estimate. To obtain the basic energy estimate for the wave
equation, we multiple () by u; and write

1
Uttt = §Ut ,
t

1
uiAu = div (ug Du) — Du - Duy = div (ugDu) — <§|Du|2)
¢

to get

1 1
(7.3) (Euf + §|Du|2> — div (uDu) = 0.
This is the differential form of conservation of energy. The quantity %uf + %|Du|2
is the energy density (kinetic plus potential energy) and —u;Du is the energy flux.

If u is a solution of (.2)), then integration of (Z.3)) over €2, use of the divergence
theorem, and the BC u = 0 on 9 (which implies that u; = 0) gives

dE
=~ _0
dt

where F(t) is the total energy

1 1
E(t) :/ (Euf + §|Du|2> dx.
Q

Thus, the total energy remains constant. This result provides an L?-energy estimate
for solutions of the wave equation.

We will use this estimate to construct weak solutions of a general wave equation
by a Galerkin method. Despite the qualitative difference in the properties of par-
abolic and hyperbolic PDEs, the proof is similar to the proof in Chapter [0l for the
existence of weak solutions of parabolic PDEs. Some of the details are, however,
more delicate; the lack of smoothing of hyperbolic PDEs is reflected analytically by
weaker estimates for their solutions. For additional discussion see [35].

7.2. Definition of weak solutions

We consider a uniformly elliptic, second-order operator of the form (G.3]). For
simplicity, we assume that b* = 0. In that case,

n
(7.4) Lu=—"Y" 0, (a"(z,t)0;u) + c(x, t)u,
i,j=1
and L is formally self-adjoint. The first-order spatial derivative terms would be
straightforward to include at the expense of complicating the energy estimates. We
could also include appropriate first-order time derivatives in the equation propor-
tional to uy.
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Generalizing (72), we consider the following IBVP for a second-order hyper-
bolic PDE

up + Lu=f in x(0,7),
(7.5) u=0 on 002 x (0,7,

u=g, ur=n~h ont=0.

To formulate a definition of a weak solution of (TH), let a(u,v;t) = (Lu,v)r2 be
the bilinear form associated with L in (Z4)),

(7.6) a(u,v;t) = Z / a (x, t)0yu(x)0ju(x) da +/ ez, t)u(z)v(z) de.
ij=1"% Q
We make the following assumptions.

ASSUMPTION T7.1. The set 2 C R" is bounded and open, T' > 0, and:
(1) the coefficients of a in (7.0) satisfy
al,ce L®(Qx (0.7),  af,c; € L®(Qx (0,T));

(2) a¥ = a’t for 1 <i,j <n and the uniform ellipticity condition (6.4) holds
for some constant 6 > 0;
(3) feL*(0,T;L3()), g € H} (), and h € L*(Q).

Then a(u,v;t) = a(v,u;t) is a symmetric bilinear form on H}(2) Moreover,
there exist constants C' > 0, 8 > 0, and v € R such that for every u,v € H}(Q)

Bllullfy < alu, ust) +7llullz,
(7.7) |au, v;t)] < Cllull gy [10]] gy -
|ai(u, 03 8)] < Clull gy [[0]] -
We define weak solutions of () as follows.
DEFINITION 7.2. A function u : [0,T] — Hg () is a weak solution of (Z.H) if:

(1) w has weak derivatives u; and u and
uwe C([0,T); Hy(), wueeC([0,T];L*(Q), wuwecL?(0,T;H NQ));
(2) For every v € H}(Q),
(7.8) (uee(t),v) +a(u(t), vit) = (f(t),v) 2
[

for t pointwise a.e. in [0, 7] where a is defined in (T.6);
(3) u(0) =g and u(0) = h

We then have the following existence result.

THEOREM 7.3. Suppose that the conditions in Assumption [7.1] are satisfied.
Then for every f € L? (0,T; L*(Q)), g € H}(Q), and h € L*(Q), there is a unique
weak solution of (73]), in the sense of Definition[7.3. Moreover, there is a constant
C, depending only on Q, T, and the coefficients of L, such that

ull oo 0,518y + Nt oo 0,522y + llutell 20,71

< C (Il 2oz + Nl + IRl 2)
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7.3. Existence of weak solutions

We prove an existence result in this section. The continuity and uniqueness of
weak solutions is proved in the next sections.

7.3.1. Construction of approximate solutions. As for the Galerkin ap-
proximation of the heat equation, let Ex be the N-dimensional subspace of Hg ()
given in ([GI5)—(@I0) and Py the orthogonal projection onto En given by (617).

DEFINITION 7.4. A function uy : [0,7] — Ey is an approximate solution of
@A) if:
(1) unN € L2(0,T;EN), UNt € L2(0,T;EN), and un¢ € L2(0,T;EN);
(2) for every v € En

(7.9) (uner(t),v) g2 + a(un(t), v;t) = (f(t),v) 2

pointwise a.e. in ¢ € (0,7);
(3) un(0) = Pyg, and un:(0) = Pyh.

Since uy € H?(0,T; Ey), it follows from the Sobolev embedding theorem for
functions of a single variable ¢ that uy € C'([0,T]; En), so the initial condition (3)
makes sense. Equation (T9]) is equivalent to an N x N linear system of second-order
ODEs with coefficients that are L> functions of t. By standard ODE theory, it
has a solution uy € H?(0,T; En); if a(w;j, wy;t) and (f(t),w;), . are continuous
functions of time, then uy € C?(0,T; Ex). Thus, we have the following existence
result.

PROPOSITION 7.5. For every N € N, there exists a unique approxrimate solution
un : [0,T] = En of (7)) with

uy € C* ([0,T]; EN) , uny € L? (0,T;EN) .

7.3.2. Energy estimates for approximate solutions. The derivation of
energy estimates for the approximate solutions follows the derivation of the a priori
energy estimates for the wave equation.

PROPOSITION 7.6. There exists a constant C, depending only on T, 2, and the
coefficient functions o', ¢, such that for every N € N the approzimate solution uy
given by Proposition [7.3] satisfies

HUNHLco(o,T;Hé) + HuNt”Loo(o,T;N) + HuNttH[P(O,T;H*l)

(7.10)
< C (I Nz rizs) + gl + IAllz2)

PrROOF. Taking v = upn(t) € En in (T9), we find that

(unet(t), unt(t)) 2 + a (un (t), une(t);t) = (f(t), une(t)) 2

pointwise a.e. in (0,T). Since a is symmetric, it follows that

1d
5% |:||uNtHi2 +a(UN,’U,N7t) = (fqut)Lz + Q¢ (UN,UN,t) .
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Integrating this equation with respect to ¢, we get

lunell 22 + a (un, unit)
t
= 2/ [(f,uns)p2 + as (un,un;s)] ds+a(Png, Png; 0) + ||PNh||iQ
0

t
2 2 2 2
< [ (el + € w3y ) ds-+ 17 e a +C gl + Al
0

where we have used (1)), the fact that |[Pyhlrz < [[R], [Pngllaz < [l9]lmy, and
the inequality

+ t 1/2 t
2 [ <f,uNs>L2s2( / IIfII%zds) ( [ s ds)

t T
< [ el s [ 813 ds
0 0

Using the uniform ellipticity condition in (Z7) to estimate |lun||3;: in terms of
0

1/2

a(un,un;t) and a lower L?-norm of uy, we get for 0 <t < T that

t
2 2 2 2 9
(7.11) llunel|72 +ﬁ||uN||Hg S/O (||uNs||L2 +CHUN||H5> ds + v |lun|| 72

2 2
+ 1 £ 120,712 + C lgllzgz + 112017 -

We estimate the L?-norm of uy by

t
JunZs =2 / (un,un) g ds+ | Prg|s
0

2

t ) 1/2 t ) 1/
<9 ( J ds> ( J ds) T gl
0 0

t
2 2
< [ (w2 + el ds + g3
0

t
2 2
< [ (il + C lunly) s+ Cllaly

Using this result in (T.IT), we find that
t
2 2 2 2
lunvellz + lunllzy < Co / (NunoliFa + 3y ) ds

+ Co (I a0 2oz + gl + IA132)
for some constants Cq,C2 > 0. Thus, defining £ : [0,7] — R by
E = [lunill7z + lun |
we have
t
B() < 1 [ Ble)ds+Ca (I aoran + Wl + lalsy)-
Gronwall’s inequality (Lemma [[L47) implies that

2 2
E(t) < Cy (Hf”%Q(O,T;LQ) +1Rllz + Hg||H5) e,
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and we conclude that there is a constant C' such that
2 2 2 2
(113)  sup (el + iy ) < € (M Rsirieny + Wellza + ll3y).

Finally, from the Galerkin equation (7.9]), we have for every v € Ey that
(uNttvv)L2 = (fa U)L2 - CL(’LLN,U;t)
pointwise a.e. in t. Since uyy € En, it follows that
(unte, v)
Junvallg s = sup OB <0 ()1 g2+ gy )
veEN\{0} ||U||H3 0

Squaring this inequality, integrating with respect to ¢, and using (Z.I0) we get
T 2 T 2 2
| il de <0 [ (113 + i) de
0 0

< C (1 1320raze) + 0I5 + gl )
Combining (ZI3)-(Z14)), we get (CI0). 0

7.3.3. Convergence of approximate solutions. The uniform estimates for
the approximate solutions allows us to obtain a weak solution as the limit of a
subsequence of approximate solutions in an appropriate weak-star topology. We
use a weak-star topology because the estimates are L™ in time, and L° is not
reflexive. From Theorem [6.30, if X is reflexive Banach space, such as a Hilbert
space, then

(7.14)

*

Uy = u in L*(0,T; X)
if and only if

T T
/ (un(t),w(t)) dt — / (u(t),w(t)) dt for every w € L' (0,T; X').
0 0

Theorem [[L.T9 then gives us weak-star compactness of the approximations and con-
vergence of a subsequence as stated in the following proposition.

PROPOSITION 7.7. There is a subsequence {un} of approximate solutions and
a function u with such that

UN — u asN—>oomL°°(O,T;H(}),

UNE — Uy as N — oo in L™ (O,T;LQ)7

UNE — Ut as N — oo in L? (O,T;H‘l),
where u satisfies (7.8).

PROOF. By Proposition [(.6] the approximate solutions {uy} are uniformly
bounded in L°°(0,T; H}), and their time-derivatives are uniformly bounded in
L*(0,T; L?). Tt follows from the Banach-Alaoglu theorem, and the usual argu-
ment that a weak limit of derivatives is the derivative of the weak limit, that there
is a subsequence of approximate solutions, which we still denote by {ux}, such that

uy = in L(0,T; HY), un; — ug  in L®(0,T; L?).
Moreover, since {ux} is uniformly bounded in L?(0,T; H~!), we can choose the

subsequence so that
UNtt — Ut in L2(0,T;H_l).
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Thus, the weak-star limit u satisfies

(7.15) we L=(0,T; HY), u; € L®(0,T;L%), wuy € L0, T;H™Y).
Passing to the limit N — oo in the Galerkin equations(79), we find that «

satisfies (7.8)) for every v € Hg (). In detail, consider time-dependent test functions

of the form w(t) = ¢(t)v where ¢ € C°(0,T) and v € Ejy, as for the parabolic

equation. Multiplying (Z9]) by ¢(¢) and integrating the result with respect to ¢, we
find that for N > M

T T T
/ (UNtt, W) p2 dt—i—/ a (upn,w;t) dt:/ (f,w) 2 dt.
0 0 0

Taking the limit of this equation as N — oo, we get

T T T
| e des [Cauwtyai= [ (), ae
0 0 0

By density, this equation holds for w(t) = ¢(t)v where v € H}(Q2), and then since
¢ € C(0,T) is arbitrary, we get(7.9). O

7.4. Continuity of weak solutions

In this section, we show that the weak solutions obtained above satisfy the
continuity requirement (1) in Definition To do this, we show that u and wu,
are weakly continuous with values in H}, and L? respectively, then use the energy
estimate to show that the ‘energy’ E : (0,7) — R defined by

(7.16) E = ||utllpz + a(u, u; t)
is a continuous function of time. This gives continuity in norm, which together with
weak continuity implies strong continuity. The argument is essentially the same as

the proof that if a sequence {z,} converges weakly to x in a Hilbert space H and
the norms also converge, then the sequence converges strongly:

(@ =z, —2n) = l2]? = 2(2, 20) + [J2nl* = [l2]* — 2(z, 2) + [|2]|* = 0.

See ([T.23) below for the analogous formula in this argument.
We begin by proving the weak continuity, which follows from the next lemma.

LEMMA 7.8. Suppose that V, H are Hilbert spaces and V — H is densely and
continuously embedded in H. If

ue L™ (0,T;V), ug € L*(0,T;H),
then u € Cy, ([0,T; V) is weakly continuous.

PRrROOF. We have u € H' (0,T;H) and the Sobolev embedding theorem, The-
orem [6.38] implies that u € C ([0, T]; H). Let w € V', and choose w,, € H such that
wy — w in V. Then

[(wn, u(t)) — (w, u(®))] = [(wn —w,u(t))| < [lwn = wlly [Ju@)]lv.
Thus,

[Sup] {wn, w) = (W, u)| < flwn —wlly lullLeo,rv) =0 asn — oo,
0,T

80 {(w, u) converges uniformly to (w,u). Since (wy,,u) € C ([0, T];V) it follows that
(w,u) € C([0,T]; V), meaning that u is weakly continuous into V. O
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LEMMA 7.9. Let u be a weak solution constructed in Proposition [7.]. Then
(7.17) u€ Cy([0,T);Hy),  u € Cyu([0,T]; L?)
Proor. This follows at once from Lemma and the fact that
uwe L™ (0,T;Hy), ue€L®(0,T;H "), wuyeL?(0,T;H"),
where H} (Q) — L*(Q) — H~1(Q). O

Next, we prove that the energy is continuous. In doing this, we have to be
careful not to assume more regularity in time that we know.

LEMMA 7.10. Suppose that L is given by (74) and a by (7.0), where the coef-
ficients satisfy the conditions in Assumption [71} If

we L?(0,T;Hy(Q), w € L?(0,T;L%RQ)), uy € L?(0,T;H (),

and

(7.18) uy + Lu € L* (0, T; L*(9))
then
1d ) 1
(7.19) 2@ (||ut||L2 + @(U,U;t)) = (ug + Lu,ug) o + §at(u7u;t)'

and E: (0,T) — R defined in (7.16)) is an absolutely continuous function.

PROOF. We show first that (TI9) holds in the sense of (real-valued) distribu-
tions on (0,7"). The relation would be immediate if u was sufficiently smooth to
allow us to expand the derivatives with respect to t. We prove it for general u by
mollification.

It is sufficient to show that (TI9) holds in the distributional sense on compact
subsets of (0,T"). Let ¢ € C(R) be a cut-off function that is equal to one on some
subinterval I € (0,7) and zero on R\ (0,7"). Extend u to a compactly supported
function Cu : R — HE (), and mollify this function with the standard mollifier
7°: R — R to obtain

u® =n* (Cu) € C (R; Hy) .
Mollifying (7I8), we also have that
(7.20) ug + Lu® € L? (R; L?) .

Without (ZI8), we would only have Lu® € L? (R; H™1).
Since u€ is a smooth, H&—Valued function and a is symmetric, we have that
1 d € 2 € € € € € € 1 € €
3 (12 + 0 (1)) = () + (s ) + g (1)
1
= (ugy, ug) + (Lu,up) + §at (u,us t)
(7.21) 1
= (uy, + Luf,ug) + S0t (uf,usst)
1
= (ug, + Lu®,ug) ;2 + S0t (uf,usst).
Here, we have used (.20)) and the identity

a(u,v;t) = (L(t)u,v) for u,v € Hg.

Note that we cannot use this identity to rewrite a(u,us;t) if u is the unmollified
function, since we know only that u; € L?. Taking the limit of (Z.2Z1)) as ¢ — 0T, we
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get the same equation for (u, and hence ([.I9) holds on every compact subinterval
of (0,T), which proves the equation.
The right-hand side of (ZI9) belongs to L*(0,T) since

T T
/ (g + Lu,ug) o dt < / et + Ll g2 [luell g2 dt
0 0

< lwe + Lull 2o 1, p2) el 20,7522 5

T T
/at(u,u;t) dtg/ C lull% dt
0 0 0

2
< Cllullzzo,7;my) -
Thus, E in (Z.I6)) is the integral of an L!-function, so it is absolutely continuous. [

PROPOSITION 7.11. Let u be a weak solution constructed in Proposition [7.7]
Then

(7.22) ue C([0,T]; Hy(Q), u € C ([0,T]; L*(2)) .

PROOF. Using the weak continuity of u, u; from Lemmal[7.9] the continuity of
E from Lemma[Z.I0, energy, and the continuity of a; on H}, we find that as ¢ — to,

lue(t) — wi(to)ll72 + a (u(t) — u(to), u(t) — u(to); to)
= Jlue()l[72 — 2 (ue(t), e (to)) 12 + lue(to) 172
+a (u(t), u(t);to) — 2a (u(t), u(to): to) + a (u(to), u(to); to)
= [lue(t) ]l 2 + a (u(t), u(t);t) + ue(to)| 12 + a (u(to), u(to): to)
+a (u(t), u(t);to) — a (u(t), u(t); )
— 2 (ue(t), ue(to)) 12 — 2a (u(t), u(to); to)
= B(t) + E(to) + a (u(t), u(t); to) — a (u(t), u(t); 1)
— 2 {(wy(t), ue(to)) 1 + a (ult), ulto); to) }
— E(to) + E(to) — 2 {||u¢(to)|| > + a (u(to), u(to); to)} = 0.

Finally, using this result, the coercivity estimate
0 [[ut) — ulto)ll7: < a(u(t) = ulto), u(t) — u(to);to) + 7|l llu(t) — u(to) |7

and the fact that u € C (O, T; L2) by Sobolev embedding, we conclude that

(7.23) (u
(
)

i ()~ w2 =0, Jim Ju(t) — u(to) |y =0,
which proves (Z22]). O

This completes the proof of the existence of a weak solution in the sense of
Definition

7.5. Uniqueness of weak solutions

The proof of uniqueness of weak solutions of the IBVP (T3] for the second-
order hyperbolic PDE requires a more careful argument than for the corresponding
parabolic IBVP. To get an energy estimate in the parabolic case, we use the test
function v = w(t); this is permissible since u(t) € H}(Q). To get an estimate in the
hyperbolic case, we would like to take v = wu(¢), but we cannot do this directly,
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since we know only that u.(t) € L?(2). Instead we fix ty € (0,7) and use as a test
function
t
v(t) = / u(s)ds for 0 <t < to,
(7.24) o
v(t) =0 fortg <t <T.
To motivate this choice, consider an a priori estimate for the wave equation.
Suppose that
uge = Au, u(0) = u(0) = 0.
Multiplying the PDE by v in (24)), and using the fact that v; = u we get for
0 <t <tp that

1 1
vug — —u? + =|Dv|* | — div (vDu) = 0.
2 2 ;
We integrate this equation over {2 to get

d 1 1
E/Q (Uut — §u2 + §|Dv|2> dz =0

The boundary terms v Du-v vanish since u = 0 on 92 implies that v = 0. Integrating
this equation with respect to t over (0,%¢), and using the fact that u = u; = 0 at
t=0and v =0 at t = tg, we find that

2 2
[ullz2 (to) + [|vl[ (0) = 0.

Since this holds for every ¢y € (0,7"), we conclude that u = 0.
The proof of the next proposition is the same calculation for weak solutions.

PROPOSITION 7.12. A weak solution of (7-3) in the sense of Definition [7.9 is
UNLQUE.

PROOF. Since the equation is linear, to show uniqueness it is sufficient to show
that the only solution u of ([CH) with zero data (f =0, g =0, h =0) is u = 0.
Let v € C([0,T);Hg) be given by ([Z24). Using v(t) in (T8), we get for
0 <t <ty that
(ure (), 0(t)) + a (u(t), v(t); t) = 0.
Since u = v; and a is a symmetric bilinear form on H{, it follows that
d 1 1
pr (ut,v) 2 — 3 (u,u)p2 + 54 (v,v;t)] = at(v, v;t).
Integrating this equation from 0 to ¢y, and using the fact that
w(0) =0,  w(0)=0,  wlto) =0,

we get
to
Juto)] 2+ o ((0),0):0) = =2 [ ao, i) .
0
Using the coercivity and boundedness estimates for a in (7)), we find that
to
(7.25)  Juto)|a + Bll(0) |3 < © / lo(t) 13 dt -+ [o(0)]2

Writing w(t) = —v(to — t) for 0 < ¢ < to, we have from (T.24) that

w(t) = — /tOtu(s) ds = /tu(to —8)ds

to 0
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and

to to
o0) = i) = = [ ulto—)ds = [ utwyar,
0 0
to 5 to ) to )
[ oo at= [ wtta = 0 de = [ o e

Using these expressions in ([Z.25]), we get an estimate of the form

to
a3 + otto)ly < € [ (lu@)1 e + (o) ) e

for every 0 < to < T. Since u(0) = 0 and w(0) = 0, Gronwall’s inequality implies
that u, w are zero on [0, T], which proves the uniqueness of weak solutions. [l

This proposition completes the proof of Theorem[7.3l For the regularity theory
of these weak solutions see §7.2.3 of [9].






CHAPTER 8

Friedrich symmetric systems

In this chapter, we describe a theory due to Friedrich [13] for positive symmet-
ric systems, which gives the existence and uniqueness of weak solutions of boundary
value problems under appropriate positivity conditions on the PDE and the bound-
ary conditions. No assumptions about the type of the PDE are required, and the
theory applies equally well to hyperbolic, elliptic, and mixed-type systems.

8.1. A BVP for symmetric systems
Let Q be a domain in R™ with boundary 9€2. Consider a BVP for an m x m
system of PDEs for u : Q@ — R™ of the form
A'Qju+ Cu = f in Q,

8.1
(81) B_u=0 on 012,

where A%, C, B_ are m x m coefficient matrices, f : Q@ — R™, and we use the
summation convention. We assume throughout that A? is symmetric.
We define a boundary matrix on 92 by

(8.2) B =y A

where v is the outward unit normal to 9€2. We assume that the boundary is non-
characteristic and that (8] satisfies the following smoothness conditions.

DEFINITION 8.1. The BVP (&) is smooth if:

(1) The domain  is bounded and has C2-boundary.

(2) The symmetric matrices A : Q — R™*™ are continuously differentiable
on the closure Q, and C : @ — R™*™ is continuous on €.

(3) The boundary matrix B_ : 9Q — R™>*™ ig continuous on 0.

These assumptions can be relaxed, but our goal is to describe the theory in its
basic form with a minimum of technicalities.
Let L denote the operator in (81]) and L* its formal adjoint,

(8.3) L=A9;+C, L*=-A9;+CT-09A"

For brevity, we write spaces of continuously differentiable and square integrable
vector-valued functions as

C'(Q) =C'(:R™),  L*(Q) = L* (4 R™),
with a similar notation for matrix-valued functions.

PROPOSITION 8.2 (Green’s identity). If the smoothness assumptions in Defini-
tion [81] are satisfied and u,v € C*(Q), then

(8.4) /UTLud:v—/uTL*vd:vz/ vT Bu ds,
Q Q o9

223
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where B is defined in (82).

ProOF. Using the symmetry of A?, we have
v Lu=uTL*v + 0, (vTAiu) .
The result follows by integration and the use of Green’s theorem. O

The smoothness assumptions are sufficient to ensure that Green’s theorem ap-
plies, although it also holds under weaker assumptions.

PROPOSITION 8.3 (Energy identity). If the smoothness assumptions in Defini-
tion [8.1] are satisfied and u € C*(Q), then

(8.5) /QuT (C+CT — 0 A") udz + /

u? BudS = 2/ fruda
[519) Q

where B is defined in (82) and Lu = f.

PRrROOF. Taking the inner product of the equation Lu = f with u, adding the
transposed equation, and combining the derivatives of u, we get

9; (W' A'u) +u” (C+CT — 9;A )Y u=2f"u.
The result follows by integration and the use of Green’s theorem. O

To get energy estimates, we want to ensure that the volume integral in ([83)) is
positive, which leads to the following definition.

DEFINITION 8.4. The system in (8J) is a positive symmetric system if the
matrices A* are symmetric and there exists a constant ¢ > 0 such that

(8.6) C+CT —9;A" > 2cI.

8.2. Boundary conditions

We assume that the domain has non-characteristic boundary, meaning that
the boundary matrix B = ;A" is nonsingular on 9. The analysis extends to
characteristic boundaries with constant multiplicity, meaning that the rank of B is
constant on 0% [25], [34].

To get estimates, we need the boundary terms in (83) to be positive for all
u such that B_u = 0. Furthermore, to get estimates for the adjoint problem, we
need the adjoint boundary terms to be negative. This is the case if the boundary
conditions are maximally positive in the following sense [13].

DEFINITION 8.5. Let B = 1;A" be a nonsingular, symmetric boundary matrix.
A boundary condition B_u = 0 on 92 is maximally positive if there is a (not
necessarily symmetric) matrix function M : 9Q — R™*™ such that:
(1) B= By + B_ where By =B+ M, and B_ = B — M;
(2) M+ MT >0 (positivity);
(3) R™ = ker By ¢ ker B_ (maximality).

The adjoint boundary condition to B_u = 0 is Bf_v = 0, as can be seen from
the decomposition
vI'Bu = uTBIv +vTB_u.
If B_u =0 on 91, then
(8.7) u"Bu=u" (By —B_)u=u" (M+M")u>0,
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while if Bf_v =0 on 99, then
(8.8) v'Bv=v" (-By +B_)v=—v" (M+M")v<0.

The boundary condition B_u = 0 can also be formulated as: u € N, where
N, = ker B_ is a family of subspaces defined on 99Q. An equivalent way to state
Definition is that the subspace N is a maximally positive subspace for B,
meaning that B is positive (> 0) on Ay and not positive on any strictly larger
subspace of R™ that contains N.

The adjoint boundary condition BI’U = 0 may be written as v € N_ where
N_ = ker B:{ is a maximally negative subspace that complements Ay, and

R™ =N, ®N_, Np=(BN_)", N_= (BN .

We may consider R™ as a vector space with an indefinite inner product given
by (u,v) = u” Bv. It follows from standard results about indefinite inner product
spaces that if R™ = N, ® N_ where NV is a maximally positive subspace for (, ),
then V/_ is a maximally negative subspace. Moreover, the dimension of N is equal
to the number of positive eigenvalues of B, and the dimension of N_ is equal to
the number of negative eigenvalues of B. In particular, the dimensions of N1 are
constant on each connected component of 912 if B is continuous and non-singular.

8.3. Uniqueness of smooth solutions

Under the above positivity assumptions, we can estimate a smooth solution u
of BI)) by the right-hand side f. A similar result holds for the adjoint problem.
Let

(8.9) lu]l = (/Q |u|? dw) v , (u,v) = /Q ul'v dx

denote the standard L2-norm and inner product, where |u| denotes the Euclidean
norm of u € R™.

THEOREM 8.6. Let L, L* denote the operators in (83), and suppose that the
smoothness conditions in Definition [81] and the positivity conditions in Defini-
tion [87], Definition are satisfied. If u € CY(Q) and B_u = 0 on 0%, then
cllull < ||Lull. If v € CY(Q) and BLv =0 on 99, then c||v|| < ||[L*v].

PRrOOF. If B_u = 0, then the energy identity (8], the positivity conditions
®H)-@™), and the Cauchy-Schwartz inequality imply that

2¢||ul|* < / u® (C+ or — A" udx —|—/ u?' BudS
Q a0

< Z/UTLudaj
Q
< 2|lul| || Lull

so c|jul| < ||Lu||. Similarly, if Bfv = 0, then Green’s formula and (B.8) imply that
2c||v||* < 2/ v L*vdx —/ v BvdS = 2/ v L*vdx < 2||v| || L*v],
Q a0 Q

which proves the result for L*. (I
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COROLLARY 8.7. If the smoothness conditions in Definition[81] and the positiv-
ity conditions in Definition[8-4)] Definition[8.0 are satisfied, then a smooth solution

u € CYHQ) of (81) is unique.

PROOF. If uq, us are two solutions and u = u; —us, then Lu = 0 and B_u = 0,
so Theorem [8.6] implies that u = 0. O

8.4. Existence of weak solutions
We define weak solutions of (81 as follows.

DEFINITION 8.8. Let f € L?(Q). A function u € L?(Q2) is a weak solution of
ED if
/ wI'L'vde = | fTode for all v € D*,
Q Q

where L* is the operator defined in ([83]), the space of test functions v is
(8.10) D*={veC"(Q): Blv=00n00},
and By is the boundary matrix in Definition

It follows from Green’s theorem that a smooth function u € C1() is a weak
solution of (8]) if and only if it is a classical solution i.e., it satisfies (8] pointwise.
In general, a weak solution u is a distributional solution of Lu = f in © with
u, Lu € L?(Q). The boundary condition B_u = 0 is enforced weakly by the use
of test functions v that are not compactly supported in €2 and satisfy the adjoint
boundary condition BI’U =0.

In particular, functions u,v € H'(Q) satisfy the integration by parts formula

/ v Oude = —/ u? 0pv dx +/ vi(yo)T (yu) da’
Q Q 00

where the trace map

(8.11) v HY Q) — HY2(09Q)

is defined by the pointwise evaluation of smooth functions on 002 extended by
density and boundedness to H'(£2).The trace map is not, however, well-defined for
general u € L*(1).

It follows that if u € H'(Q) is a weak solution of Lu = f, satisfying Defini-
tion B8 then

/ vIyBuds' =0 for all v € D*,
Rn—1

which implies that yB_u = 0. A similar result holds in a distributional sense if
u, Lu € L?(Q), in which case yBu € H~'/2(0Q).

The existence of weak solutions follows immediately from the the Riesz repre-
sentation theorem and the estimate for the adjoint L* in Theorem

THEOREM 8.9. If the smoothness conditions in Definition [81] and the positiv-
ity conditions in Definition Definition are satisfied, then there is a weak
solution u € L*(Q) of (81) for every f € L*().

PrROOF. We write H = L?(f2), where H is equipped with its standard norm
and inner product given in (89]). Let

L*:D*CH—H
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where the domain D* of L* is given by (BI0), and denote the range of L* by
W = L*(D*) C H. From Theorem [B.6]

(8.12) cllvll < |IL*v|| for all v € D*,

which implies, in particular, that L* : D* — W is one-to-one.
Define a linear functional ¢ : W — R by

L(w) = (f,v) where L*v = w.

This functional is well-defined since L* is one-to-one. Furthermore, ¢ is bounded
on W since (812) implies that

€} < Il < <171 ol

By the Riesz representation theorem, there exists u € W C H such that (u,w) =
¢(w) for all w € W, which implies that

(u, L*v) = (f,v) for all v € D*.
This identity it just the statement that u is a weak solution of (&1]). O

8.5. Weak equals strong

A weak solution of [1]) does not satisfy the same boundary condition as a
test function in Definition B8 As a result, we cannot derive an energy equation
analogous to (81X directly from the weak formulation and use it to prove the
uniqueness of a weak solution.

To close the gap between the existence of weak solutions and the uniqueness of
smooth solutions, we use the fact that weak solutions are strong solutions, meaning
that they can be obtained as a limit of smooth solutions.

DEFINITION 8.10. Let f € L*(2). A function u € L*(Q) is a strong solution of
(BI) there exists a sequence of functions u,, € C*(Q) such that B_u, = 0 on 99
and u,, — u, Lu, — f in L?(Q) as n — oo.

In operator-theoretic terms, this definition says that u is a strong solution of
) if the pair (u, f) € L%(Q2) x L?(Q2) belongs to the closure of the graph of the
operator

L:DcC L*Q) — L*(9),
D={ueC"Q): B_u=0ondQ}.
If D is the domain of the closure, then
D> {uec H (Q):vB_u=0},

but, in general, it is difficult to give an explicit description of D.

We will prove that a weak solution is a strong solution by mollifying the weak
solution. In fact, Friedrichs [12] introduced mollifiers for exactly this purpose. The
proof depends on the following lemma regarding the commutator of the differential
operator L with a smoothing operator.

Let
ne(x) = in (E)

en €
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denote the standard mollifier (7 is a compactly supported, non-negative, radially
symmetric C*°-function with unit integral), and let

(8.13) Je: LA(R") — C*(R™) N L*(R™), Jou=n*u
denote the associated smoothing operator.

LEMMA 8.11 (Friedrich). Define J. : L?*(R") — L*(R") by (813) and L :
CHR™) — L?(R") by (83), where A® € CLR™) and C € C.(R"™). Then the

commutator
[Je, L) = J.L — LJ., [Je, L] : CHR™) — L*(R™)

extends to a bounded linear operator [J.,L] : L?*(R") — L?(R"™) whose norm is
uniformly bounded in €. Furthermore, for every u € L?(R™)

[Je,LJu— 0 in L*(R™) as e — 0.
PrOOF. For u € C}, we have
[Je, L] u = ne (Ai(?iu + Cu) — A0; (ne xu) — C (ne % u)
=1 * (Aiaiu) — A (e * O;u) + e x (Cu) — C (Ne * ).

By standard properties of mollifiers, if f € L? then n. * f — f in L? as e — 0T, so
[Je, LJu — 0 in L? when u € CL.
We may write the previous equation as

e Dute) = [ ne = ){[4'w) - 24'@)] Gy
+[C) — C@)uly) | dy.
and an integration by parts gives

[Je, L] u /8776 (x—y Az( ) — Ai(x)} u(y) dy

4 / ne(z — ) [Cly) — Cl) — A (y)] uly) dy.

The first term on the right-hand side of (8.14]) is bounded uniformly in € because
the large factor 9;n.(x — y) is balanced by the factor A%(y) — A%(x), which is small
on the support of n.(x —y). To estimate this term, we use the Lipschitz continuity
of A* — with Lipschitz constant K%, say — to get

\ [oca =) [46) - @) uiw dy'

(8.14)

<K' [ 10t~ w)llo = ollu(w)] dy

< K? [(|:108m€|) * |u|} ().
Young’s inequality implies that
| (lz0imel) * ul|| > < llzdimell 2 ull L2,
and the L'-norm

Ei = [|20inel 1 =

dx—/|x||617 )| dx

n+1
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is independent of e. It follows that
| [ante =) [40) - 4] utr)

where K = F; K*.
The second term on the right-hand side of (814 is straightforward to estimate:

} [ e =) [C) — C@) - 0.4 uty) dy

< K lull .

L2

< [ o= ) luto)] dy

< M (e * ul) (2)
where M = sup {2|C|+|9;A’|} is a bound for the coefficient matrices (with |- |
denoting the L?-matrix norm). Young’s inequality and the fact that |||, = 1
imply that

| o= 1ew - cor-axwl

< M e+ ful [ 2
< Mluf L2

L2

Thus, [Je, L] is bounded on the dense subset C} of L?, so it extends uniquely
to a linear operator on L? whose norm is bounded by K + M independently of e.
Furthermore, since [Je, Lju — 0 as € — 0T for all u in a dense subset of L2, it

follows that [J., Lju — 0 for all u € L?. O

¢

Next, we prove the “weak equals strong” theorem.

THEOREM 8.12. Suppose that the smoothness assumptions in Definition [8.1]
are satisfied, B = v; A" is nonsingular on 9, and f € L*(2). Then a function
u € L?(Q) is a weak solution of (81) if and only if it is a strong solution.

PROOF. Suppose u is a strong solution of (8], meaning that there is a se-
quence (u,) of smooth solutions such that w, — w and Lu, — f in L?(Q) as
n — oo. These solutions satisfy (u,, L*v) = (Luy,v) for all v € D*, and taking the
limit of this equation as n — oo, we get that (u, L*v) = (f,v) for all v € D*. This
means that v is a weak solution.

To prove that a weak solution is a strong solution, we use a partition of unity
to localize the problem and mollifiers to smooth the weak solution. In the interior
of the domain, we use a standard mollifier. On the boundary, we make a change of
coordinates to “flatten” the boundary and mollify only in the tangential directions
to preserve the boundary condition. The smoothness of the mollified solution in
the normal direction then follows from the PDE, since we can express the normal
derivative of a solution in terms of the tangential derivatives if the boundary is
non-characteristic.

In more detail, suppose that u € L?(Q) is a weak solution of (8], meaning
that (u, L*v) = (f,v) for all v € D*, where (-, -) denotes the standard inner product
on L?(Q) and D* is defined in (8I0).

Let {U;} be a finite open cover of Q by interior or boundary coordinate patches
U;. An interior patch is compactly contained in © and diffeomorphic to a ball
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{]z| < 1}; a boundary patch intersects €2 in a region that is diffeomorphic to a
half-ball {z1 > 0, |z| < 1}. Introduce a subordinate partition of unity {¢;} with
supp¢; C Uj and 3, ¢; =1 on Q, and let

U= E Uy, u; = Pju.
J

We claim that u € L?(2) is a weak solution of Lu = f, with the boundary
condition B_u = 0, if and only if each u; € L?() is a weak solution of

(8.15) Luj = ¢, f + [0:0,]A"u,

with the same boundary condition. The right-hand side of (8IH]) depends on u,
but it belongs to L?(£2) since it involves no derivatives of .

To verify this claim, suppose that Lu = f. Then, by use of the equations
(u, pv) = (¢du,v) and (u, L*v) = (f,u), we get for all v € D* that
(uj, L*v) = (u, ¢p; L™ v)

= (u, L*[¢;0]) + (u, [0;¢;]A"v)

= (£,0;0) + (u, [Bi6;]A")
which shows that u; is a weak solution of (8I5]). Conversely, suppose that u; a
weak solution of (8IH). Then by summing (8I6) over j and using the equation
>-;[0:¢;] = 0, we find that u = 7, u; is a weak solution of Lu = f. Thus, to
prove that a weak solution u is a strong solution it suffices to prove that each u;
is a strong solution. We may therefore assume without loss of generality that wu is
supported in an interior or boundary patch.

First, suppose that u is supported in an interior patch. Since u € L?()
is compactly supported in {2, we may extend u by zero on 2° and extend other
functions to compactly supported functions on R™. Then u, = Jou € C° is well-
defined and, by standard properties of mollifiers, u. — v in L? as e — 0F. We will
show that Lu. — Lu in L?, which proves that u is a strong solution.

Using the self-adjointness of .J., we have for all v € D* that

(e, L*v) = (u, JeL*v)
= (u, L*Jev) + (u, [Je, L*]v)
= (f, Jev) + (u, [Je, L*]v)
= (Jef,v) + (u,[Je, L) .
Lemma [RBIIl applied to L*, implies that [J., L*] is bounded on L2?. Moreover, a
density argument shows that its Hilbert-space adjoint is

[Je, L = —[Je, L]

(8.16)

Thus,
(ue, L*v) = (Jef — [Je, L]u, v) for all v € D*,

which means that wu. is a weak solution of

Lue:fea fE:JEf_[JEaL]u'
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Since u, is smooth, it is a classical solution that satisfies the boundary condition
B_u. = 0 pointwise.. Lemma [RI1] and the properties of mollifiers imply that
fe — fin L? as e = 0%, which proves that u is a strong solution.

Second, suppose that u is supported in a boundary patch QN U. ;. In this case,
we obtain a smooth approximation by mollifying u in the tangential directions. The
PDE then implies that « is smooth in the normal direction.

By making a C?-change of the independent variable, we may assume without
loss of generality that €2 is a half-space

R% = {z eR": 2! >0},

and u is compactly supported in EZ. We write

r = (24, '), o= (2%, 2") e R"TL
Since we assume that the boundary is non-characteristic, A' is nonsingular on
2! = 0, in which case it is non-singular in a neighborhood of the boundary by

continuity. Restricting the support of u appropriately, we may assume that A' is
nonsingular everywhere, and multiplication of the PDE by the inverse matrix puts
the equation Lu = f in the form

(8.17) ou+Lu=f L =A"0,+C inz'>0,

where the sum is taken over 2 < ¢/ < n, and the matrices AY (x',2") need not be
symmetric. The weak form of the equation transforms correspondingly under a
smooth change of independent variable.

We may regard u € L? (R?) equivalently as a vector-valued function of the
normal variable u € L? (Ry; L?) where u : z* — u(z!,-), and we abbreviate the
range space L2(R"~1) of functions of the tangential variable 2’ to L% If (-,-)’
denotes the L2-inner product with respect to ' € R"~!, then the inner product on
this space is the same as the L?(R™)-inner product:

(u,v) 2(r,;12) :/ (u,v) dz* = (u,v).
R

We denote other spaces similarly. For example, L? (R+; H 1) consists of functions
with square-integrable tangential derivatives, with inner product

(u,v) 2Ry 1Y) :/ {(u,v)/ + Z(@i/u,&/v)’} dzt;
R+ ,i/:2

and H' (R+; L2) consists of functions with square-integrable normal derivatives,
with inner product

(u, ) (R, 502) = / {(u,v)" + (Oyu, O1v)'} dx'.
Ry

In particular, H*(R") = L? (R+; Hl) NnH! (R+; L2).
Let 1. be the standard mollifier with respect to 2/ € R""!, and define the
associated tangential smoothing operator J! : u — u, by

uc(x!,2') = / 1 n(2' —y ) u(zt,y') dy'.
R

If w € L*(R), then u, € L? (R+; Hl). Fubini’s theorem and standard properties
of mollifiers imply that u — u in L*(R}) as e — 0.
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Mollifying the weak form of (8I7) in the tangential directions and using the
fact that J! commutes with 0;, we get — as in the interior case — that

(ue, L*v) = (ue, {—81 + L’*} v)
= (u,{=01 + L} Jlv) + (u, [J,,L""] v)
— (Jif =L u,v).

meaning that u. is a weak solution of

(8.18) e+ L'ue = fo, fe=Jf=1J, L'u.
Lemma [RIT] applied to the tangential commutator implies that
7 Dlu € L3(R .5 L)

and f. — f in L?*(R4; L?). Moreover, (8I8) shows that u, € H'(Ry; L?). Thus,
we have constructed u, € H*(R'}) such that

(8.19) ue —u, Luc— Lu  in L*(R}) ase — 07,

In view of 8IJ), we just need to show that weak H!'-solutions are strong
solutions[l By making a linear transformation of u, we can transform the boundary
condition B_u = 0 into

U =Ug =+ =1U =0,
where r is the dimension of ker B_. We decompose u = u+ + u~ where
ut = (ul,...,uT,O,...,O)T, u = (O,...,O,ur+1,...,un)T

)

in which case the boundary condition is u* = 0 on ' = 0, with u~ arbitrary.
Ifue Hl(RZﬁ) is a weak solution of Lu = f, then yu™ = 0, where « is the
trace map in ([8IT]). This condition implies that [9]

ute HRY),  H(RY) = CR(RD).
Consequently, there exist u} € C}(R%) such that vl — u™ in H'(R%) as n — oc.
Since ul has compact support in R, it satisfies the boundary condition pointwise.
Furthermore, by density, there exist u." € C! (Ei) such that u; — u~ in HY(R?).
Let ue = uf +u_. Then u, € C} (Ri), B_u, =0, and uc — u in H*(R"). Since
L: H'(R?) — L*(R%) is bounded, ue — u, Lue — Lu in L*(R"), which proves
that u is a strong solution. O

If the boundary is not smooth, or the boundary matrix B is singular and the
dimension of its null-space changes, then difficulties may arise with the tangential
mollification near the boundary; in that case weak solutions might not be strong
solutions e.g. see [30].

Note that Theorem B.12]is based entirely on mollification and does not depend
on any positivity or symmetry conditions

COROLLARY 8.13. Let f € L2*(Q). If the smoothness conditions in Defini-
tion[81] and the positivity conditions in Definition[8-4 Definition[83 are satisfied,
then a weak solution u € L*(Q) of (81) is unique and c|lu|| < | f]|.

11f we had defined strong solutions equivalently as the limit of H!-solutions instead of C1-
solutions, we wouldn’t need this step.



8.5. WEAK EQUALS STRONG 233

PROOF. Let u € L?(Q2) be a weak solution of (81I)). By Theorem BI2 there is
a sequence (u,,) of smooth solutions u,, € C1(Q) of 8I) with Lu, = f, such that
up — wand f, — fin L?. Theorem B0 implies that c||u,| < || f.|| and, taking the
limit of this inequality as n — oo, we get c||ul| < | f||. In particular, f = 0 implies
that u = 0, so a weak solution is unique. ([

A further issue is the regularity of weak solutions, which follows from energy
estimates for their derivatives. As shown in Rauch [33] and the references cited
there, if the boundary is non-characteristic, then the solution is as regular as the
data allows: If A and 99 are Ck*T1, C is CF, and f € H*(Q), then u € H*(Q).
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