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1 Introduction

1.1 What is LattE?

The name “LattE” is an abbreviation for “Lattice point Enumeration.” LattE
was developed in 2001 to count lattice points contained in convex polyhedra
defined by linear equations and inequalities with integer coeflicients. The poly-
hedra can be of any (reasonably small) dimension.

In 2007, LattE macchiato was released and contained many algorithmic im-
provements, in particular primal variants of the algorithms. The newest edition,
LattE integrale, developed in 2010, can compute integrals of polynomials and
volumes of rational polytopes. All these algorithms run in polynomial time for
fixed dimension, or better.

LattE integrale was extended in 2012/2013 with a hybrid C++ and Maple im-
plementation for computing the top coefficients of weighted Ehrhart quasipoly-
nomials, using the general algorithm of [|, and the a C++ implementation of
the algorithm specialized to knapsacks of [,].

To learn more about the exact details of our implementation for lattice point
enumeration, the interested reader can consult [,,] and the references

listed therein. For learning the algorithmic details of integration, see [,].
Here we give a rather short description of the mathematical objects used by
LattE. Note that all our computations are done over the integers or the rationals
exactly. LattE does not accept floating-point numbers as input.

1.1.1 Counting lattice points: Barvinok’s Rational Functions

Given a convex polyhedron P = {u € R? : Au < b}, where A and b are integral,
the fundamental object that we compute is a short representation of the infinite
power series:
f(P;z) = Z ety oyt
aePNZd

Here each lattice point is given by one monomial. Note that this can be a rather
long sum, in fact for a polyhedral cone it can be infinite, but the good news is
that it admits short representations.

Example: Let P be the quadrangle with vertices V7 = (0,0), Vo = (5,0),
Vs = (4,2), and Vy = (0,2), see Figure.

[(P;z,y) = a®+aty+at 4oty fya’ +a® 40y dya® tat + oty ey ratoy Sy +14y°

The fundamental theorem of Barvinok (circa 1993, see []) says that you can
write f(P;z) as a sum of short rational functions, in polynomial time when the
dimension of the polyhedron is fixed. In our running example we easily see that
the 16 monomial polynomial can be written as shorter rational function sum:
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Figure 1: Quadrangle with vertices V4 = (0,0), Vo = (5,0), V3 = (4,2), and
Vi=1(0,2).

f(vaay) = f(KVﬁxay) +f(KV2;xvy) +f(KV3;£C,y) +f(KV4;xay)
where
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F(P;1,1) = 16

Counting the lattice points in convex polyhedra is a powerful tool which allows
many applications in areas such as Combinatorics, Statistics, Optimization, and
Number Theory.

Fore details of how the computations are done, see [,] .

1.1.2 Integration

LattE integrale has two different integration algorithms for integrating a ra-
tional polynomial p € Ry, ..., 24] over a d dimensional rational polytope. The
first one, called the triangulation method, triangulates the polytope into sim-
plices and integrates over each simplex. The other method, called the cone
decomposition method, integrates over each tangent cone of the polytope. In



order to do this, each tangent cone is triangulated into simple cones. This is the
main trade off between the two integration algorithms: you can do one (possibly)
large triangulation, or (possibly) many small tangent cone triangulations.

We decompose polynomials into finite sums of powers of linear forms because
integrating powers of linear forms can be done in polynomial time []. Finding
a decomposition of a polynomial as a sum of powers of linear forms is known as
the polynomial Waring problem.

See [] for a detailed explanation on why the next example gives the correct
integral.

As an example, let us integrate the polynomial z; + x2 over the unit square
with vertices (0,0),(1,0),(0,1) and (1,1). The polynomial is already a power
of a linear form so let £ = (1,1). To integrate [(x1 + 22)™dx over the square,
we need to compute
M! ¢, s))M+d

m|det(u1,. .. ,Ud)‘(i#

( + ) Hi:1<7€aui>
at each vertex s where the u; are the rays from the tangent cone at s, and d is
the dimension of the polytope.

Vertex s; = (0,0): Because (£, s1)12 = 0 the valuation on this cone is zero.

Vertex s = (1,1):

M! (2)1+2 |
Or g ay et vl iy = gy X X8 =478
Vertex s3 = (1,0):
! (1)1+2 B 1 B
(M+d)||det(u17,Ud)‘(l)(_l) - (1+2)' ><1><—1——1/6
Vertex s4 = (0,1) :
M! (1)1+2 1
(M+d)||det(u17,Ud)‘(l)(_l) = (1+2)' XlX—l:—l/G

The integral [7'2 [77 w1 + x5 doy dzg = 0+4/3—1/6—1/6 = 1 as it should
be.

1.1.3 Weighted Ehrhart Quasi-Polynomials

LattE integrale can also compute the weighted Ehrhart quasipolynomials
where the weight function is a polynomial or a sum of powers of linear forms.
See []. This functionality requires Maple.



1.1.4 Ehrhart Quasi-Polynomials of Knapsack polytopes

LattE integrale can compute the Ehrhart quasipolynomials as function of ¢
of polytopes in the form

{r eRYy | arwy + -+ + @z, =t}

These polytopes are also related to Sylvester’s denumerant. See [,].

1.2 Which programs of LattE compute what?
LattE contains three key executables:

count counts lattice points, computes Ehrhart polynomials and Ehrhart series
of polytopes. This executable has replaced ehrhart, but ehrhart is still
included for backwards compatibility.

integrate integrates polynomials, powers of linear forms, and products of pow-
ers of linear forms over polytopes. Integrate can also computed weighted
Ehrhart quasipolynomials.

top-ehrhart-knapsack Computes the Ehrhart quasipolynomials for knapsack-
type polytopes.

latte-maximize, latte-minimize perform linear integer optimization.

The other executables in latte are drivers, converters, and other small utility
functions.

1.3 Maple programs distributed with LattE

LattE integrale also comes with a number of Maple programs, which can be
used independently of the main LattE code. We distribute them for several
reasons:

e As a pedagogical tool, as it is often easier to understand the straightfor-
ward version of the algorithm written in Maple than it is to understand
the optimized C++ implementation in LattE.

e As a technology preview, for some advanced algorithms that have not yet
been implemented in C++.

e For cross-checking the correctness of our C++ implementations.



The Maple programs come from the LattE source directory code/maple. They
are installed in dest/share/latte-int/.

The following README file gives more information.

This directory, available both on the LattE website and as part of the
LattE integrale distribution (in the directory code/maple), contains
LattE’s Maple programs, which can be used independently.

Conebyconeapproximations_08_11_2010.mpl

It contains Maple code for computing the highest coefficients of
Ehrhart quasi-polynomials, using the algorithm of this paper:

- Velleda Baldoni, Nicole Berline, Jesus A. De Loera, Matthias
Koeppe, and Michele Vergne, Computation of the highest
coefficients of weighted Ehrhart quasi-polynomials of rational
polyhedra, Foundations of Computational Mathematics 12 (2012),
435-469, doi:10.1007/s10208-011-9106-4

These functions are also accessible using LattE’s "integrate"
function; see the LattE manual.

It can also compute the canonical cone-by-cone patched
quasi-polynomial defined in the paper:

- Velleda Baldoni, Nicole Berline, Jesus A. De Loera, Matthias
Koeppe, and Michele Vergne, Three Ehrhart Quasi-polynomials, 2014.

m-knapsack.mpl

It contains Maple code for computing the highest coefficients of
Ehrhart quasi-polynomials of knapsack polytopes, using the algorithm
of the papers:

- Velleda Baldoni, Nicole Berline, Jesus A. De Loera, Brandon
E. Dutra, Matthias Koeppe, and Michele Vergne, Top degree
coefficients of the denumerant, 25th International Conference on
Formal Power Series and Algebraic Combinatorics (FPSAC 2013),
DMTCS proc. AS, Discrete Mathematics and Theoretical Computer
Science (DMTCS), 2013, pp. 1149-1160, available from
http://wuw.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAS0197/4324

- Velleda Baldoni, Nicole Berline, Jesus A. De Loera, Matthias
Koeppe, and Michele Vergne, Coefficients of Sylvester’s denumerant,
eprint arXiv:1312.7147 [math.CO], 2013

LattE integrale also contains a native C++ implementation of the
same algorithm. It is MUCH faster, so we recommend that for any



production use. See the LattE manual.

RealBarvinok-mars-exemples-2014-03-10.mpl

It contains Maple code for computing intermediate generating
functions S°L (by means of Brion-Vergne decomposition) and
intermediate Ehrhart quasi-polynomials, using the algorithms in:

- Velleda Baldoni, Nicole Berline, Matthias Koeppe, and Michele
Vergne, Intermediate sums on polyhedra: Computation and real
Ehrhart theory, Mathematika 59 (2013), no. 1, 1-22,
doi:10.1112/50025579312000101

It also contains Maple code for computing the canonical Barvinok

patched generating function and quasi-polynomial for a simplex,

as described in:

- Velleda Baldoni, Nicole Berline, Jesus A. De Loera, Matthias

Koeppe, and Michele Vergne, Three Ehrhart Quasi-polynomials, 2014.

3-ehrhart-polynomials-paper-examples.mpl

Computational examples from the paper:

- Velleda Baldoni, Nicole Berline, Jesus A. De Loera, Matthias

Koeppe, and Michele Vergne, Three Ehrhart Quasi-polynomials, 2014.

The other files are part of LattE’s build system and can be ignored.

2 Input Files

A polytope can be defined from a list of vertices (a v-representation) or a list
of hyperplane inequalities (h-representation) and so LattE can start from either
representation in different formats. Here are four common file formats:

1. LattE style vertex file
LattE style hyperplane file

CDD style vertex file

-~ W N

CDD style hyperplane file

Users of Polymake will notice that Polymake’s facets and vertices are printed in
a format that is easily converted to a LattE style h- or v-representation.



LattE comes with a large library of example input files compiled from various
sources. In the source distribution, it can be found in the EXAMPLES subdirec-
tory; after installation, it can be found in dest/share/latte-int/examples.

We now explore the file syntax of each.

2.1 LattE h-representation
2.1.1 Inequality Description

Let P be a polytope described by a system of inequalities Az < b, where A €
Zmxd A = (ai;j), and b € Z™. Note that any hyperplane representation with
rational coefficients can be brought into this form; for example x 4+ 1/2y < 5/9
should be written as 18z + 9y < 10. With P = {x : Az < b}, the input file is;

m d+1
b -A

Example: Let P = {(z,y):2 <1l,y<l,z4+y <1,z >0,y > 0}. Thus

Y
0
1
1
0

-1

S
Il
O O = =

and the LattE input file would be

53

1-1 0
1 0-1
1-1-1
0 1 0
0 0 1

2.1.2 Equality Constraints

By default, a constraint is an inequality of type a”z < b. But to input an

equality constraint a”z = b we need to add a keyword.

Example: Let P be as in the previous example, but require x + y = 1 instead
ofx+y <1, thus, P={(z,y):x < lLy<l,z+y=1,2 >0,y > 0}. Then the
LattE input file that describes P would be as such:

10



5 3

1-1 0
1 0-1
1-1-1
0 1 0
0 0 1

linearity 1 3

The last line states that among the 5 inequalities one is to be considered an
equality, the third one.

In general, the linearity syntax is :
linearity <number of equations> <row indices...>

The row indices start at 1.

2.1.3 Nonnegativity Constraints

For bigger examples it quickly becomes cumbersome to state all nonnegativity
constraints for the variables one by one. Instead, you may use another short-
hand.

Example: Let P be as in the previous example, then the LattE input file that
describes P could also be described as such:

3 3

1-1 0
1 0-1
1-1-1

linearity 1 3
nonnegative 2 1 2

The last line states that there are two nonnegativity constraints and that the
first and second variables are required to be nonnegative. NOTE that the first
line reads “3 3” and not “5 3” as above!

In general, the nonnegative syntax is :

nonnegative <number of variables in list> <variable indices...

The variable indices start at 1.

11



2.1.4 Cost Vector

The functions maximize and minimize solve the integer linear programs
max{cTz : z € PNZ%}

and
min{cTz : x € PNZ}.

Besides a description of the polyhedron P, these functions need a linear objective
function given by a certain cost vector ¢ € Z¢, where the input style is very
similar to a LattE h-representation file.

Example: If the polyhedron is given in the file “fileName”

4 4

1-1 0 0
1 0-1 0
1 0 0-1
1-1-1-1

linearity 1 4
nonnegative 3 1 2 3

the cost vector must be given in the file “fileName.cost”, as for example in the
following three-dimensional problem:

N =
oW
\1

The first two entries state the size of a 1 x n matrix (encoding the cost vector),
followed by the 1 x n matrix itself. Assuming that we call maximize, this whole
data encodes the integer program

max{2xy + 4z + Tx3 : v1 + T2 + x3 = 1,21, 72,23 € {0,1}}.

2.2 LattE v-representation

LattE can start from a homogenized v-representation of the polytope. To ho-
mogenize a vertex, simply add an leading 1 to the vertex. This has the effect
of lifting the polytope to a cone in one dimension higher such that the original
polytope can be extracted by intersecting the cone with the x; = 1 plane. For
example, take a triangle in the plane, then Figure shows the resulting cone.

Let v1, ..., v be the vertices of a polytope P C R™, then the LattE v-representation
file format is:

12



exeE {ac}

Figure 2: Homogenized triangule.

kE(n+1)
11}1

1vk

Example: Note, like LattE h-representations files, a rational-vertex polytope
with can be written with integer data by scaling each homogenized vertex. Below
are the vertices of a rectangle (0,0), (2/3,0), (0,1/4),(2/3,1/4):

DW=
O N O W
= O O

12 8 3

2.3 CDD Input Files

In addition to the formats described above, LattE can also accept input files in
standard CDD format. Below is an example of CDD input that is readable into
LattE.

13



H-representation

begin

4 4 integer
2-2 4 -1
3-2-2 3

6 2 -4 -3

1 2 2 1
end

For a complete description of CDD file syntax, see the CDD manual []. Pass the
command-line option --cdd to LattE if you use a CDD input format.

2.4

Non—full dimensional polytopes

When the input polytope is not full dimensional, LattE projects that polytope
such that it becomes full dimensional. This transformation preserves the lattice
point count of the input polytope.

Note,

however, that this is not supported when the input is given in LattE

v-representation.

Also note that the integration routines do not currently support non—full di-
mensional polytopes.

2.5

LattE vs. CDD file formats

There are a few key differences between LattE and CDD file formats.

1.

CDD uses the file extension *.ine for h-representation files, and *.ext for
v-representation files. However, LattE makes no assumption on the file
extensions of files. This manual has recommended using *.vrep.latte
and *.hrep.latte for LattE style files, but you are free to name your
files anything; even our own example files do not follow this convention.

. CDD also requires “H-representation” or “V-representation” keywords in

the file. Pass the command-line option --cdd to LattE if you use either
of the two CDD formats.

On the other hand, forgetting about the “linearity” and “nonnegative”
keywords, there is no syntactic difference between a LattE v- and h-
representation file. Therefore, you need to provide the command-line
option —--vrep whenever you input a LattE v-representation file.

14



2.6 Polynomials and linear forms

LattE integrale can also integrate polynomials and in particular sums of pow-
ers of linear forms over polytopes. Powers of linear forms are the fundamental
structure used to integrate. Next, we describe the syntax of polynomials and
linear forms
e A polynomial is represented as a list of its monomials in the form
[monomialy ,monomials,...],
where monomial; is represented by
[coefficient, [exzponent-vector]].
For example, 3x3z1x$ + 7x323 is input as [[3, [2,4,6]1], [7,[0,3,511].

e To deal directly with sums of powers of linear forms, a fundamental data
structure in LattE integrale, the input format is

[linear-term;, linear-termy, ...],
where linear-term; is represented by

[coefficient, [power, [coeffictent-vector]]].
For example, 3(2z¢+411+622)'°+7(3x1+522)12 is input as [[3, [10, [2,4,6]1]1],
[7,[12,[0,3,5]1]11].

The reason this is useful is because any polynomial can be written as a sum of
powers of linear forms, see [|.

2.7 Products of linear forms

LattE integrale can integrate a product of linear forms over a simplex or a
triangulation of a polytope.

The input format for a sum of products of linear forms is

[ [coefficient, [[power;, [coefficient-vector;]], [powers,
[coefficient-vectors]], ...11, ...].

For example, the integrand

(121 4 229)3 (421 + 522)% 4+ 7(821 4 922)*0 (1121 + 1220) 3 (142 + 1532)'6

is written as

(f1, [ €3, [1, 211, [6, [4, 511 11, (7, [ [10, [8, 911, [13, [11, 1211,
[16, [14, 15]1 11 1]

15



3 Running LattE

The executables of LattE integrale are installed in the “bin/” subdirectory
of the installation tree. The standard distribution of LattE integrale sets the
installation tree to be the “dest/” subdirectory of the source tree. Thus, to
invoke the count executable, you would type

dest/bin/count

3.1 How to use count

count has a nice help menu, to view it, run
count --help
The following options control what count computes.

e Count the number of lattice points in polytope P, where P is given in a
file named “fileName.hrep.latte” in different file formats.

count fileName.hrep.latte

count --vrep fileName.vrep.latte
count --cdd fileName.ine

e Count the number of lattice points in nP, the dilation of P by the integer
factor n.
count --dilation=n fileName.hrep.latte
e Use the homogenized Barvinok algorithm [] to count the number of lattice
points in the polytope P. Use if number of vertices of P is big compared
to the number of constraints.

count --homog fileName.hrep.latte

e Compute the number of lattice points (default)

count --count-lattice-points fileName.hrep.latte

e Compute the multivariate generating function of the set of lattice points
of the polyhedron

16



count --multivariate-generating-function
fileName.hrep.latte

For unbounded polyhedra, one needs to combine this with the option
--compute-vertex-cones=4ti2 (now the default when 4ti2 is available),
as other methods in LattE currently refuse to handle unbounded polyhe-
dra. For example,

count --compute-vertex-cones=4ti2
--multivariate-generating-function fileName.hrep.latte

writes the multivariate generating function (in Maple notation) to “file-
Name.rat.”

e Compute the Ehrhart polynomial of a lattice polytope
count --ehrhart-polynomial fileName.hrep.latte

Note: For the computation of weighted Ehrhart quasipolynomials of ra-
tional polytopes, or their top coefficients, see section below.

e Compute the unsimplified Ehrhart series as a univariate rational function
count --ehrhart-series fileName.hrep.latte
e Compute the simplified Ehrhart series as a univariate rational function
(needs Maple).

count --simplified-ehrhart-series fileName.hrep.latte

e Compute the first N terms of the Ehrhart series

count --ehrhart-taylor=N fileName.hrep.latte

The following options relate to the Barvinok algorithm and were introduced
by Matthias Képpe in LattE macchiato, see [|. Not all modes of operation
support all options.

e Triangulate and signed-decompose in the dual space (traditional method,
default)

count -—-dual fileName.hrep.latte

17



e Triangulate in the dual space, signed-decompose in the primal space using
irrationalization

count --irrational-primal fileName.hrep.latte

e Triangulate and signed-decompose in the primal space using irrationaliza-
tion

count —--irrational-all-primal fileName.hrep.latte

e Decompose cones down to an index (determinant) of N instead down to
unimodular cones (which have an index of 1).

count --maxdet=N fileName.hrep.latte

e Do not signed-decompose simplicial cones

count --no-decomposition  fileName.hrep.latte

e Use polynomial substitution for specialization (traditional method, de-
fault)

count --polynomial fileName.hrep.latte

e Use exponential substitution for specialization (recommended for maxdet
larger than 1)

count --exponential fileName.hrep.latte

REMARK The functionality of the LattE v1.2 ehrhart command has been
merged into count:
count --ehrhart-series FILENAME
(replaces: ehrhart FILENAME)
count --simplified-ehrhart-series FILENAME
(replaces: ehrhart simplify FILENAME)
count --ehrhart-taylor=N FILENAME

(replaces: ehrhart N FILENAME)

The ehrhart program is still available, but it does not accept the new command-
line options of count.

18



3.2 How to use integrate

Like count, integrate has a help menu. To view the menu, run
integrate --help

There are two different integration (and volume) algorithms. The triangulation
method triangulates the entire polytope and integrates over each simplex. In the
cone decomposition method we integrate over each cone, possibly triangulating
it first. Unlike other integration software, LattE integrates polynomials and
powers of linear forms in exact arithmetic.

integrate is also able to compute weighted Ehrhart quasi-polynomials, see the
next subsection.

e Integrates using the cone-decomposition method.

--cone-decompose

e Integrates using the triangulation method.

--triangulate

e Sets what you want to compute: a volume or an integral.

--valuation=integrate
—-valuation=volume

e Sets the file that contains the polynomial, powers of linear forms, or prod-
ucts of powers of linear forms. If this option is not set, and the valuation
is integration, the integrand will be read from stdin.

—-monomials=FILE
—-linear-forms=FILE
--product-linear-forms=FILE

If the integrand is a polynomial or a power of a linear form, there are
two integration and volume algorithms available: a polytope triangulation
based method and a tangent cone based method. If the integrand is a
product of powers of linear forms, there is only one algorithm available
and it is a polytope triangulation based method.

19



Example: Let us view a few examples of the above options

e Integrates a polynomial in file “FILE” using the triangulation method.

integrate --valuation=integral --triangulate
--monomials=FILE fileName.hrep.latte

e Find a volume using the cone decomposition method from a LattE v-
representation file.

integrate --valuation=volume --cone-decompose
--vrep fileName.vrep.latte

e If an integration method is not given, LattE integrale computes the
integral with both methods. This can also be done by the --all option.
The next two commands do the same thing: find a volume using both
methods from a LattE v-representation file.

integrate --valuation=volume --vrep fileName.vrep.latte

integrate --valuation=volume --all
--vrep fileName.vrep.latte

3.2.1 How to use integrate for computing (highest coefficients of)
weighted Ehrhart quasipolynomials

This option currently requires Maple. For non-lattice polytopes, the coefficients
of the Ehrhart quasipolynomials are computed as step functions. An amazing
feature of this algorithm is that we can compute a small number of high-
est coefficients of the Ehrhart quasipolynomial even for polytopes of
rather high dimension, for which the computation of the full quasipolyno-
mial is completely out of reach. See [] for the details, including a discussion of
the complexity; this paper is based on the pioneering work in [].

The triangulation of vertex cones is performed in the dual space; command line
options to do otherwise are ignored.

By default, LattE integrale computes the coeflicients incrementally, starting
from the highest coefficient, which is the easiest to compute. You can interrupt
the computation at any time if you don’t need any further coefficients. If you
know in advance how many coefficients from the top you need, use the option
—--num-coefficients=K. This will be slightly faster than incremental computa-
tion.

20



Sets what you want to compute: weighted Ehrhart quasipolynomials.

--valuation=top-ehrhart

Sets the weight function from a file.

—--monomials=FILE
—-linear-forms=FILE

Sets the weight function to 1 (unweighted). This is the default.

--top-ehrhart-unweighted

Only compute the top K coefficients. The quasipolynomial’s coefficients
are not computed incrementally. Use this option if you know in advance
you can wait for the software to finish or have low memory requirements.
When this option is missing, the entire quasipolynomial’s coefficients are
computed incrementally which takes more memory but you may manually
stop the computation at any time.

—-num-coefficients=K
Save the quasipolynomial to a file. If “~num-coefficients=K” is used,
the file write is done after the quasipolynomial is computed. If “—num-
coefficients=K” is missing, the quasipolynomial’s coefficients are saved as
they are computed.

--top-ehrhart-save=FILE
Compute the weighted Ehrhart polynomial that is valid for non-integer
dilations, rather than integer dilations only. The formulas for the coeffi-
cients will usually be more complicated. Even for lattice polytopes, one
obtains Ehrhart quasipolynomials rather than Ehrhart polynomials.

--real-dilations
Sets interactive mode if you want to manually type a polynomial or a sum
of linear forms. You cannot compute a weighted Ehrhart quasipolynomial

where the weight is a product of linear forms.

—-—-interactive—-mode

21



Example: Let us view a few examples of the above options.

e Compute the unweighted Ehrhart quasipolynomial that is valid for real
dilations, rather than integer dilations only.

integrate —--valuation=top-ehrhart --real-dilations
fileName.hrep.latte

e Compute weighted Ehrhart quasipolynomial where the weight is a poly-
nomial.

integrate --valuation=top-ehrhart --monomials=FILE
fileName.hrep.latte

e Find only the two largest degree terms of the linear form weighted Ehrhart
quasipolynomial

integrate --valuation=top-ehrhart --linear-forms=FILE
--num-coefficients=2 fileName.hrep.latte

e Manually enter a weight function and save the Ehrhart quasipolynomial
to a file

integrate --valuation=top-ehrhart --interactive-mode
--top-ehrhart-save=FILE fileName.hrep.latte

Example: A concrete example using a file from the library of examples that
comes with the LattE distribution. We count the lattice points in the 3-
dimensional cube [—1,1]3, dilated by a real dilation factor T = t.

integrate --valuation=top-ehrhart --cdd --real-dilations \
--top-ehrhart-save=cube_3_real.txt \
dest/share/latte-int/examples/cubes/cube_3.ext

This creates a file cube_3_real.txt with the following content (the formulas
are long; some parts have been elided here):

epoly:= \

+ 8*%T"3\

(12-24*MOD(t, 1) ) *T~2\

(6-12+«M0OD(t,1)+359/125245152* (-5521248*M0D (t,1)+2760624) *MOD(t,1)-[...]1)*T\
1-1700/431*M0OD(t,1)+1652/431xM0D(t,1) "2-[...];

+ o+ o+
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As this example shows, the quasi-polynomial is expressed as a polynomial in T'
(the dilation factor), whose coefficients are step-polynomials. The polynomial
degree in T is 3 (the dimension of the polytope). The step-polynomials are
expressed using the fractional-part operation MOD(z, 1), using the variable ¢
(again the dilation factor). (Having two different variables for the dilation factor
makes it easier to manipulate this expression in computer algebra systems such
as Maple.)

This formula is valid for arbitrary real (not just rational) dilations. See below
for how to conviently evaluate it in Maple.

Example: For comparison, let’s compute the same example without the --real-dilations
parameter.

integrate --valuation=top-ehrhart --cdd
--top-ehrhart-save=cube_3_integer.txt
dest/share/latte-int/examples/cubes/cube_3.ext

This creates a file cube_3_integer.txt with the following content:

epoly:= \
+ 8+T"3\
12+T"2\
6%T\

1

+ 4+ +

Since the input was a lattice polytope, this is an Ehrhart polynomial (all coef-
ficients are constants).

Example: Another example. This time we ask only for the highest 3 coefficients
of the Ehrhart quasi-polynomial, valid for real dilations, of a 6-dimensional
simplex from the library, which is given in LattE vrep format.

integrate --redundancy-check=none --triangulation=4ti2
--valuation=top-ehrhart --num-coefficients=3
--top-ehrhart-save=random-simplex-real-top3.txt
--vrep —-real-dilations
dest/share/latte-int/examples/random-simplex/random-simplex-dim6-digits4-:

This computation takes a while and creates a file random-simplex-real-top3.
txt. It is large, and we don’t show it here.

Example: The same example, but we do not know in advance how many
coefficients we want. We do have a limited budget of time or patience. So we
ask for an incremental computation, starting at the top coefficients. We can
interrupt at any time by typing CONTROL-C.
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integrate --redundancy-check=none --triangulation=4ti2
--valuation=top-ehrhart
--top-ehrhart-save=random-simplex-real-top3.txt
--vrep --real-dilations
dest/share/latte-int/examples/random-simplex/random-simplex-dim6-digits4-:

If interrupted after the term of T is shown on the screen, the file random-simplex-real-incremental.
txt looks like this:

epoly:= \
+ 15181275198303665635391/360*T"6\
+ (-1/120*M0OD(-64173062910517600471035%t,1)-[...1)*T"5

To facilitate reading this file into Maple, let’s add a semicolon at the end.

echo ";" >> random-simplex-real-incremental.txt

3.2.2 Evaluating Ehrhart quasi-polynomials in Maple

LattE’s Maple library has a helper function called evaluateEhrhart that is
useful for evaluating quasi-polynomials in this form. You can find it in file
dest/share/latte-int/Conebyconeapproximations_08_11_2010.mpl. Let’s
look at a sample Maple session. We will refer to the files created in the previous
section. First load the code:

> read "dest/share/latte-int/Conebyconeapproximations_08_11_2010.mpl":
Now read in one of the example Ehrhart quasi-polynomials.
> read "cube_3_real.txt";

Maple displays the quasi-polynomial. It is always assigned to variable epoly.
The output is long, but still fits on the screen (if your screen is big enough).
Let’s evaluate it for a few integer and rational dilations:

> evaluateEhrhart (epoly, 0);

1
> evaluateEhrhart(epoly, 1);
27
> evaluateEhrhart (epoly, 3/2);
27

24



> evaluateEhrhart (epoly, 2-1/1000000) ;
27

> evaluateEhrhart (epoly, 2);
125

These are all exact answers. Now let’s try real dilations. evaluateEhrhart
allows you to enter floating point numbers. Remember, Maple represents all en-
tered decimal fractions exactly, using floating point with basis 10. evaluateEhrhart
interprets a given floating point number as an interval that represents that all
given digits are correct, but the last given digit may be rounded:

> floatToInterval(2.0);

39 41

20 20
> floatToInterval(2.00);

399 401

200 200

If the dilation factor is given with enough precision, then by analyzing this
interval, we can evaluate the quasi-polynomial ezactly (the answer will be an
integer (or, in the weighted case, a rational number):

> evaluateEhrhart(epoly, 2.3);
# Exact answer (assuming that all provided digits of the
# floating-point dilation factor were correct):

125

However, if you try this for a dilation where there is a jump discontinuity in
the quasi-polynomial, this method cannot work, and we return a simple floating
point evaluation of the formula. Use the result with caution.

> evaluateEhrhart(epoly, 2.0);
# The precision of the given floating point dilation factor is
# not large enough to allow exact computation. Resorting to
# floating point evaluation. Increase Digits if you want more
# precision in this evaluation.

125.000

We can also evaluate at symbolic expressions. However, evaluateEhrhart has
to rely on the correctness of Maple’s floor function for symbolic arguments.
Also, the system variable Digits needs to be set to a large enough value, or
Maple will leave some floor expressions unevaluated.
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> Digits := 4: evaluateEhrhart(epoly, 707+*sqrt(2));
1/2 1/2 2 1/2 3
1 + 6 floor(707 2 ) + 12 floor(707 2 ) + 8 floor(707 2 )

> Digits := 8: evaluateEhrhart(epoly, 707*sqrt(2));
7988005999

Let’s switch to another example.

> read "random-simplex-real-incremental.txt":

The Ehrhart quasi-polynomial, valid for real dilations, has a complicated struc-
ture with many jump discontinuities. Any evaluation at an integer or rational
number will be exact.

> evaluateEhrhart (epoly, 1234/1000);

167513276311474881671845822495473290521

1125000000000000000

If we try to give a floating point number, however, we need to give it with really
high precision; but even then, we cannot evaluate it exactly because we only
computed the top 3 coefficients of the quasi-polynomial. So the best we can do
is a floating-point approximation.

evaluateEhrhart (epoly, 1.23);

The precision of the given floating point dilation factor is
not large enough to allow exact computation. Resorting to
floating point evaluation. Increase Digits if you want more
precision in this evaluation.

H H H H V

21
0.14602810 10

> evaluateEhrhart (epoly, 1.23456789098765);
The precision of the given floating point dilation factor is
# not large enough to allow exact computation. [...]
21
0.14931232 10

HH

> evaluateEhrhart (epoly, 1.23456789098765345678976543456789) ;
Given Ehrhart quasi-polynomial was not complete; evaluating
# using floating point. Increase Digits if you want more precision.
21
0.14931233 10

HH+
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> Digits := 40: evaluateEhrhart(epoly, 1.23456789098765345678976543456789) ;
# Given Ehrhart quasi-polynomial was not complete; evaluating
# using floating point. Increase Digits if you want more precision.
21
0.1493123109910186285550465481092293593932 10

Symbolic expressions work better in this case. Again, the system variable
Digits needs to be set to a large enough value, or Maple will leave some floor
expressions unevaluated.

> Digits:=4: evaluateEhrhart(epoly, exp(1));
15181275198303665635391 6

+ 1/120 exp(1) £floor(-64173062910517600471035 exp(1))

5
+ 1/120 exp(1) £floor(-32059652032188669736011 exp(1))

[...]
> Digits:=40: evaluateEhrhart(epoly, exp(1));
15181275198303665635391 6  20633492252192421384473 5
———————————————————————— exp(1) + -—-——-—————————————————- exp(1)
72 30

3.3 Options common to both count and integrate

A common subproblem in counting lattice points and integration requires finding
triangulations and tangent cones. Also, there are many different software tools
available to do this. Instead of reinventing the wheel, LattE links with other
software tools to compute these basic objects. In this section, we describe how
you can control which software tool is used.

e The 4ti2 program can be used instead of cddlib to compute the vertex
cones of polytopes, triangulations, and duals of cones. In many cases,
4ti2 is faster, which is why it is now the default when it is available.

--compute-vertex-cones={cdd,4ti2}
--triangulation={cddlib,4ti2}
--dualization={cdd,4ti2}
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e By default, LattE assumes the h-representation may contain redundant
hyperplanes and tries to find and remove them. You can control how
much more LattE should spend checking the input h-representation with
the following option.

--redundancy-check={none,cddlib,full-cddlib}.

— “full-cddlib” (the default) uses cddlib to compute an irredundant sys-
tem of linear equations and inequalities describing the polyhedron.
This corresponds to the traditional LattE behavior; it can be expen-
sive.

— “cddlib” (used to be the default in the 1.24mk-0.9.x series) uses
cddlib to compute some implicit linearities only; it often fails but is
faster than full-cddlib.

— “none” does nothing, the input description of the polytope should be
irredundant.

3.4 How to use top-ehrhart-knapsack
To view the help menu, run
top-ehrhart-knapsack --help

An (equality-constrained) knapsack is a polytope in the form {x € R? | ajz; +
-+ agrg = t;x; > 0}, which we identify by the coefficients o = [y, . .., aqg].
top-ehrhart-knapsack can compute the largest k degree terms in the Ehrhart
quasi-polynomial E(e,t) as a function of ¢, using the algorithm from [,]. We
assume the greatest common divisor of the «; is one, because if g is the greatest
common divisor of the o; and g # 1, then E(a/g,t) = E(a, gt). There are only
a few command line parameters:

—file, -f FILENAME FILENAME contains the knapsack file in a special for-
mat (see below). Required parameter.

—out, -o FILENAME?2 Saves the result to a file. This is an optional parame-
ter, but is is recommended to always save the result to a file as the output
can be large.

-k n Computes the n'" term of the Ehrhart polynomial. This or “-all-k” is
required.

—all-k n Computes the largest n!* terms of the Ehrhart polynomial.

—gcd-polynomial (0] 1) If 1, uses a polynomial time algorithm to find the
coefficients of the Ehrhart quasi-polynomial. The default is 1. See note
below.
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top-ehrhart-knapsack uses a special file format to input the knapsack coeffi-
cients. For a the knapsack «, the input file contains one line: the number of
coefficients in the knapsack followed by each coefficient separated by spaces.

The two main computation options are best illustrated with an example. Con-
sider the knapsack « := [1,2,3,4,5]. Notice that the greatest common divisor
is one. Save this knapsack in a file called knap1.txt:

512345
To compute the 2nd coefficient of the Ehrhart polynomial, use the command
top-ehrhart-knapsack --file knapl.txt -k 2 --out results.mpl
which gives the result
coeffdminusl:= (1/96);

and hence the 2nd term is 72 /96.

Next, we can compute the largest 5 terms (because the dimension of this knap-
sack is 4, this means we are computing the full Ehrhart polynomial), with the
command

top-ehrhart-knapsack --file knapl.txt --all-k 5 --out results.mpl
which gives the result

coeff4minus0:= (1/2880);

coeffdminusl:= ((((((-1/48) + ((CCCCCL)*(MOD(t*(1/3),1))*(3))) + <and so on>;
coeff4minus2:= <another large expression>;
coeffdminus3:= <another large expression>;

coeffdminus4:= <another large expression>;

topKPolynomial:=(coeff4minus0)*T" (4) + (coeffdminusl)*T"(3)
+ (coeffdminus2)*T~(2) + (coeffdminus3)*T~ (1) + (coeffdminus4)*T"(0);

There are a few things to note from this example:

e The expressions for each coefficient might be very long. It is recommended
that you always save the results in an output file, and use a computer
algebra system to simplify the expressions. Also note that the output
can be parsed by Maple. In fact, using Maple to simplify the expressions,
“coeff4minusl” is 1/96.
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e The MOD(a,b) function represents the number in the half-open interval
[0,0) that is equal to @ mod b. For b = 1, MOD(a, 1) is the fractional
part of a and is equal to a — |a]| € [0,1), where |a] is the largest integer
smaller or equal to a.

e The output uses “t” for the periodic coefficients, and “I"” for the monomial
terms. This is done so you can use Maple’s coeff command to extract
the coefficients.

e To evaluate the polynomial, we can run
eval (subs ({T=10,t=10,M0D=1latteMod}, topKPolynomial))

where the function latteMod can be found in code/maple/m-knapsack.
mpl.

The option --gcd-polynomial controls how poles are computed, which is given
by the greatest common divisor of subsets of {aq,...,a4}. For example, the
options --gcd-polynomial 1 -k 5 will require finding all (g) + (Z) + -+ (?)
subsets of size at most 5 and compute the greatest common divisor of each one.
However, --gcd-polynomial 0 -k 5 will use a dynamic programming tech-
nique to compute the greatest common divisor of every subset of {aq,...,aq}.
If the number of unique greatest common divisors from subsets is much smaller

than 2¢, and d is large, ~—gcd-polynomial O should be much faster.

3.5 Optimization

LattE can also optimize over the integer points of a polytope. However, this
part of the software is not as stable as the rest of the code. The optimization
executables require a cost vector specified in “fileName.cost” if the polytope
file is named “fileName.”

e Maximizes/Minimizes a given linear cost function over the lattice points
in the polytope. The Digging algorithm [] is used. Optimal point and
optimal value is returned.

./latte-maximize fileName
./latte-minimize fileName

e Maximizes/Minimizes a given linear cost function over the lattice points
in the polytope. The Binary search algorithm is used. Only optimal value

is returned.

./latte-maximize bbs fileName
./latte-minimize bbs fileName
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4 Downloading and Installing LattE

LattE is downloadable from the following website:
http://www.math.ucdavis.edu/ latte/

LattE uses the GNU Autoconf, Automake, Libtool tools. The following README
file provides detailed instructions.

This is LattE integrale, the official new version of LattE.

In addition to the traditional LattE function of counting lattice
points in polytopes by variants of Barvinok’s algorithm, LattE
integrale can also compute volumes and integrate polynomial functions
over polytopes. It supersedes LattE macchiato, an improved version of
LattE.

LattE requires the following programs and libraries:

GMP, compiled with --enable-cxx
NTL, version 5.4 or newer
cddlib

(optional) LRS

(optional) LiDIA

(optional) 4ti2

(optional) Maple (non-free)

R I R

If you do not have these libraries installed yet, follow the
instructions below to install them. However, we also package a source
code distribution called

"latte-integrale"
(also called LattE integrale "for tea, too") that includes all of
these libraries (except, of course, Maple) and will build them
automatically. You can get it at the same place where you got this

package,

http://www.math.ucdavis.edu/"latte/

Building and installing LattE

It is STRONGLY RECOMMENDED to use the source code distribution called
"latte-integrale". It contains all prerequisite libraries and also
PATCHES for some of the libraries that fix configuration and build
problems that are not yet included in upstream releases of the library.

If you do not wish to use "latte-integrale", follow the instructions
below. The instructions assume you want to install LattE and all its
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prerequisites into your home directory, namely into a hierarchy rooted
at the directory $HOME/latte.

1. Install the GNU Multiple Precision Library

Download it from http://www.swox.com/gmp/
Unpack it, then in the source directory do:

./configure --prefix=$HOME/latte --enable-cxx
make
make install

2. Install Victor Shoup’s Number Theoretic Library

Obtain it from http://www.shoup.net/ntl/
Unpack it, then in the source directory do:

cd src
./configure PREFIX=$HOME/latte GMP_PREFIX=$HOME/latte NTL_GMP_LIP=on
make
make install
3. Install Komei Fukuda’s package cddlib

Obtain then from http://www.ifor.math.ethz.ch/ fukuda/cdd_home

4. Put $HOME/latte/bin into your $PATH
and $HOME/latte/lib into your $LD_LIBRARY_PATH:

export PATH="$HOME/latte/bin:$PATH"
export LD_LIBRARY_PATH="$HOME/latte/lib:$LD_LIBRARY_PATH"

5. Optionally, install the non-free library LiDIA.

If you are using LiDIA 2.2.0, note that it installs the directory
include/lidia but expects its header files in include/LiDIA. We
advise to put a symbolic link after installation of LiDIA.

6. Optionally, install 4ti2.

7. Optionally, if you have Maple, make sure that the directory where
the command-line executable of Maple lives ("maple" or, on Windows,
"cmaple.exe") is in your $PATH:

export PATH="/path/to/maple/directory:$PATH"
N. Build and install LattE

From the source directory of LattE:

./configure --prefix=$HOME/latte --with-default=$HOME/latte
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make
make install

Now the LattE executables (count, integrate, latte-minimize, latte-maximize,

should be available in $HOME/latte/bin.

More information

* License: GNU General Public License, see COPYING

* Authors: see AUTHORS

* Documentation: See the LattE manual (file ‘doc/manual.pdf’) to get started.
* Changes since the official release 1.2: see NEWS and ChangeLog

* Website: http://www.math.ucdavis.edu/ latte

5 A Brief Tutorial

In this section we invite the reader to follow along a few examples that show
how to use LattE and also how to counter-check results.

5.1 Counting Magic Squares

Our first example deals with counting magic 4 x 4 squares. We call a 4 x 4
array of nonnegative numbers a magic square if the sums of the 4 entries along
each row, along each column and along the two main diagonals equals the same
number s, the magic constant. Let us start with counting magic 4 x 4 squares
that have the magic constant 1. Associating variables x1, ...,z with the 16
entries, the conditions of a magic 4 x 4 square of magic sum 1 can be encoded
into the following input file “EXAMPLES/magic4x4” for LattE.

10 17

1i-1-1-1-1 0 0 06 00 0 0 O O O O O
i1 00 0 0-1-1-1-1 0 0 0 0 0 O O O
i1 0 0 000 0 00-1-1-1-1 00 0 O0
i1 0 60 06000 00 0 O O O0-1-1-1-1
i-1 0 06 0-1 0 06 0-1 0 0 0-1 0 O O
i1 0-1 0 0 0-1 06 00-1 0 0 O0-1 0 O
1 0 0-1 0 0 0-1 0 0 0-1 0 0 O0-1 0
i 0 0 0-1 0 00-1 0 0 0-1 0 0 O0-1
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1-1 0 00 0-1 0 0O0O0-1 00 0 0-1
10 0 0-1 0 0-1 0 0-1 0 0-1 0 0 O
linearity 101 2 3456 7 8 9 10

nonnegative 16 1 2 3456 7 8 9 10 11 12 13 14 15 16

Now we simply invoke the counting function of LattE by typing:

count EXAMPLES/magic4x4

The last couple of lines that LattE prints to the screen look as follows:

Total Unimodular Cones: 418
Maximum number of simplicial cones in memory at once: 27

*kkxkx Total number of lattice points: 8 *kk*x*

Computation done.
Time: 1.24219 sec

Therefore, there are exactly 8 magic 4 x 4 squares that have the magic constant
1. This is not yet impressive, as we could have done that by hand. Therefore,
let us try and find the corresponding number for the magic constant 12. Since
this problem is a dilation (by factor 12) of the original problem, we do not have
to create a new file. Instead, we use the option “dilation” to indicate that we
want to count the number of lattice points of a dilation of the given polytope:

count --dilation=12 EXAMPLES/magic4x4

The last couple of lines that LattE prints to the screen look as follows:

Total Unimodular Cones: 418
Maximum number of simplicial cones in memory at once: 27

*kxxkx Total number of lattice points: 225351 *¥*x*

Computation done.
Time: 1.22656 sec

Therefore, there are exactly 225351 magic 4 x 4 squares that have the magic
constant 12. (We would NOT want to do THAT one by hand, would we?!)

Here is some amazing observation: the running time of LattE is roughly the
same for counting magic squares of sum 1 and of sum 12. This phenomenon
is due to the fact that the main part of the computation, the creation of the
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generating function that encodes all lattice points in the polytope, is nearly
identical in both cases.

Although we may be already happy with these simple counting results, let us
be a bit more ambitious and and let us find a counting formula that, for given
magic sum s, returns the number of magic 4 x 4 squares that have the magic
constant s.

For this, simply type (note that LattE invokes Maple to simplify intermediate
expressions):
count --simplified-ehrhart-series EXAMPLES/magic4x4

The last couple of lines that LattE prints to the screen looks as follows:

Rational function written to EXAMPLES/magic4x4.rat

Computation done.
Time: 0.724609 sec

We are informed that this call created a file “EXAMPLES/magic4x4.rat” con-
taining the Ehrhart series as a rational function:

(£78+4%t " 7+18*t " 6+36%t " 5+50%t ~4+36%t " 3+18*%t " 2+4*t+1) / (-1+t) "4/ (-1+t"2) "4

Now we could use Maple (or your favorite computer algebra software) to find a
series expansion of this expression.

344517+ 18 %5 +36 %t +50%t* +36 %3 + 18« t2 +4dxt +1
(—14t)4(—1+12)*
= 1+ 8t +48t% + 200t% + 675t* + 1904¢° + 4736t° + 10608t + 21925¢% +
4232817 4 77328¢10 + 134680t + 225351¢12 + 364000t + 570368t +
869856t'5 + O(t1°)

The summands 8t and 225351¢!2 reconfirm our previous counts.

Although this rational function encodes the full Ehrhart series, it is not always
as easy to compute as for magic 4 X 4 squares. As it turns out, adding and
simplifying rational functions, although in just one variable ¢, can be extremely
costly due to the high powers in ¢ and due to long integer coefficients that
appear.

However, even if we cannot compute the full Ehrhart series, we can at least try
and find the first couple of terms of it.

count --ehrhart-taylor=15 EXAMPLES/magic4x4
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The last couple of lines that LattE prints to the screen look as follows:

Memory Save Mode: Taylor Expansion:
1

8t~1

48t72

200t°3

675t74

1904t°5

4736t76

10608t"7

21925t78

42328t°9
77328t710
134680t"11
225351t712
364000t"13
570368t"14
869856t°15
Computation done.
Time: 1.83789 sec

Again, our previous counts are reconfirmed.

Nice, but the more terms we want to compute the more time-consuming this task
becomes. Clearly, if we could find sufficiently many terms, we could compute
the full Ehrhart series expansion in terms of a rational function by interpolation.

5.2 Counting Lattice Points in the 24-Cell

Our next example deals with a well-known combinatorial object, the 24-cell. Its
description is given in the file “EXAMPLES/24 cell”:

24 5

2-1 1-1-1
1 0 0-1 O
2-1 1-1 1
2-1 1 1 1
1 0 0 0 1
1 0 1 0 O
2 1-1 1-1
21 1-1 1
21 1 1 1
11 0 0 O
21 1 1-1
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21 1-1-1
2 1-1 1 1
2 1-1-1 1
2 1-1-1-1
1 0 1 0
2-1 1 1-1
1 0 0 0-1
2-1-1 1-1
1 0-1 0 O
2-1-1 1 1

2-1-1-1 1
2-1-1-1-1
1-1 0 0 O

Now we invoke the counting function of LattE by typing:

count EXAMPLES/24_cell

The last couple of lines that LattE prints to the screen look as follows:

Total Unimodular Cones: 240
Maximum number of simplicial cones in memory at once: 30

*kk*xkx Total number of lattice points: 33 *xxx

Computation done.
Time: 0.429686 sec

Therefore, there are exactly 33 lattice points in the 24-cell. We get the same
result by using the homogenized Barvinok algorithm:

count --homog EXAMPLES/24_cell

The last couple of lines that LattE prints to the screen look as follows:

Memory Save Mode: Taylor Expansion:
*xxx Total number of lattice points is: 33 **¥**

Computation done.
Time: 0.957031 sec
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5.3 Integrating over a polytope

Let us integrate the polynomial w?z%y*2® — 3/822? and the power of a linear

form 3(w + 2z + 4y + 62)*° over the 24-cell.

Create a file named “even.polynomial” that has on its first line the polynomial.
See Section for a review of the syntax.

[[1’[2,2’4,8]]: [_3/8;[0:27010]]]

After running the integration command using the triangulation method

integrate --valuation=integrate --triangulate --monomials=even.polynomial 24_cell

we see that the two monomials where decomposed into 406 powers of linear
forms and the answer is

starting to integrate 406 linear forms.
Integration (using the triangulation method)
Answer: -110535307/170059500
Decimal: -0.64998019516698567266162725399052
Time: 1.92 sec

Computational time (algorithms + processing + program control)
Total time: 2.00 sec

Now create a new file named “powerl0.linearforms” that has in its first line the
power of a linear form:

[[s,[10,[1,2,4,61111]
Then integrate this power of a linear form over the 24 _cell using the cone de-
composition method with the following command:

integrate --cone-decompose --linear-forms=powerlO.linearforms 24_cell

We see the answer is computed very quickly.
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Integration (using the cone decomposition method)
Answer: 59555515086/77
Decimal: 773448247.87012987012987012987013
Time: 0.02 sec
Computational time (algorithms + processing + program control)
Total time: 0.07 sec

Figure 3: The truncated cube.

For the next example, consider the truncated cube in Figure

The vertices are

PR RrP R R RPRRPRPRPRRPRPRPEPRRPRPRPRRERPRRBP
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1-1-1-3

This time, let us enter the polynomial 24%y4°24° from stdin, which will be de-
composed into 68,920 powers of linear forms. Run

integrate --cone-decompose --triangulation=4ti2
--vrep truncatedCube.vrep.latte

and type

p [[1,[40,40,40]]]

We see the exact answer is

93991283632941965714919247928639002510318209692293688827363993265109276641003769553256

2795239135836124463932439643671211584534957465679791608181565

This answer displays the power of using exact rational arithmetic!

5.4 Computing the Weighted Ehrhart Polynomial

Again, LattE integrale can (currently) only compute weighted Ehrhart poly-
nomial functions if the user has Maple.

Consider the standard 0/1 square, which we represent in v-representation format
as the file “square.vrep.latte”:

e >
R O BFr O W
= = O O

Let’s first compute the unweighted Ehrhart polynomial of the square:

integrate --valuation=top-ehrhart --vrep square.vrep.latte

and we get the answer 72 4+ 27 + 1.

Note: For the case of the unweighted Ehrhart polynomial of a lattice polytope,
when all coefficients are to be computed, it is faster to use count --ehrhart-polynomial
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instead. The benefit of integrate --valuation=top-ehrhart lies in the greater
generality (polynomial weights, rational polytopes) and the ability to compute
the top few coefficients, when the computation of the full Ehrhart polynomial
is computationally intractable [].

Next, compute the Ehrhart polynomial with weight x223 where we enter the
polynomial on the terminal:

integrate --valuation=top-ehrhart --interactive-mode
--vrep square.vrep.latte

and then type

p
([1,[2,4]]1]

The answer is 1/15+ T8 +4/15%T7 +71/180+T¢ +1/4T5 +2/45+T* —1/60 %
T3 —1/180 + T?.

Finally, repeat the above commands, but find the polynomial that is correct if
T is any rational or real dilation factor and save the answer to a file called “bi-
gAnswer”. That is, add --real-dilations --top-ehrhart-save=bigAnswer
to the command line and use the same polynomial.

Open the file “bigAnswer.” To evaluate the polynomial at a point a € R, first
open the file “compute-top-ehrhart.mpl” that was made by LattE integrale
and copy the same load path “compute-top-ehrhart.mpl” uses into “bigAnswer”.
Make your “bigAnswer” file look something like this (your file path might be
different):

read("/home/latte/dest/share/latte-int/Conebyconeapproximations_08_11_2010.mpl"):

epoly:= ...; # from bigAnswer
a :=5/2;
# desired rational dilation factor

eval (subs ({T=a,t=a, MOD=latteMod},epoly));

Note that you had to set both ¢t and T to some dilation factor a € R and the
“latteMod” function is defined in the Maple script. If you then run this Maple
file with the point a = 5/2 you will get 85.

Section has more information on how to evaluate a computed quasi-
polynomial.
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5.5 Example of Optimization with LattE

Next, let us solve the problem “cuwwl1” []. Its description is given in the file
“EXAMPLES/cuwwl”:

16

89643482 -12223 -12224 -36674 -61119 -85569
linearity 1 1

nonnegative 5 1 2 3 4 5

The cost function can be found in the file “EXAMPLES/cuww]l.cost”:

15
213 -1928 -11111 -2345 9123

Now let us maximize this cost function over the given knapsack polytope. Note
that by default, the digging algorithm as described in [] is used.

./latte-maximize EXAMPLES/cuwwl
The last couple of lines that LattE prints to the screen look as follows:

Finished computing a rational function.
Time: 0.158203 sec.

There is one optimal solution.

No digging.

An optimal solution for [213 -1928 -11111 -2345 9123] is: [7334 0 0 0 0].
The projected down opt value is: 191928257104

The optimal value is: 1562142.

The gap is: 7995261.806

Computation done.

Time: 0.203124 sec.

The solution (7334, 0, 0,0, 0) is quickly found. Now let us try to find the optimal
value again by a different algorithm, the binary search algorithm.

./latte-maximize bbs EXAMPLES/cuwwl
The last couple of lines that LattE prints to the screen look as follows:
Total of Iterations: 26
The total number of unimodular cones: 125562

The optimal value: 1562142

The number of optimal solutions: 1
Time: 0.042968
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Note that we get the same optimal value, but no optimal solution is provided.

6 Release Information

6.1 System Requirements

LattE runs on Unix-like systems, including Mac OS X and GNU/Linux.

6.2 Additional Maple Connection

The call
count --simplified-ehrhart-series fileName

requires Maple for simplifications of expressions. It should be sufficient to have
a copy of Maple installed on your machine, without any additional special con-
figuration required. LattE will still run even if Maple is not installed, but this
simplification feature to “count” will not be available.

We have tested this connection with Maple 5.1, 8.0, and 14.0 and experienced
no problem. Please let us know about any problem you experience with our
connection to Maple.

6.3 License Agreement

This program is free software; you can redistribute it and/or modify it under
the terms of the version 2 of GNU General Public License as published by the
Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details. (The careful user can find an install script for
the source code in the directory “code/”.)

You should have received a copy of the GNU General Public License along
with this program; see the file COPYING. If not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

We have included a copy of the GNU General Public License also at the end of
this document.
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6.4 How to Cite LattE

Although LattE is free software, your acknowledgment is requested. If LattE is
useful in your research or applications please acknowledge it by referencing this
manual as

V. Baldoni, N. Berline, J.A. De Loera, B. Dutra, M. Képpe, S. Mor-
einis, G. Pinto, M. Vergne, J. Wu,

A User’s Guide for LattE integrale v1.7.2, 2013, software package
LattE is available at http://www.math.ucdavis.edu/ latte/

6.5 The LattE Team

Project directors

e Prof. Jesis A. De Loera (LattE v1.2, LattE integrale v1.5-)
e Prof. Matthias Koppe (LattE macchiato, LattE integrale v1.5-)

Students currently working on the project
e Brandon Dutra (LattE integrale v1.5-)
Distinguished LattE scientists, collaborators and advisors

o Prof. Raymond Hemmecke (LattE v1.2)

e Prof. Ruriko Yoshida (LattE v1.2)

e Dr. David Haws (LattE v1.2)

e Dr. Peter Huggins (LattE v1.2)

e Prof. Tyrrell McAllister

e Prof. Velleda Baldoni (LattE integrale v1.6)
e Prof. Nicole Berline (LattE integrale v1.6)
e Prof. Michele Vergne (LattE integrale v1.6)
e Prof. Alexander Barvinok

e Prof. Bernd Sturmfels

Alumni of the project

e Gregory Pinto (LattE integrale v1.5)

e Stanislav Moreinis (LattE integrale v1.5)
e Jianqgiu Wu (LattE integrale v1.5)

e Jeremy Tauzer (LattE v1.2)

e Jonathan Brooks (LattE v1.2)

e Carol Shih (LattE v1.2)

e Esteban Pauli (LattE v1.2)

e Mike Zhang (LattE v1.2)
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6.6 Acknowledgments

LattE currently uses many wonderful pieces of software. First is cddlib [],
developed by Komei Fukuda, whose webpage can be found at:

http://www.inf.ethz.ch/personal /fukudak/
Next, LattE uses 4ti2 [] whose webpage can be found at:
http://www.4ti2.de

cddlib and 4ti2 is used for finding vertices of polytopes and the triangulation
of cones.

In addition, LattE currently uses NTL, a Library for doing Number Theory,
written by Victor Shoup [], for LLL algorithm, matrix manipulations, storing
variable length integers, and floating point numbers. NTL can be found at:

http://shoup.net/ntl/

In addition, LattE optionally uses the LiDIA library, developed at TU Darm-
stadt.
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project via NSF grants DMS-0309694, DMS-0073815, DMS-0914107 and DMS-
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fellowships provided through the UC Davis VIGRE grants DMS-0135345 and
DMS-0636297.
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A The GNU General Public License

Version 2, June 1991

Copyright © 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software—to make sure the software is free for all its users. This General
Public License applies to most of the Free Software Foundation’s software and to any other
program whose authors commit to using it. (Some other Free Software Foundation software
is covered by the GNU Library General Public License instead.) You can apply it to your
programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities
for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else
and passed on, we want its recipients to know that what they have is not the original, so that
any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must

be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION
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0. This License applies to any program or other work which contains a notice placed

by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

(¢) If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a
warranty) and that users may redistribute the program under these conditions,
and telling the user how to view a copy of this License. (Exception: if the
Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
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(b) Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

(¢) Accompany it with the information you received as to the offer to distribute
corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable
form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as
to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a whole
is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
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10.

11.

12.

consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option
of following the terms and conditions either of that version or of any later version
published by the Free Software Foundation. If the Program does not specify a version
number of this License, you may choose any version ever published by the Free Software
Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE
OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR
DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR
A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS)7 EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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Appendix: How to Apply These Terms to Your
New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should
have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59 Temple
Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type
‘show w’.

This is free software, and you are welcome to redistribute it under certain con-
ditions; type ‘show ¢’ for details.

The hypothetical commands show w and show c should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than show w and show c; they could even be mouse-clicks or menu items—whatever suits
your program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Library General Public License instead of this License.

92



	Introduction
	What is LattE?
	Counting lattice points: Barvinok's Rational Functions
	Integration
	Weighted Ehrhart Quasi-Polynomials
	Ehrhart Quasi-Polynomials of Knapsack polytopes

	Which programs of LattE compute what?
	Maple programs distributed with LattE

	Input Files
	LattE h-representation
	Inequality Description
	Equality Constraints
	Nonnegativity Constraints
	Cost Vector

	LattE v-representation
	CDD Input Files
	Non–full dimensional polytopes
	LattE vs. CDD file formats
	Polynomials and linear forms
	Products of linear forms

	Running LattE
	How to use count
	How to use integrate
	How to use integrate for computing (highest coefficients of) weighted Ehrhart quasipolynomials
	Evaluating Ehrhart quasi-polynomials in Maple

	Options common to both count and integrate
	How to use top-ehrhart-knapsack
	Optimization

	Downloading and Installing LattE
	A Brief Tutorial
	Counting Magic Squares
	Counting Lattice Points in the 24-Cell
	Integrating over a polytope
	Computing the Weighted Ehrhart Polynomial
	Example of Optimization with LattE

	Release Information
	System Requirements
	Additional Maple Connection
	License Agreement
	How to Cite LattE
	The LattE Team
	Acknowledgments

	The GNU General Public License

