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Abstract

Relying on exponential epi-splines allows us to introduce a new methodology to
estimate probability density functions. It allows us to marry hard information (obser-
vations) with soft information by which one usually means all non-data information
one might have or suspect about the underlying stochastic phenomena. The article
develops the theoretical foundations for this methodology: first the properties of epi-
splines and exponential epi-splines and then goes on to obtain consistency and related
asymptotics. Next, it provides a collection of examples of how soft information can be
included in the formulation of the estimation problem and concludes with a number
of experimental results that confirm, maybe better than the theoretical results, the
potential of such an approach.

1 Introduction

From the very outset of statistical estimation theory, in accordance with the precepts laid
down by Ronald Fisher in the 1920’s, there has been a concern of obtaining ‘best’ estimates
that would be based on all the information available to the statistician. With this goal in
mind, but nonetheless taking into account the restrictions levied by computational limita-
tions, many schemes have been suggested and promoted that invariably supply adequate
solutions in specific instances but don’t provide a comprehensive framework. In this arti-
cle, we propose a methodology that overcomes the major obstacles of including all available
information in the context of the nonparametric estimation of a density function. More
specifically, we address the following problem: given a finite number of observations and
possibly some information about the underlying random phenomenon, including implicitly
that its distribution can be described by a density function, one has to find a ‘best’ estimate
of this density function.

While density estimation has been studied extensively, see [25, 27, 40, 43, 34] for exam-
ple, standard estimators, such as those based on kernels and smoothing splines, may perform
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poorly in applications with little data. One can hope to improve estimates in such situations
by including additional information about a density such as its continuity, smoothness, uni-
modality, monotonicity, moments, and other characteristics. How to merge hard information
(observations) and such additional information, to which we refer as soft information, has
been, explicitly or implicitly, a primal motivation of developments in Statistics. To begin
with restricting the search for a density function to a parametric class already sets forth, with
no reservations, that the statistician has quite extensive soft information about the random
event; computationally, it reduces the problem to finding a few parameters, usually, a quite
manageable problem. Another well known approach has been to include “prior” information
and this gave rise to Bayesian estimators [10], certainly a way to include soft information
but still in a rather confined fashion.

Even in the realm of nonparametric estimation, attempts at including soft information
in the formulation of the estimation problem are hardly new. Probably the most common
approach, ignoring ad-hoc adjustments based on practical experience, is to rely on penalties
and regularizations to obtain densities with desirable properties [13, 7, 20, 16, 37] and more
recently [17, 18, 19]. While in principle many types of constraints in an estimation problem
can be represented by penalty terms, the equivalence of such reformulations depends on
the successful selection of multipliers and penalty parameters which is far from trivial in
practice. In fact, poor selection of these multipliers and parameters may cause computational
challenges due to ill-conditioning of the resulting optimization problem as well as significant
deterioration of the quality of the resulting density estimate; see [8] for further discussion.
There is also an extensive literature dealing with specific instances of soft information [42,
41, 40, 45, 9, 33, 12, 32, 14] and, in particular [28], [36] and [22, 21]. Recent studies of
k-monotone densities include [2, 11, 3]. For examples of the estimation of shape restricted
surfaces in other context we refer to [44, 26, 24] and the references therein.

Although we don’t build on the theory and methods developed for either M-estimators
or those that appeal to penalization to compel the estimates to satisfy certain additional
requirement(s), we start from somewhat similar premises. Although optimization techniques
are now used widely to solve specific statistical problems, a rather recent noteworthy instance
is the Lasso procedure, cf. [4] for example, the connection, at the more fundamental level has
only received sporadic attention, cf. [40, 45] for example and more recently [8, 6] and our work
is in the same vein. We view a density estimation problem as one of finding a nonnegative
function that sums to 1, in a function space to be determined. Whatever soft information
we may have about this density is translated into restrictions (i.e., constraints) imposed on
the choice of this function. Although the tenets of the approach would not be compromised
if other standard criteria were selected, here we trust maximum likelihood to identify a best
estimate and also analyze stability in terms of the Kullback-Leibler divergence. From a
mathematical viewpoint our problem is thus a (specific) constrained infinite dimensional
optimization problem1. Since closed form solutions to such problems are more than rare,
one has to resort to finding a finite-dimensional approximating problem that is guaranteed to
generate an approximating solution accompanied whenever possible with error bounds. This
is the task devolved to exponential epi-splines, a composition of the exponential function

1In this framework, the ‘true’ density function becomes an optimal solution of a limiting problem obtained
by letting the sample size tend to infinity. Variational analysis, in particular the approximation theory for
optimization problems [29, Chapter 7] can be put upon, at this point to guide the analysis.
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with an epi-spline: such functions are determined by a finite number of parameters and are
dense, in exactly the desired approximating topology in an unusual rich class of probability
density functions. The article provides the justification for such an approach. Although the
approach and associated methodology is applicable in a variety of estimation contexts, and
in particular joint probability functions, our focus in this article is on the estimation of the
density for a single variable and in our numerical examples, we zoom in on the implications
when only a small number of observations are available.

The paper proceeds in Section 2 by defining our density estimator and summarizing un-
derlying approximation theory. Section 3 provides asymptotic and finite sample size analyses.
Section 4 describes implementation of soft information, with numerical examples following
in Section 5.

2 Exponential Epi-Spline Estimator

We search for density estimators within a class of functions that makes the estimation prob-
lem well defined and computational tractable. Foremost, we seek nonnegative functions and
are therefore naturally led to a composition of an exponential function with a real-valued
function. We would like the latter function to be defined by a finite number of parameters,
such as in the case of piecewise polynomials, to enable finite-dimensional optimization over
those parameters. Still, the class of functions should be sufficiently rich to capture, or at
least approximate to an arbitrarily high accuracy, most densities encountered in practice.
These factors lead us to the class of exponential epi-splines as defined in [30] and briefly
described in this section for completeness.

Given a random variable X0 with density h0 and a sample2 X1, X2, ..., Xν , we consider
a density estimator hν of the form e−sν , where sν : IR → IR is an epi-spline determined by
the maximum likelihood criterion3 and constraints induced by soft information. Naturally,
we refer to hν as an exponential epi-spline estimator of h0. Under an independent sample
distributed as X0, if hν and h0 are represented by the same family of continuous epi-splines,
then, after possibly passing to a subsequence,

hν → h0 uniformly with probabilty one,

regardless of the type of soft information imposed as long as it doesn’t exclude h0. In this
paper, we prove this result and, by means of the Kullback-Leibler divergence, expand it sub-
stantially to account for discontinuous densities, soft information that incorrectly eliminates
h0, and density that can only be approximated using epi-splines.

While utilizing a composition with the exponential function is analytically and computa-
tionally appealing as we see below, analogous developments with estimator hν = sν directly,
or with other compositions are also possible and could be advantageous for some criteria and
applications. We focus the exposition on an exponential epi-spline estimator that vanishes
outside a compact interval. Further complications arise when there is a need for estimating

2The sample may be independently generated from h0, but much of the development holds without this
assumption.

3Other options such as minimizing a least-square criterion are also possible and lead to developments
along similar paths.
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the tails of a density, due to the lack of sample points in the tails, and we defer that topic
to another study.

2.1 Approximation Tools

We start by defining the central building block of our framework. A basic epi-spline is a
function given in terms of an order p ∈ IN0 := {0} ∪ IN , where IN := {1, 2, ...} and a
mesh4 m = {mk}

N
k=0, with mk−1 < mk, k = 1, 2, ..., N , that partitions its domain [m0,mN ].

Extensions that deal with the whole real line and even higher dimensions are possible, but
as already indicated not covered here. We refer to [30] for a thorough analysis of epi-splines
and here simply review essential results.

Definition 1 (basic epi-spline and associated mesh). A (basic) epi-spline s : [m0,mN ] ⊂
IR → IR with mesh m = {mk}

N
k=0 and mesh-grade |m| := max1≤k≤N(mk −mk−1) is of order

p ∈ IN0 if

(i) on each subinterval (mk−1,mk) for k = 1, . . . , N , s is polynomial of degree p and

(ii) on m, s is finite-valued.

The family of all such epi-splines is denoted by e-splp(m).

The set of basic exponential epi-splines corresponding to a family e-splp(m) consists of
finite positive functions defined on a compact interval that are especially convenient tools
for density estimation; see again [30] for details.

Definition 2 (basic exponential epi-spline). The family of (basic) exponential epi-splines
of order p ∈ IN0 with mesh m = {mk}

N
k=0, denoted by x-splp(m), consists of functions

h : [m0,mN ] → IR of the form h = e−s, where s ∈ e-splp(m).

Since this paper deals with basic epi-splines and exponential epi-splines exclusively,
we systematically drop ‘basic’ from now on. It’s clear from the definition that every s ∈
e-splp(m), with mesh m = {mk}

N
k=0, is uniquely defined by (p + 2)N + 1 parameters and

thereby satisfies our requirement that the family of functions under consideration in the
density estimation problem must be defined by a finite number of parameters. The family
of epi-splines is also sufficiently rich to approximate a large class of functions with arbitrary
accuracy. In fact, many common density functions are exactly represented on [m0,mN ]. For
example, a normal density is of the form e−s, with s ∈ e-spl2(m), on [m0,mN ] for any mesh.
An exponential density is of the form e−s, with s ∈ e-spl1(m), on [m0,mN ] for any mesh with
m0 = 0. Even more densities, such as the lognormal and the Pareto, are exactly represented
on a compact interval after a logarithmic transformation. As we make rigorous in the fol-
lowing paragraphs, exponential epi-splines also approximate on compact intervals essentially
all densities we expect to encounter with arbitrarily high accuracy including discontinuous
densities.

Approximations rely on the refinement of the mesh as made precise in the next definition.

4The mesh relates to knots for ‘classical’ splines, but we here prefer the term mesh as an epi-spline may
not be continuous at these points. We also note that the mesh can be selected independently from a sample
of observations.
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Definition 3 (infinite refinement). Given the interval [l, u], one refers to a sequence of
meshes {mν}ν∈IN , with m

ν =
{

l = mν
0,m

ν
1, . . . ,m

ν
Nν = u

}

, as an infinite refinement if their
mesh-grade |mν | → 0.

Of course, all ‘natural’ meshes satisfy this property.
Using a suitable metric on the space of functions under considerations as describe below,

we find that for any p ∈ IN0 and {mν}ν∈IN , an infinite refinement of [l, u],

the continuous x-splp(mν), ν ∈ IN, are dense in the set of functions of the form

f = e−s, with s : [l, u] → IR continuous.

We plan to go beyond continuous and bounded densities and therefore need an extension
of this approximation result to a broader class of semicontinuous functions. We rely on the
epi-topology and hypo-topology (sometimes called the Attouch-Wets topologies), which are
reviewed here for completeness; see [29, Section 7.I] for details. For any l < u ∈ IR, we
denote by lsc-fcns

(

[l, u]
)

the set of all lower semicontinuous (lsc) functions f : [l, u] → IR :=
IR∪{−∞,∞} excluding f ≡ ∞, i.e., with empty (effective) domain. For any two functions,
f and g, in this space, the epi-distance dl, is defined by

dl(f, g) :=

∫ ∞

0

dlρ(f, g)e
−ρdρ,

where

dlρ(f, g) := max
‖x‖≤ρ

|d(x, epi f)− d(x, epi g)| and d(x, S) := inf
y∈S

‖x− y‖ for S ⊂ IR2,

with epi f := {(x, β) ∈ IR2 | f(x) ≤ β} being the epigraph of f and similarly for epi g; see
Figure 1 for an illustration. When the metric is defined in terms of the epi-distance, it gen-
erates the epi-topology on lsc-fcns([l, u]): (lsc-fcns([l, u]), dl) is a Polish (complete separable
metric) space [29, Theorem 7.58], [1, §5]. A sequence of functions f ν in lsc-fcns

(

[l, u]
)

epi-
converge to f if their epigraphs set-converge, i.e., in the sense of taking Painlevé-Kuratowski
limits [29, §7.B], which by [29, Theorem 7.58] takes place if and only if dl(f ν , f) → 0.

When dealing with upper semicontinuous (usc) functions, usc-fcns
(

[l, u]
)

, now excluding
the function≡ −∞, after observing that hypograph of a function f , hypo f =

{

(x, β)
∣

∣ f(x) ≥
β
}

is just a mirror image of the epigraph of −f , one can mimic the definitions and con-
structions described for lsc functions to set up the hypo-distance dlhypo(f, g) := dl(−f,−g),
between any two functions f and g and generate the hypo-topology which again makes
(usc-fcns([l, u]), dlhypo) a Polish space. A sequence of functions f ν hypo-converge to f if
−f ν epi-converge to −f . The relationship between epi- and hypo-convergence and other
modes are convergence in the present context is examined below; see also [29, Chapters 4 &
7] for a broader treatment.

Since the supremum of an usc function on a compact set is attained, the consideration
of usc densities naturally arises in applications where the subsequent use of the densities
involve maximization, such as for the purpose of finding their modes. Similarly, lsc densities
is the natural class to consider in the context of subsequent minimization. We next state
the main approximation results for exponential epi-splines.
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Figure 1: Examples of dlρ(f, g) for epi f and epi g with different overlaps

Theorem 1 (lsc and usc dense approximations [30]). For any p ∈ IN0 and {mν}ν∈IN , an
infinite refinement of [l, u], under the hypo-topology,

(

⋃

ν∈IN

x-splp(mν)

)

⋂

usc-fcns([l, u]) is dense in {e−s | s ∈ lsc-fcns([l, u])}

and under the epi-topology,
(

⋃

ν∈IN

x-splp(mν)

)

⋂

lsc-fcns([l, u]) is dense in {e−s | s ∈ usc-fcns([l, u])}.

We now turn to a convenient representation of exponential epi-splines, which plays an
essential role in computations and analysis. Every s ∈ e-splp(m), with m = {mk}

N
k=0, is

uniquely represented by an epi-spline parameter

r = (s0, s1, ..., sN , a1, a2, ..., aN ), sk ∈ IR, k = 0, 1, ..., N, ak ∈ IRp+1, k = 1, 2, ..., N,

such that for any x ∈ [m0,mN ],
s(x) = 〈cp,m(x), r〉,

where the basis function cp,m : [m0,mN ] → IR(p+2)N+1 is defined by

cp,m(x) :=











(0N+1+(p+1)(k−1), 1, (x−mk−1), (x−mk−1)
2, ..., (x−mk−1)

p, 0(p+1)(N−k))

if x ∈ (mk−1,mk), k = 1, 2, ..., N

(0k, 1, 0N−k+(p+1)N), if x = mk, k = 0, 1, ..., N,

with 0k denoting the k-dimensional zero vector, k ∈ IN , and 00 being a term that is omitted.
This representation of an epi-spline s lets the first N + 1 components in the vector r be
the values of s on m. The remaining (p + 1)N components are divided into N blocks of
(p + 1)-tuples, each of which gives the coefficients of the polynomial defining s on intervals
of the form (mk−1,mk). Specifically, ak = (ak,0, ak,1, ..., ak,p) is such that

s(x) =

p
∑

i=0

ak,i(x−mk−1)
i, for x ∈ (mk−1,mk), k = 1, 2, ..., N.
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Since the first N +1 components of r determine the value of an epi-spline only on m, which
consists of a finite number of points, we refer to the remaining (p + 1)N components of
r as the essential epi-spline parameter and write r = (rmesh, ress), with rmesh ∈ IRN+1 and
ress ∈ IR(p+1)N , to indicate this partition of r. Correspondingly, we let cp,m = (cmesh, cess).

It’s clear that classical splines in their various forms are closely related to epi-splines.
While classical splines are typically defined to posses a certain degree of smoothness and
satisfy boundary conditions, epi-splines are more flexible; see [30] for a detailed comparison.
As guided by soft information in a given application, we impose continuity, smoothness,
and other condition as constraints in a variational formulation given in Subsection 2.2. This
provides flexibility and facilitates the estimation of a wide range of densities under essentially
any soft information as illustrated in Sections 4 and 5.

Since the value of a density at a finite number of points is immaterial for the charac-
terization of the corresponding probability distribution, it may at first appear unnecessary
to specify the value of an exponential epi-spline e−〈cp,m(·),r〉 on m. Instead of determining
r = (rmesh, ress), one could simply focus on ress and this is certainly the case for continu-
ous exponential epi-splines. However, we would like to conveniently handle soft information
about a discontinuous density on m, such as its value at a point in m, as well as the possi-
bility of sample points taking values in m. The latter may occur by construction or when
attempting to estimate a ‘density’ for a distribution that turns out to have atoms. Hence, a
need arises for also considering rmesh and we proceed with the more general framework.

The next result gives connections between various modes of convergence within the class
of exponential epi-splines. As we see, convergence in the epi-spline parameter is equivalent
to uniform convergence of the corresponding exponential epi-splines and, under a restriction
to usc functions, also to convergence in the hypo-distance.

Theorem 2 (equivalent convergence [30]). Suppose that hν , h0 ∈ x-splp(m), with m =
{mk}

N
k=0, h

ν = e−sν = e−〈cp,m(·),rν〉, and h0 = e−s0 = e−〈cp,m(·),r0〉. Then, the following hold:

rν → r0 ⇐⇒ hν → h0 uniformly on [m0,mN ] =⇒ dl(−hν ,−h0) → 0 ⇐⇒ dl(sν , s0) → 0.

Moreover, if hν , h0 are usc, then also

hν → h0 uniformly on [m0,mN ] ⇐= dl(−hν ,−h0) → 0.

We observe that since the hypo-distance doesn’t distinguish between a function and
its usc regularization (see Proposition 7.4 in [29]), uniform convergence can’t generally be
implied from hypo-convergence, even for exponential epi-splines.

In view of the preceding results, we find that exponential epi-splines are flexible approx-
imation tools and proceed by letting them be the corner stone of a maximum likelihood
estimator.

2.2 Maximum Likelihood Estimator

For p and m = {mk}
N
k=0 given, we proceed by adopting a maximum likelihood criterion to

determine an exponential epi-spline estimator hν = e−sν ∈ x-splp(m) of a density h0, with,
of course,

∫ mN

m0
hν(x)dx = 1. Let X1, X2, . . . , Xν be a sample, with m0 ≤ X i ≤ mN , i =

1, 2, ..., ν, almost surely. A realization of the sample is denoted by lower case. The epi-spline
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sν is an optimal solution of a maximum likelihood problem or, as stated here equivalently,
of the minimum negative log-likelihood problem

P ν
p,m : sν ∈ argmin

s∈Sν

1

ν

ν
∑

i=1

s(X i) s.t.

∫ mN

m0

e−s(x)dx = 1,

with Sν ⊂ e-splp(m) being a constraint set that accounts for soft information as elaborated
in Sections 4 and 5, and ‘argmin’ denoting the set of optimal solutions. The set Sν could be
random, with realizations being subsets of e-splp(m). However, both the random set and the
realizations are denoted by Sν as the meaning should be clear from the context. The ability
to include almost every conceivable constraint in the formulation of Sν provides significant
flexibility for the statistician. The restriction to a sample taking values in [m0,mN ] eliminates
pathological cases where the log-likelihood function is not defined (or if we let an epi-spline
be identical to ∞ outside [m0,mN ], where the likelihood function is zero) regardless of the
choice of exponential epi-spline in x-splp(m).

We next deal with the issues of existence and uniqueness of the estimator and consider
a computational convenient equivalent form of P ν

p,m using the representation s = 〈cp,m(·), r〉.

We denote by Rν ⊂ IR(p+2)N+1 the set of epi-spline parameters corresponding to the set of
epi-splines Sν , i.e.,

Rν := {r ∈ IR(p+2)N+1 | 〈cp,m(·), r〉 ∈ Sν}.

For example, if Sν = e-splp(m), then Rν = IR(p+2)N+1. When incorporating soft information,
Rν and Sν become more restrictive as we see in Section 4. Again, we let both the random
set and its realizations be denoted by Rν . We also let

Rν
I :=

{

r ∈ Rν

∣

∣

∣

∣

∫ mN

m0

e−〈cp,m(x),r〉dx = 1

}

.

As stated next, P ν
p,m is equivalent to the finite-dimensional problem

P̄ ν
p,m : min

r∈Rν
I

1

ν

ν
∑

i=1

〈cp,m(X
i), r〉.

A realization of X1, ..., Xν and Sν generates a realization of P ν
p,m and one of P̄ ν

p,m, which we
refer to as being in correspondence.

Theorem 3 (computing estimate). For m = {mk}
N
k=0, the following holds for every corre-

sponding realizations of P ν
p,m and P̄ ν

p,m:

(i) If sν ∈ e-splp(m) is optimal for P ν
p,m, then there exists an rν ∈ IR(p+2)N+1 optimal for

P̄ ν
p,m with sν = 〈cp,m(·), r

ν〉.

(ii) If rν ∈ IR(p+2)N+1 is optimal for P̄ ν
p,m, then sν = 〈cp,m(·), r

ν〉 is optimal for P ν
p,m and

the exponential epi-spline estimator

hν(x) =

{

e−〈cp,m(x),rν〉, x ∈ [m0,mN ]

0, otherwise.
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(iii) If Rν
I is nonempty and Rν is compact, then P̄ ν

p,m has an optimal solution.

Proof: The equivalence of P̄ ν
p,m and P ν

p,m follows directly from the representation s =
〈cp,m(·), r〉. The existence of an optimal solution of P̄ ν

p,m follows trivially from the conti-
nuity of the involved functions and the compactness of Rν .

While the objective function in P̄ ν
p,m is linear, Rν

I may be nonconvex. Hence, P̄ ν
p,m

could possess local minimizers that are not globally optimal, increasing the complexity of
solving the problem numerically. We see in Section 4 that Rν is often a polyhedron, or at
least convex. Hence, the main difficulty in P̄ ν

p,m is associated with the integral constraint.
However, under broad conditions stated next, that constraint can be relaxed.

Definition 4 A realization of P̄ ν
p,m is said to be loosely constrained if for every r ∈ Rν with

∫ mN

m0
e−〈cp,m(x),r〉dx < 1, there exists r′ ∈ Rν

I with
∑ν

i=1〈cp,m(x
i), r′ − r〉 < 0.

The following Proposition 2 and Section 4 give examples of loosely constrained realizations.
We give an immediate consequence next.

Proposition 1 Suppose that a realization of P̄ ν
p,m is loosely constrained. Then, that realiza-

tion and the corresponding realization of the relaxed problem

RP ν
p,m : min

r∈Rν

1

ν

ν
∑

i=1

〈cp,m(X
i), r〉 s.t.

∫ mN

m0

e−〈cp,m(x),r〉dx ≤ 1

have identical sets of optimal solutions. Moreover, if Rν is convex, then RP ν
p,m is a convex

problem.

In Theorem 7 below we show that even beyond loosely constrained realizations, the consider-
ation of RP ν

p,m is justified. In view of the preceding discussion and results, it’s clear that the
exponential epi-spline estimator is computationally tractable by means of well-developed
convex optimization algorithms in many practical situations and by means of nonlinear
programming algorithms in even more situations. In some cases, for example when Rν is
polyhedral, some further computational benefits may arise from utilizing the following refor-
mulation, which is valid under additional assumptions; see Section 4 for examples. The next
result also gives a sufficient condition for a realization of P̄ ν

p,m to be loosely constrained. We
use the notation 1p,N to indicate the ((p + 2)N + 1)-dimensional vector consisting of zeros,
except at entries 1 through N + 1 as well as entries N + 2 + (k − 1)(p + 1), k = 1, 2, ..., N ,
where it is unity.

Proposition 2 A realization of P̄ ν
p,m for which every r ∈ Rν and β ∈ IR satisfy r+ β1p,N ∈

Rν, is loosely constrained and its set of optimal solutions is identical to that of the corre-
sponding realization of the penalized problem

PP ν
p,m : min

r∈Rν

1

ν

ν
∑

i=1

〈cp,m(X
i), r〉+

∫ mN

m0

e−〈cp,m(x),r〉dx.

Moreover, if Rν is convex, then PP ν
p,m is a convex problem.
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Proof: Consider corresponding realizations of P̄ ν
p,m and PP ν

p,m and let r ∈ Rν satisfy
∫ mN

m0
e−〈cp,m(x),r〉dx = γ < 1. For r′ = r + (log γ)1p,N ,

∫ mN

m0

e−〈cp,m(x),r′〉dx =

∫ mN

m0

e−〈cp,m(x),r〉−log γdx =
1

γ

∫ mN

m0

e−〈cp,m(x),r〉dx = 1. (1)

Moreover,
ν
∑

i=1

〈cp,m(x
i), r′ − r〉 =

ν
∑

i=1

〈cp,m(x
i), (log γ)1p,N〉 = ν log γ < 0.

Since r′ ∈ Rν by assumption, the realization of P̄ ν
p,m is loosely constrained by Definition 4.

We next consider the penalized problem. For any r ∈ Rν , let

f ν(r) =
1

ν

ν
∑

i=1

〈cp,m(x
i), r〉+

∫ mN

m0

e−〈cp,m(x),r〉dx

and let r̂ ∈ Rν be arbitrary. Since every epi-spline is piecewise polynomial and therefore inte-
grates on [m0,mN ] to a finite number, there exists a γ ∈ (0,∞) such that

∫ mN

m0
e−〈cp,m(x),r̂〉dx =

γ. By assumption, r̂ + (log γ)1p,N ∈ Rν and, following the same argument as in (1),
∫ mN

m0

e−〈cp,m(x),r̂+(log γ)1p,N 〉dx = 1.

Consequently, r̂+(log γ)1p,N is feasible in the realization of P̄ ν
p,m. Suppose that r

ν is optimal
for the realization of P̄ ν

p,m. It follows that r
ν also minimizes f ν on Rν

I because this problem
deviates from the realization only with the constant one in the objective function. Using an
argument similar to that of Lemma 2.3 in [14], we find that

f ν(r̂)− f ν(rν)

=
1

ν

ν
∑

i=1

〈cp,m(x
i), r̂ + (log γ)1p,N〉 − log γ + 1− 1 +

∫ mN

m0

e−〈cp,m(x),r̂〉dx− f ν(rν)

= f ν(r̂ + (log γ)1p,N)− log γ − 1 + γ − f ν(rν)

≥ − log γ − 1 + γ,

where the inequality follows from the fact that rν is optimal and r̂ + (log γ)1p,N is feasible
in the realization of P̄ ν

p,m. Since − log γ − 1+ γ > 0 for γ ∈ (0,∞), γ 6= 1, we find that every

r ∈ Rν with
∫ mN

m0
e−〈cp,m(x),r〉dx 6= 1 has f ν(r) > f ν(rν) and consequently can’t minimize

f ν on Rν . The first conclusion then follows. Convexity of PP ν
p,m follows directly from the

convexity of the integral term.
In general, one can’t expect a unique optimal solution of a realization of P̄ ν

p,m, and
consequently a unique exponential epi-spline estimate, due to the flexibility in the choice of
values of the epi-spline on a mesh that isn’t a subset of the sample realization x1, x2, ..., xν .
In fact, if the first N+1 components of the epi-spline parameter r are not constrained by Rν ,
then there is an infinite number of optimal solutions whenever one exists. The next result
shows that when these values are uniquely determined by the essential epi-spline parameter,
uniqueness may still be achieved. Such a dependence on the essential epi-spline parameter
is present, for example, in the case of continuous epi-splines.
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Proposition 3 Suppose that corresponding realizations of P̄ ν
p,m and RP ν

p,m have Rν convex,
{x1, ..., xν} ∩m = ∅, and satisfy the condition:

(rmesh, ress), (r
′
mesh, r

′
ess) ∈ Rν , with ress = r′ess, implies rmesh = r′mesh.

Then, the following hold:

(i) If an optimal solution r of the realization of RP ν
p,m is in Rν

I , then there are no other
optimal solutions.

(ii) The realization of PP ν
p,m has at most one optimal solution.

Proof: We start by showing strictly convexity of the integral term as a function of the
essential epi-spline parameters. Given m = {mk}

N
k=0, we define ψ : IR(p+1)N → IR and

φ : [m0,mN ]× IR(p+1)N → IR by

ψ(ress) =

∫ mN

m0

φ(x, ress)dx, with φ(x, ress) = e−〈cess(x),ress〉.

For all x ∈ [m0,mN ] and ress, r
′
ess ∈ IR(p+1)N , twice differentiation with respect to the second

argument in φ gives that

〈r′ess,∇
2φ(x, ress)r

′
ess〉 = 〈cess(x), r

′
ess〉

2e−〈cess(x),ress〉 ≥ 0.

Suppose that r′ess 6= 0. Then, there exists a k̂ ∈ {1, 2, ..., N} such that 〈cess(x), r
′
ess〉 is a

polynomial in x for x ∈ (mk̂−1,mk̂) with not all coefficients zero. Hence, there exists a
subset of (mk̂−1,mk̂) with positive Lebesgue measure on which 〈cess(x), r

′
ess〉 6= 0 and

∫ mN

m0

〈cess(x), r
′
ess〉

2e−〈cess(x),ress〉dx > 0. (2)

Since the dominated convergence theorem implies that the left-hand side of (2) equals
〈r′ess,∇

2ψ(ress)r
′
ess〉, we find that ψ is strictly convex by the second-order condition for con-

vexity.
We let ψ̃ = (1/ν)

∑ν
i=1〈cess(x

i), ·〉+ ψ(·), which is therefore also strictly convex.
We first consider (ii). Suppose for the sake of a contradiction that there exist r =

(rmesh, ress) 6= r′ = (r′mesh, r
′
ess) that both are optimal for the realization of PP ν

p,m, with
optimal value v∗. Since {x1, ..., xν} ∩m = ∅, the objective function in this problem depends
only on the essential epi-spline parameter and, in fact, ψ̃(ress) = ψ̃(r′ess) = v∗. We consider
two cases.

a) Suppose that ress = r′ess, but then rmesh = r′mesh by assumption and we contradict the
hypothesis that r 6= r′.

b) Suppose that ress 6= r′ess. Since ψ̃ is strictly convex, there exists a unique minimizer
r′′ess of ψ̃ over the convex hull of ress and r

′
ess. Moreover, there exists an α ∈ (0, 1) such that

r′′ess = αress + (1 − α)r′ess and ψ̃(r′′ess) < v∗. By the convexity of Rν , r′′ = (αrmesh + (1 −
α)r′mesh, r

′′
ess) ∈ Rν and its objective function value in PP ν

p,m is ψ̃(r′′ess) < v∗, which contradicts
the optimality of v∗.

Second, we focus on (i). Suppose that r = (rmesh, ress) ∈ Rν
I is optimal for the realization

of RP ν
p,m. We consider two cases.

11



a) Suppose that
∫ mN

m0
e−〈cp,m(x),r′〉dx ≥ 1 for all r′ ∈ Rν . Then by strict convex-

ity of ψ, there exists a unique minimizer r′′ess of ψ on {r′′′ess ∈ IR(p+1)N | (r′′′mesh, r
′′′
ess) ∈

Rν for some r′′′mesh ∈ IRN+1}. However, r′′ess = ress because ψ(ress) = 1. Another optimal
solution for the realization of RP ν

p,m would thus have essential epi-spline parameter identical
to ress. However, by assumption, such a solution would then also be identical to r in the
remaining components, which implies it coincides with r.

b) Suppose that there exists r′ ∈ Rν such that
∫ mN

m0
e−〈cp,m(x),r′〉dx < 1. Then, the

Slater constraint qualification is satisfied and there exists a multiplier λ ≥ 0 such that the
realization of RP ν

p,m has the same set of optimal solutions as the problem

min
r∈Rν

1

ν

ν
∑

i=1

〈cp,m(x
i), r〉+ λ

∫ mN

m0

e−〈cp,m(x),r〉dx. (3)

Repeating the arguments that lead to (ii), with (3) in place of the realization of PP ν
p,m, shows

that the there are no other optimal solutions of the realization of RP ν
p,m than r.

We end this section by observing that P̄ ν
p,m, RP

ν
p,m, and PP

ν
p,m involve one-dimensional

integrals, which, in practice, must be evaluated numerically. However, this fact introduces
no significant difficulty as numerical integration is easily carried out with high accuracy in
short computing time due to the smoothness of the integrand in each segment (mk−1,mk).
Hence, assuming that Rν is defined in terms of a finite number of smooth inequality and
equality constraints, all these problems are tractable by standard nonlinear programming
solvers and, in the case of convexity, powerful convex solvers.

3 Consistency, Asymptotics, and Error Bounds

We achieve consistency, asymptotics, and other results by viewing {P ν
p,m}

∞
ν=1, for givenm and

p, as a sequence of optimization problems that under quite general assumptions converges
in some sense to a limiting optimization problem, whose optimal solution recovers a true
density h0 ∈ x-splp(m) of a random variable X0, as the sample size ν → ∞. We note that
the restriction to x-splp(m) for given m and p is justified by Theorem 1, but we also discuss
the consideration of densities beyond this broad class; see Theorem 5 below. Before defining
the limiting problem, we recall the Kullback-Leibler divergence, which is closely related to
the likelihood function.

Let dKL(h||g) denote the Kullback-Leibler divergence from a density h to a density g
defined on IR, i.e.,

dKL(h||g) :=

∫ ∞

−∞

h(x) log
h(x)

g(x)
dx.

Here and below we make the standard interpretation that β1 log β1/β2 = 0 when β1 = 0
regardless of the value of β2 ∈ IR and β1 log β1/β2 = ∞ when β1 > 0 and β2 = 0.

We define the ‘approximation’ of a density h by an exponential epi-spline as follows.

Definition 5 (Kullback-Leibler projection). For any density h on IR and family e-splp(m),
m = {mk}

N
k=0, the Kullback-Leibler projection of h on e-splp(m) is the set

Pp,m(h) := argmin
s∈e-splp(m)

dKL(h||e
−s) s.t.

∫ mN

m0

e−s(x)dx = 1. (4)
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If the minimization is further constrained by s ∈ S ⊂ e-splp(m), then we denote the set of
optimal solutions by PS

p,m(h) and refer to it as the Kullback-Leibler projection relative to S.

We see that Pp,m(h) is the set of epi-splines that gives the ‘closest’ exponential epi-spline den-
sities to h in the sense of the Kullback-Leibler divergence. It is well known that dKL(h||g) ≥ 0
for all densities h and g, and that dKL(h||g) = 0 if and only if h = g, except possibly on a
set of Lebesgue measure zero. Hence, if a density h = e−s ∈ x-splp(m), m = {mk}

N
k=0, then

s ∈ Pp,m(h) and all s̃ ∈ Pp,m(h) are identical to s (Lebesgue) almost everywhere on [m0,mN ].
Since s and s̃ are polynomials of order p on each open interval (mk−1,mk), k = 1, 2, ..., N ,
they must be identical possibly except on m.

Now suppose that h0 = e−s0 ∈ x-splp(m),m = {mk}
N
k=0, is the density of a random

variable X0, which we aim to estimate. Then, for any s ∈ e-splp(m),

dKL(h
0||e−s) = E{log h0(X0)}+ E{s(X0)}.

Hence, there is a constant term (with respect to s) in the objective function of (4) that can
be dropped and we reach the fact that every optimal solution of

P 0
p,m : min

s∈e-splp(m)
E{s(X0)} s.t.

∫ mN

m0

e−s(x)dx = 1 (5)

is identical to s0, except possibly on m. Consequently, if the family x-splp(m) under consid-
eration contains the true density h0, then P 0

p,m recovers h0 or a member in its ‘equivalence
class.’ In contrast to P ν

p,m, we refer to P 0
p,m as the true problem. Intuitively, if s0 ∈ Sν and

ν is large, the problem P ν
p,m approximates the true problem in some sense and one would

hope that the corresponding optimal solutions are close. We next formalize this observation,
which implies strong consistency of the estimator hν = e−sν obtained from solving P ν

p,m.

Theorem 4 (consistency). Suppose that the true density h0 = e−s0, with s0 = 〈cp,m(·), r
0〉 ∈

e-splp(m) and m = {mk}
N
k=0, P

ν
p,m is derived by independent sampling from h0, and {sν}∞ν=1

is a sequence of optimal solutions of P ν
p,m, with epi-spline parameters {rν}∞ν=1.

If limRν exists almost surely5 and is deterministic, then every accumulation point r∞

of {rν}∞ν=1 satisfies
〈cp,m(·), r

∞〉 ∈ PS∞

p,m(h
0) almost surely,

where S∞ := {s ∈ e-splp(m) | s = 〈cp,m(·), r〉, r ∈ limRν}.
Moreover, regardless of whether Rν has a limit, if there exists a sequence {r̂ν}∞ν=1, with

r̂ν ∈ Rν for all ν, such that r̂ν → r0 almost surely, then the following hold almost surely.

(i) The accumulation point r∞ also satisfies 〈cp,m(·), r
∞〉 ∈ Pp,m(h

0).

(ii) The essential epi-spline parameter subvector of r∞ is identical to the essential epi-spline
parameter subvector of r0.

(iii) If rν →K r∞ along a subsequence K, then 〈cp,m(·), r
ν〉 →K s0 and e−〈cp,m(·),rν〉 →K h0

uniformly on [m0,mN ], possibly except on m.

5Limits of sets are here taken in the sense of Painlevé-Kuratowski [29, §7.B] and the probability space is
that induced by {P ν

p,m}∞ν=1
.
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Proof: Since X0 ∈ [m0,mN ] almost surely, cp,m(X
0) is a random vector with finite moments.

By the law of large number (1/ν)
∑ν

i=1 cp,m(X
i) → E{cp,m(X

0)} almost surely. Let r̂0 ∈

IR(p+2)N+1 be arbitrary. Then, for any sequence r̂ν → r̂0,
〈

1

ν

ν
∑

i=1

cp,m(X
i), r̂ν

〉

→
〈

E{cp,m(X
0)}, r̂0

〉

almost surely.

For any R ⊂ IR(p+2)N+1, we define δR(r) := 0 if r ∈ R and δR(r) := ∞ otherwise. Moreover,
let R∞

I = {r ∈ limRν |
∫ mN

m0
e−cp,m(x),r〉dx = 1}. If r̂0 ∈ R∞

I , then

lim inf

〈

1

ν

ν
∑

i=1

cp,m(X
i), r̂ν

〉

+ δRν
I
(r̂ν) ≥ 〈E{cp,m(X

0)}, r̂0〉+ δR∞

I
(r̂0) almost surely.

Since R∞
I = limRν

I , it is closed. Consequently, if r̂
0 6∈ R∞

I , then the previous inequality holds
with infinity on both sides. Next, suppose that r̂0 ∈ IR(p+2)N+1 is arbitrary. If r̂0 6∈ R∞

I , then

lim sup

〈

1

ν

ν
∑

i=1

cp,m(X
i), r̂ν

〉

+ δRν
I
(r̂ν) ≤ 〈E{cp,m(X

0)}, r̂0〉+ δR∞

I
(r̂0) = ∞ almost surely.

If r̂0 ∈ R∞
I , then, since R∞

I = limRν
I , there exists a sequence r̂ν → r̂0 with r̂ν ∈ Rν

I for all ν.
Consequently,

〈

1

ν

ν
∑

i=1

cp,m(X
i), r̂ν

〉

+ δRν
I
(r̂ν) → 〈E{cp,m(X

0)}, r̂0〉+ δR∞

I
(r̂0) almost surely.

Almost sure epi-convergence of 〈(1/ν)
∑ν

i=1 cp,m(X
i), ·〉+ δRν

I
to 〈E{cp,m(X

0)}, ·〉+ δR∞

I
then

follows by Proposition 7.2 in [29] and the first conclusions by Theorem 7.31 of [29] and the
fact that r̂ ∈ argminr〈E{cp,m(X

0)}, r〉+ δR∞

I
if and only if 〈cp,m(·), r̂〉 ∈ PS∞

p,m(h
0).

We next turn to the second part of the theorem. Since the additional assumption implies
that Rν becomes arbitrary close to r0 almost surely, item (i) follows by a similar argument
as above. Items (ii) and (iii) are conclusions from the discussion following Definition 5.

The first part of Theorem 4 shows that regardless of the soft information, which even
may exclude the true density, the resulting exponential epi-splines tend to one that is as
‘close’ as possible to the true density under the given constraints as the sample size increases.
Specifically, the epi-splines computed from {P ν

p,m}
∞
ν=1 tend to a point in the Kullback-Leibler

projection, relative to the soft information constraint set, of the true density on the class of
epi-splines under consideration. The second part shows that if the true density is not ex-
cluded by the soft information, then {P ν

p,m}
∞
ν=1 eventually yields the true density, or possibly

a closely related one that deviates at most on m.
The preceding results deal with the case when the true density can be exactly represented

by an exponential epi-spline. If the true density is outside the class under consideration, one
can’t expect to tend to the true density even if the sample size goes to infinity. However,
as we see next, if two densities are close in the hypo-distance, then their Kullback-Leibler
projections on e-splp(m) must also be close in some sense. We’ll see that this has a direct
consequence on the quality of density estimates when the true density is outside the class of
exponential epi-splines. Before the main theorem, we give an intermediate result.
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Proposition 4 Suppose that f ν : IR → [0,∞], f 0 : IR → [0,∞] are Lebesgue integrable on
every compact subset of IR and dl(−f ν ,−f 0) → 0. Then, for every compact set X ⊂ IR,

∫

X

f ν(x)dx→

∫

X

f 0(x)dx.

Proof: The restrictions of f ν and f 0 to X, denoted by f ν
X and f 0

X , satisfy dl(−f
ν
X ,−f

0
X) →

0. Consequently, Aν
X = {(x, x0) ∈ X × [0,∞) | f ν

X(x) ≥ x0} → A0
X = {(x, x0) ∈ X ×

[0,∞) | f 0
X(x) ≥ x0} in the Painlevé-Kuratowski sense. Since the Lebesgue measures of Aν

X

and A0
X are identical to

∫

X
f ν(x)dx and

∫

X
f 0(x)dx, respectively, the conclusion follows.

Theorem 5 (stability of Kullback-Leibler projection). Suppose that densities hν , h0 on [l, u]
satisfy dl(−hν ,−h0) → 0. If rν is such that 〈cp,m(·), r

ν〉 ∈ Pp,m(h
ν) for m = {mk}

N
k=0 with

m0 = l, mN = u, then every accumulation point of {rν}∞ν=1 is the epi-spline parameter of
some s0 ∈ Pp,m(h

0).

Proof: Following a similar argument as in Proposition 2, we see that the equality constraints
in the problems defining Pp,m(h

ν) and Pp,m(h
0) can be replaced by inequality. Consequently,

every sν ∈ Pp,m(h
ν) is of the form sν = 〈cp,m(·), r

ν〉, with rν ∈ argminr ψ
ν(r) + δI(r), where

ψν(r) =

〈∫ mN

m0

cp,m(x)h
ν(x)dx, r

〉

and δI(r) = 0 if
∫ mN

m0
e−〈cp,m(x),r〉dx ≤ 1 and δI(r) = ∞ otherwise. Similarly, every s0 ∈

Pp,m(h
0) is of the form s0 = 〈cp,m(·), r

0〉, where r0 is a minimizer of ψ0 defined similar to ψν ,
but with hν replaced by h0. Clearly, ψν + δI and ψ0 + δI are convex.

By Proposition 4,
∫

X
hν(x)dx →

∫

X
h0(x)dx for any compact set X ⊂ [m0,mN ]. But

since cp,m is piecewise polynomial and [m0,mN ] is a bounded interval, we also have that for
any k = 1, 2, ..., N ,

∫ mk

mk−1

cp,m(x)h
ν(x)dx→

∫ mk

mk−1

cp,m(x)h
0(x)dx.

Hence, it follows by Proposition 7.2 and Theorem 7.53 in [29] that ψν+δI totally epi-converges
to ψ0 + δI . The result then is a consequence of Corollary 7.55 in [29].

If we take the densities hν in Theorem 5 to be exponential epi-splines, possibly defined
on increasingly fine meshes, Theorem 1 shows that these densities indeed can be made to
approximate with arbitrary accuracy any lsc or usc density h0 with appropriate choice of
mesh. Consequently, the assumption of dl(−hν ,−h0) → 0 in Theorem 5 holds and, combined
with Theorem 4, we find that for a fine mesh and a large sample size the resulting exponential
epi-spline estimator is ‘close’ to the true density, even if that density is outside the class of
exponential epi-splines.

‘Convergence’ in the Kullback-Leibler divergence is closely related to other modes of
convergence. Before we make these connection clear, we state an immediate consequence of
the definition of the divergence that is also useful when constructing the set Rν describing
soft information.
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Proposition 5 Suppose that h and e−s are densities with s = 〈cp,m(·), r〉 ∈ e-splp(m),
m = {mk}

N
k=0. Then,

dKL(h||e
−s) =

〈∫ mN

m0

cp,m(x)h(x)dx, r

〉

+

∫ ∞

−∞

(log h(x))h(x)dx.

If in addition h = e−s′ with s′ = 〈cp,m(·), r
′〉 ∈ e-splp(m), then

dKL(h||e
−s) =

〈∫ mN

m0

cp,m(x)h(x)dx, r − r′
〉

.

The next connections complement Theorem 2.

Proposition 6 Suppose that densities hν , h0 ∈ x-splp(m), with hν = e−〈cp,m(·),(rνmesh,r
ν
ess)〉 and

h0 = e−〈cp,m(·),(r0mesh,r
0
ess)〉. Then,

(rνmesh, r
ν
ess) → (r0mesh, r

0
ess) =⇒ dKL(h

0||hν) → 0 ⇐⇒ dKL(h
ν ||h0) → 0 =⇒ rνess → r0ess.

Proof: We let rν = (rνmesh, r
ν
ess) and r

0 = (r0mesh, r
0
ess).

The implication rν → r0 =⇒ dKL(h
0||hν) → 0 follows directly from Proposition 5.

To show that dKL(h
0||hν) → 0 =⇒ rνess → r0ess we observe that dKL(·||·) ≥ 0 and for any

two densities f, g on [m0,mN ], dKL(f ||g) = 0 if and only if f(x) = g(x) for Lebesgue almost
every x ∈ [m0,mN ]. We therefore consider the problem minr∈R dKL(h

0||e−〈cp,m(x),r〉), with
R = {r ∈ IR(p+2)N+1 |

∫ mN

m0
e−〈cp,m(x),r〉dx = 1}, where r0 is a minimizer and in fact every

minimizer must coincide with r0ess in its last (p + 1)N components. In view of Proposition
5, the objective function in this problem is linear and the single constraint is continuously
differentiable. The first-order optimality condition for this problem and the fact that {r ∈
IR(p+2)N+1|

∫ mN

m0
e−〈cp,m(x),r〉dx ≤ 1} is a convex set imply that the hyperplane W = {r ∈

IR(p+2)N+1|dKL(h
0||e−〈cp,m(x),r〉) = 0} is a supporting hyperplane of R with r0ess being the

only (p + 1)N -dimensional vector ress that can be augmented by a β ∈ IRN+1 such that
{(β, ress)} = R ∩W . Since rν ∈ R and for sufficiently large ν is arbitrarily close to W , we
consequently reach the conclusion.

We realize that dKL(h
ν ||h0) → 0 =⇒ dKL(h

0||hν) → 0 by establishing that rνess → r0ess
whenever dKL(h

ν ||h0) → 0 using a similar argument as above and then use Proposition 5.
We find that dKL(h

0||hν) → 0 =⇒ dKL(h
ν ||h0) → 0 by invoking that dKL(h

0||hν) →
0 =⇒ rνess → r0ess and Proposition 5.

Asymptotic normality of the distribution of the exponential epi-spline estimator and
corresponding moments may also hold when we limit the scope to the essential epi-spline
parameters. As we see from the discussion before Proposition 3, one can’t expect a unique
estimator — a prerequisite for asymptotic normality — unless the scope is limited in this
manner6. This focus on the essential epi-spline parameter requires additional notation that
we introduce next.

For any ress ∈ IR(p+1)N , let7

H(ress) :=

∫ mN

m0

〉cess(x), cess〈e
−〈cess(x),ress〉dx

6One could appeal to more sophisticated central limit theorems, such as those in [15], but additional
conditions and machinery is required and would require us to stray too far from our main theme.

7Here we use 〉y, y〈 to denote the outer product yy⊤ for a column vector y.
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be the Hessian of
∫ mN

m0
e−〈cess(x),·〉dx at ress. We also let Σess be the variance-covariance matrix

of cess(X
0), with X0 distributed by the true density h0, and Σ(ress) = H(ress)

−1ΣessH(ress)
−1,

where we note that H(ress) is nonsingular by the argument in the proof of Proposition
3. For notational convenience, we also let Σk(ress) be the (p + 1) × (p + 1) submatrix
of Σ(ress) consisting of elements in columns (k − 1)(p + 1) + 1, (k − 1)(p + 1) + 2, ...,
(k − 1)(p + 1) + (p + 1) and the corresponding rows in the latter matrix. These are the
coefficients corresponding to interval (mk−1,mk). Moreover, let ress,k be the subvector of
components N + 1 + (k − 1)(p+ 1) + 1, ..., N + 1 + (k − 1)(p+ 1) + (p+ 1) of ress, i.e., the
parameters that define the epi-spline in (mk−1,mk), and the corresponding subvectors of cess
are denoted by cess,k. Finally, we let µ0

j :=
∫∞

−∞
xjh0(x)dx be the jth moment of the true

density h0, N (0,Σ) denote a zero-mean normal vector with variance-covariance matrix Σ,
and →d convergence in distribution. We are now ready to state an asymptotic result for an
exponential epi-spline estimator, where we make the assumption that the soft information
is ‘clearly’ correct, i.e., the true density corresponds to a point in the interior of the sets Rν

almost surely for sufficiently large ν.

Theorem 6 (asymptotics). Suppose that the true density h0 = e−s0 ∈ x-splp(m), with m =
{mk}

N
k=0, s

0 = 〈cp,m(·), r
0〉, and r0 = (r0mesh, r

0
ess) is in the interior of lim inf Rν almost surely.

If P ν
p,m is derived by independent sampling from h0 and {sν}∞ν=1 is a sequence of optimal

solutions of P ν
p,m, with epi-spline parameters {rν = (rνmesh, r

ν
ess)}

∞
ν=1, and h

ν = e−〈cp,m(·),rν〉 for
all ν, then the following hold:

(i)
ν1/2(rνess − r0ess) →

d N (0,Σ(r0ess))

(ii) For x ∈ (mk−1,mk), k = 1, 2, ..., N ,

ν1/2(hν(x)− h0(x)) →d N
(

0, e−2〈cess,k(x),ress,k〉〈cess,k(x),Σk(r
0
ess)cess,k(x)〉

)

.

(iii) For j ∈ IN , the moment estimator µν
j :=

∫ mN

m0
xje−〈cp,m(x),rν〉dx satisfies

ν1/2(µν
j − µ0

j) →
d N (0, 〈w,Σ(r0ess)w〉), where w =

∫ mN

m0

xjcess(x)e
−〈cp,m(x),r0〉dx.

Proof: The law of large number gives that the objective function in P ν
p,m converges uniformly

on compact sets to that of P 0
p,m almost surely. We recall that 〈cp,m(·), r

0〉 is an optimal
solution of P 0

p,m and, by assumption, r0 is also in the interior of lim inf Rν almost surely.
Consequently, since P 0

p,m doesn’t involve a restriction Sν , the set of optimal solutions of P ν
p,m

coincides with those of the relaxation of P ν
p,m with Sν replaced by e-splp(m) for sufficiently

large ν. Let

P ν
ess : min

ress∈IR
(p+1)N

1

ν

ν
∑

i=1

〈cess(X
i), ress〉+

∫ mN

m0

e−〈cess(x),ress〉dx,

where X1, X2, ..., Xν is the sample from h0. We deduce from Propositions 2 and 3 that
P ν
ess and the relaxation of P ν

p,m have unique optimal solutions almost surely and that they
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are equivalent in the sense that they generate the same essential epi-spline parameter. Con-
sequently, for sufficiently large ν, the optimal solution of P ν

ess is r
ν
ess almost surely.

We let X0 be a random variable with density h0 and

P 0
ess : min

ress∈IR(p+1)N
E{〈cess(X

0), ress〉}+

∫ mN

m0

e−〈cess(x),ress〉dx.

We deduce from Propositions 2 and 3 that an optimal solution of this problem is unique and
coincides with the essential epi-spline parameter r0ess of h

0.
Since P 0

ess and P ν
ess are strictly convex and unconstrained almost surely, their unique

optimal solutions are equivalently characterized as zeros of the objective function gradients.
Since these gradients converge uniformly on IR(p+1)N almost surely by the law of large num-
bers, and the corresponding Hessians are identical and positive definite, item (i) follows
directly from Theorem 4 of [23]. The next items follow by a direct application of a Delta
Theorem; see for example Section 7.2.7 in [35].

While Theorem 6 provides rates of convergence, it excludes the effect of soft information
given by Rν and deals only with the essential epi-spline parameter. We end the section by
examining errors for a finite sample size under relaxed assumptions, which leads to another
rate of convergence result. However, the treatment requires us to focus on ǫ-optimal solutions
of RP ν

p,m, which for any ǫ ≥ 0 are defined as

Rν
ǫ :=

{

r ∈ Rν

∣

∣

∣

∣

∣

1

ν

ν
∑

i=1

〈cp,m(X
i), r〉 ≤ V ν + ǫ,

∫ mN

m0

e−〈cp,m(x),r〉dx ≤ 1

}

,

where the optimal value of RP ν
p,m is

V ν := inf
r∈Rν

E{〈cp,m(X
0), r〉} s.t.

∫ mN

m0

e−〈cp,m(x),r〉dx ≤ 1.

The statement below deals with the difference between the true density h0 and hνǫ =
e−〈cp,m(·),rνǫ 〉, with rνǫ ∈ Rν

ǫ for ǫ > 0. The latter density is, in fact, what is generated
by numerical methods for solving RP ν

p,m as such methods utilize finite precision and various
tolerances. Also let ρIB := {y | ‖y‖ ≤ ρ} in any Euclidian space and ∆p,m := maxl=0,1,...,p |m|l.

Theorem 7 (finite sample error). Suppose that the true density h0 ∈ x-splp(m), m =
{mk}

N
k=0, with epi-spline parameter r0, RP ν

p,m is derived by independent sampling from h0,
and is also feasible with a closed and convex Rν almost surely. For any α > 0, ǫ > 0, and
ρ > max{−V ν , d(r0,Rν

0)},

d(r0,Rν
ǫ ) > K

dKL(h
0||hνǫ ) >

∥

∥

∥

∥

∫ mN

m0

cp,m(x)h
0(x)dx

∥

∥

∥

∥

K, for hνǫ = e−〈cp,m(·),rνǫ 〉, rνǫ ∈ Rν
ǫ ,

with probability at most 2(p+ 1)Ne−2ν(α/∆p,m)2, where8

K = (1 + 4ρ/ǫ)[α
√

(p+ 1)N(ρ+ ‖r0‖) + (1 +
√

(p+ 2)N + 1∆p,m)d(r
0, Rν)].

8Here, d(x, S) := infy∈S ‖x− y‖ for x ∈ IRn, S ⊂ IRn.
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Proof: Let X0 be a random variable with density h0 and X1, X2, ..., Xν be the sample that
generates P ν

p,m. We denote by cjp,m(X
0) the components of cp,m(X

0), j = 1, 2, ..., (p+2)N+1.
For j = 1, 2, ..., N+1, cjp,m(X

0) = 1 if X0 = mj−1 and c
j
p,m(X

0) = 0 otherwise. Consequently,
E{cjp,m(X

0)} = 0 and, likewise, (1/ν)
∑ν

i=1 c
j
p,m(X

i) = 0 almost surely. For j = N +1+(p+
1)(k − 1) + l + 1, l = 0, 1, ..., p, k = 1, 2, ..., N , cjp,m(X

0) = (X0 −mk−1)
l if X0 ∈ (mk−1,mk)

and cjp,m(X
0) = 0 otherwise. Consequently, for j = N +2, N +3, ..., (p+2)N +1, cjp,m(X

0) ∈
[0,∆p,m] almost surely and by Hoeffding’s inequality,

P

(∣

∣

∣

∣

∣

1

ν

ν
∑

i=1

cjp,m(X
i)− E{cjp,m(X

0)}

∣

∣

∣

∣

∣

≥ α

)

≤ 2e−2ν(α/∆p,N )2

for every α ≥ 0. Moreover, Boole’s inequality gives, when taking advantage of the zero error
for j = 1, ..., N + 1, that

P





(p+2)N+1
⋃

j=1

{∣

∣

∣

∣

∣

1

ν

ν
∑

i=1

cjp,m(X
i)− E{cjp,m(X

0)}

∣

∣

∣

∣

∣

≥ α

}



 ≤ 2(p+ 1)Ne−2ν(α/∆p,m)2 .

Let φν : IR(p+2)N+1 → IR be defined by φν = (1/ν)
∑ν

i=1〈cp,m(X
i), ·〉+ δν(·) where δν(r) = 0

if r ∈ Rν and
∫ mN

m0
e−〈cp,m(x),r〉dx ≤ 1, and δν(r) = ∞ otherwise. Let φ0,ν : IR(p+2)N+1 → IR

be defined by φ0,ν = E{〈cp,m(X
0), ·〉} + δ0,ν(·) where δ0,ν(r) = 0 if

∫ mN

m0
e−〈cp,m(x),r〉dx ≤ 1

and r is in the convex hull of Rν and r0, and δ0,ν(r) = ∞ otherwise.
In view of the preceding results and definitions, for r − r0 ∈ ρIB, with ρ ∈ (0,∞),

∣

∣

∣

∣

∣

(1/ν)
ν
∑

i=1

〈cp,m(X
i), r〉 − E{〈cp,m(X

0), r〉}

∣

∣

∣

∣

∣

≤ α
√

(p+ 1)N(ρ+ ‖r0‖)

with at least probability 1 − 2(p + 1)Ne−2ν(α/∆p,m)2 . Using this fact, Example 7.62 of [29]
gives that with the same probability,

dÎ
+

ρ (φ
ν , φ0,ν) ≤ α

√

(p+ 1)N(ρ+ ‖r0‖) + (1 +
√

(p+ 2)N + 1∆p,m)d(r
0, Rν),

where dÎ
+

ρ is closely related to dlρ; see Section 7.I in [29]. Then, from Theorem 7.69 in [29],
we deduce the first result after realizing that r0 is an ǫ-optimal solution of minφ0,ν , where
the additional factor 1 + 4ρ/ǫ arises from that theorem. Proposition 5 yields the second
conclusion.

Theorem 7 shows that there are two sources of error in the estimation process corre-
sponding to the two parts of K. The first source is sampling error, represented by the
term involving α, which can be made small by selecting a small α and this error is only
exceeded with a small probability if ν/α2 is large. The second source is caused by d(r0, Rν),
the distance between the true epi-spline parameter and the constraint set Rν . Of course, if
only appropriate soft information is included, then r0 ∈ Rν and d(r0, Rν) = 0. Otherwise,
incorrect specification of soft information induces a ‘bias’ in the density estimator. We also
note that Theorem 7 provides additional support for considering RP ν

p,m also for instances
which are not loosely constrained. Even in such cases, RP ν

p,m is guaranteed to generate a
density near the true density.
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We recall the notion of ‘bounded in probability.’ For a sequence of random variables
{Y ν}∞ν=1, we write Y

ν = Op(1) when for any ζ > 0, there exists a β ≥ 0 such that Prob(|Y ν | >
β) ≤ ζ for all ν.

Corollary 1 For sufficiently large ν, suppose that the assumptions of Theorem 7 hold and
d(r0, Rν) = 0 almost surely. Then,

ν1/2dKL(h
0||hνǫ ) = Op(1) for any hνǫ = e−〈cp,m(·),rνǫ 〉, rνǫ ∈ Rν

ǫ .

Proof: Theorem 7 and the fact that d(r0, Rν) = 0 imply that

Prob(ν1/2dKL(h
0||hνǫ ) > K ′αν1/2) ≤ 2(p+ 1)Ne−2ν(α/∆p,m)2

for sufficiently large ν, whereK ′ =
∥

∥

∥

∫ mN

m0
cp,m(x)h

0(x)dx
∥

∥

∥ (1+4ρ/ǫ)
√

(p+ 1)N(ρ+‖r0‖). We

let ζ > 0 and couple α and ν such that ζ = 2(p+1)Ne−2ν(α/∆p,m)2 , i.e., ν = −∆2
m,p log(ζ/2(p+

1)N)/(2α2). Conseqently,

Prob(ν1/2dKL(h
0||hνǫ ) > β) ≤ ζ,

where β = K ′(−∆2
m,p log(ζ/2(p+ 1)N)/2)1/2 and the conclusion follows.

In view of the preceding result, we see that the canonical rate of ν−1/2 is obtained for
the exponential epi-spline estimator even if soft information is ‘active.’

4 Soft Information

We implement soft information about the density under consideration in the estimation
problem P̄ ν

p,m through the set Rν . Intuitively, we expect that soft information may improve
density estimates, which we also see empirically in Section 5. In fact, if the true density
h0 = e−〈cp,m(·),r0〉, with r0 ∈ Rν and there exists a ρ > 0 such that ‖r − r′‖ ≤ ρ for all
r, r′ ∈ Rν almost surely, then in view of Proposition 5

dKL(h
0||hν) ≤

∥

∥

∥

∥

∫ mN

m0

cp,m(x)h
0(x)dx

∥

∥

∥

∥

ρ.

Consequently, an effective strategy for improving exponential epi-spline estimates would
be to reduce the size of Rν , of course, without eliminating the true epi-spline parameter.
Naturally, with the inclusion of questionable soft information, there is a need for validation.
While important, we omit a discussion of this topic; see for example [36] and [5] for tests in
related contexts.

We next consider examples of Rν . It is straightforward to translate many important
types of soft information into constraints on the epi-spline parameters

r = (s0, s1, ..., sN , a1,0, a1,1, ..., a1,p, a2,0, a2,1, ..., a2,p, ...., aN,0, aN,1, ..., aN,p) ∈ IR(p+2)N+1,

where we recall that the first N + 1 components specify the value of the epi-spline at the
mesh points m0, m1, ..., mN and the remaining N blocks of p + 1 components give the
polynomial of order p in each interval (mk−1,mk), k = 1, 2, ..., N . In fact, many types of soft
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information simply result in linear and convex constraints as we see below.

Support bounds and mesh. The choice of mesh m = {mk}
N
k=0 accounts for support

bounds and m0 and mN should, ideally, correspond to the lower and upper bound of the
support of the true density, respectively. If these are unknown, the values can be selected
such that the observed sample is well within [m0,mN ]. The mesh is often selected to be
uniform, but the methodology offers much flexibility. For example, if discontinuities and
intervals with steep slopes can be anticipated, other choices may be preferred. We note,
however, that under the assumption that a true density is in x-splp(m) for some m and p,
there is no imperative need for refining the mesh beyond m as the sample size increases.

Continuity. We ensure that an exponential epi-spline estimate is usc by the constraints

sk−1 ≤ ak,0, sk ≤

p
∑

i=0

ak,i(mk −mk−1)
i, k = 1, 2, ..., N.

Identical constraints with the inequalities reversed ensure lsc of the exponential epi-spline.
Continuity would require the same constraints with equality. Of course, by omitting some
of these constraints, one has the ability to ensure continuity on parts of m. All of these
constraints are linear. Moreover, their inclusion will keep a problem loosely constrained as
the sufficient condition for being loosely constrained in Proposition 2 is satisfied.

Smoothness. We restrict the search to r-times continuously differentiable densities, with
r ≤ p, by imposing the conditions for continuity and the linear constraints

p
∑

i=j

j−1
∏

l=0

(i− l)ak,i(mk −mk−1)
i−j = ak+1,j, k = 1, 2, ..., N − 1, j = 1, 2, ..., r.

Higher order smoothness is automatically achieved if these constraints are imposed with
r = p. Again, selective implementation of these constraints could be a useful tool in prac-
tice. Again, the inclusion of these constraints will keep a problem loosely constrained as the
sufficient condition for being loosely constrained in Proposition 2 is satisfied.

Fisher information and related quantities. The Fisher information
∫∞

−∞
h′(x)2/h(x)dx

of a density h is a ‘measure of smoothness’ that is easily expressed in terms of the epi-spline
parameter, but upper and lower bounds on this expression result in undesirable nonconvex
constraints. However, an alternative ‘normalization’ results in a convex constraint. Specifi-
cally, if h = e−〈cp,m(·),r〉, then

∫ ∞

−∞

(h′(x)/h(x))2dx =

∫ mN

m0

〈

c′p,m(x), r
〉2
dx =

N
∑

k=1

∫ mk

mk−1

(

p
∑

i=1

iak,i(x−mk−1)
i−1

)2

dx.

An upper bound on this quantity results is a convex constraint. In some application, one
may also seek bounds at x ∈ (mk−1,mk) by restricting

h′(x)/h(x) = −〈c′p,m(x), r〉 = −

p
∑

i=1

iak,i(x−mk−1)
i−1
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and/or

h′′(x)/h(x) = −〈c′′p,m(x), r〉+ 〈c′p,m(x), r〉
2

= −

p
∑

i=2

i(i− 1)ak,i(x−mk−1)
i−2 +

(

p
∑

i=1

iak,i(x−mk−1)
i−1

)2

.

Upper and lower bounds on the first quantity results in linear constraints and upper bounds
on the second quantity gives a quadratic convex constraint. The constraints could be im-
posed at any number of values of x, but we note that if p = 2 and the density is log-concave,
as describe below, and continuously differentiable, then lower bounds on h′(x)/h(x) at m1,
m2, ..., mN suffices to ensure that the constraints are satisfied for all x ∈ [m0,mN ]. Similarly,
an upper bound on h′(x)/h(x) need only be imposed at m0, m1, ..., mN−1. The inclusion of
the pointwise constraints keep a problem loosely constrained as the sufficient condition for
being loosely constrained in Proposition 2 is satisfied.

Monotonicity. We achieve a nondecreasing (nonincreasing) density by imposing nonnega-
tivity (nonpositivity) on h′(x)/h(x) for all x ∈ (mk−1,mk), k = 1, 2, ..., N as well as

sk−1 ≥ (≤)ak,0, sk ≤ (≥)

p
∑

i=0

ak,i(mk −mk−1)
i, k = 1, 2, ..., N.

Again, simplifications arise, for example, if p = 2 and the density is log-concave. Then, it
suffices to impose that ak,1 + 2ak,2(mk − mk−1) ≤ 0 (ak,1 ≥ 0), k = 1, 2, ..., N . Again, a
problem remains loosely constrained after the inclusion of these constraints.

Unimodality and Log-Concavity. We recall that h = e−〈cp,m(·),r〉 is log-concave if and only
if 〈cp,m(·), r〉 is convex. This condition is ensured if 〈cp,m(·), r〉 is (i) continuous (see above),
(ii) for k = 1, 2, ..., N − 1, its left derivatives at mk is no larger than its right derivative, i.e.,

p
∑

i=1

iak,i(mk −mk−1)
i−1 ≤ ak+1,1, k = 1, 2, ..., N − 1,

and (iii) on each (mk−1,mk), k = 1, 2, ..., N , 〈cp,m(·), r〉 is convex, i.e.,

p
∑

i=2

i(i− 1)ak,i(x−mk−1)
i−2 ≥ 0, k = 1, 2, ..., N, x ∈ (mk−1,mk).

Here, the obvious interpretations are required when p = 0, 1. The latter condition simplifies
to ak,2 ≥ 0, k = 1, 2, ..., N , when p = 2. Hence, in that case, the condition of log-concavity
requires only a finite number of linear constraints. Again, a problem remains loosely con-
strained. Since log-concavity implies unimodality, the preceding constraints are also sufficient
to ensure unimodality of the resulting exponential epi-spline density.

Bounds on density values. It is straightforward to impose pointwise upper and lower
bounds u(x) and l(x) on the value of h(x) = e−〈cp,m(x),r), with 0 < l(x) ≤ u(x) < ∞. It
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suffices to set

− log l(x) ≥

p
∑

i=0

ak,i(x−mk−1)
i ≥ − log u(x) for x ∈ (mk−1,mk)

and
− log l(x) ≥ sk ≥ − log u(x) for x = mk, k = 0, 1, ..., N.

While these constraints are linear, they don’t satisfy the assumption of Proposition 2. How-
ever, if only the lower bound h(x) ≥ l(x) is imposed, the problem instance remains loosely
constrained.

Kullback-Leibler divergence and the Bayesian paradigm. Proposition 5 provides
a convenient form of implementing soft information about a reference density href . In a
Bayesian-like paradigm, suppose that we seek a density that is ‘near’ href . Then, a constraint

dKL(h
ref ||e−〈cp,m(·),r〉) ≤ φ(ν), (6)

indeed ensures that the estimate hν is within φ(ν) of href as measured by the Kullback-
Leibler divergence. In view of Proposition 5, this constraint is linear in r and thus easily
implementable. Here, φ : IN0 → [0,∞) is the cognitive content of the reference density
href and should satisfy φ(0) = 0, limν→∞ φ(ν) = ∞, and be increasing since an increas-
ing sample size should place gradually less emphasis on href . Of course, if φ(ν) = 0, then
P̄ ν
m,p simply returns href , or a density that deviates at most on m. If φ(ν) = ∞, then no

information about the reference density is included. While technically not correct in the
sense of classical Bayesian statistics, one can view href as a ‘prior’ density and the resulting
density hν obtained from P̄ ν

m,p as the ‘posterior’ density. (An alternative to a constraint on

the Kullback-Leibler divergence would be to constrain a norm between href and e−〈cp,m(·),r〉,
such as the mean squared error with respect to href . However, such constraints would be
nonconvex.) Of course, a constraint dKL(h

ref ||e−〈cp,m(·),r〉) ≥ κ, for some κ > 0 is also easily
implementable, and could be relevant in contexts where a ‘diversity’ of densities is sought.
For example, one may be concerned with the validity of the soft information imposed in an
initial estimate of a density and seek a set of alternative densities that are some distance
away from the original estimate; see Section 5.2 for an example.

Bounds on moments. Soft information may result in constraints on the j-th moment:

l ≤

∫ mN

m0

xje−〈cp,m(x),r〉dx ≤ u, (7)

where l, u ∈ IR, l ≤ u are given constants. The right-most inequality results in a convex
constraint on r, while the left-most in a nonconvex constraint.

Bounds on cumulative distribution functions. Suppose that the cumulative distribu-
tion function of h = e−〈cp,m(·),r〉 at γ ∈ [m0,mN ] must lie between the lower bound l and the
upper bound u. This results in the two convex constraints

∫ γ

m0

e−〈cp,m(x),r〉dx ≤ u and

∫ mN

γ

e−〈cp,m(x),r〉dx ≤ 1− l.
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5 Numerical Examples

We illustrate the exponential epi-spline estimators through a series of examples. While we
don’t attempt a comprehensive comparison across methods, we also compute kernel estimates
using ‘ksdensity’ in Matlab, with the default normal kernel. The estimation problems are
solved by ‘fmincon’ in Matlab versions 7.10.0. In all cases, we use epi-splines of order 2 and if
there is no soft information about support bounds, we set m0 (mN) to two sample-estimated
standard errors below (above) the smallest (largest) sample point. The Gauss-Legendre
quadrature rule with 20 points evaluates the integrals over each segment (mk−1,mk). We
often assess the quality of an estimate hν of a density h0 by the mean-square error (MSE)
∫∞

−∞
(hν(x)− h0(x))2h0(x)dx.
The section starts with showing that soft information can dramatically improve density

estimates, both qualitatively and quantitatively. We proceed by discussing the Kullback-
Leibler divergence, the challenging situation with discontinuities, as well as incorrect soft
information. The section ends with average statistics over hundreds of replications. For
additional numerical results we refer to [39, 31, 38].

5.1 Value of Soft Information

We consider the exponential density with parameter λ = 1 and show some typical results;
see the end of the section and [39, 38] for average results over thousands of replications.
Throughout this subsection, we use N = 10 and assume that the exponential epi-spline
estimates are continuously differentiable. For moderately large sample sizes, both kernel
and exponential epi-spline estimates capture the essence of the exponential density, though
the nonnegative support is violated; see Figure 2(a) where ν = 100 and the true density
is the dotted black curve, the exponential epi-spline estimate is the solid red curve, the
kernel estimate is the dashed black curve, and the green stems show the sample points. The
MSE for the exponential epi-spline and kernel estimates are 0.0309 and 0.0515, respectively.
While additional soft information improves the exponential epi-spline estimate, we provide
no further details and instead turn to the more challenging situation with a sample size of
ν = 10. Figure 2(b) shows corresponding estimates in this case, where the MSE worsens to
0.1432 (exponential epi-spline) and 0.1285 (kernel). Neither the exponential epi-spline nor
the kernel estimate resemble qualitatively the exponential density. However, additional soft
information carries promise to improve the situation.

Figure 3(a) shows the estimates for the same sample as in Figure 2(b), but with nonneg-
ative support also incorporated. While the estimates now have correct lower support bound,
substantial oscilations in density values cause the MSE to increase to 0.2765 (exponential
epi-spline) and 0.3273 (kernel). We note that the kernel estimate reaches well above 4.5
near zero, though the plot is truncated for the sake of clarity. There is no systematic way of
incorporating further soft information in the kernel estimate. However, it is straightforward
to ensure a log-concave exponential epi-spline estimate as shown in Figure 3(b). The expo-
nential epi-spline estimate improves visually and the MSE reduces to 0.1144. In this and the
following plots, the kernel estimate of Figure 3(a) is reproduced for the sake of comparison.

Further soft information improves the exponential epi-spline estimates. Figure 4(a)
shows the visually improved exponential epi-spline estimate when we also assume a non-
increasing density. The MSE improves substantially to 0.0470. The exponential epi-spline
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Figure 2: Exponential Example: Exponential epi-spline and kernel estimates for ν = 100 (a)
and ν = 10 (b).
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Figure 3: Exponential Example: Exponential epi-spline and kernel estimates for ν = 10,
with nonnegative support (a) and also log-concavity (b).

estimate drops off quickly in the first segment (mk−1,mk) after the last sample point as
expected due to the maximum likelihood objective. Soft information that the ‘pointwise
Fisher’ quantity hν ′(x)/hν(x) must lie in the interval [−1, 0] remedies this deficiency. We
observe that the exponential density h0 with parameter λ = 1 has h0

′
(x)/h0(x) = −1 for all

x ≥ 0. The MSE of the exponential epi-spline improves to 0.0416 mainly due to improved
tail estimate; see Figure 4(b). The resulting exponential epi-spline misses the density peak
at zero, but the present sample provides few indications about such a peak and its capture
will naturally be difficult. Still, the exponential epi-spline is both qualitatively and quan-
titatively close to the true density elsewhere. Lowering the upper bound on the pointwise
Fisher quantify improves the estimate further, with a nearly perfect estimate (not depicted)
when hν ′(x)/hν(x) = −1 is required for all x ≥ 0. The ability to incorporate various kinds
of soft information along the lines illustrated here offers the statistician a valuable tool for
exploring assumptions and their consequences.
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Figure 4: Exponential Example: Exponential epi-spline and kernel estimates for ν = 10,
with also nonincreasing (a) and also h′(x)/h(x) ∈ [−1, 0] (b) soft information.

5.2 Kullback-Leibler Divergence and the Bayesian Paradigm

As described in Section 4, our framework provides an alternative to traditional Bayesian
updating. In addition to the inclusion of numerous types of soft information—which can
be viewed as ‘prior’ information—we may also directly restrict P̄ ν

m,p to a neighborhood of
a reference density href using (6). To illustrate the framework, consider a reference (prior)
density that is standard normal and a sample consisting of 10 points from the same density;
see Figure 5. We set N = 10 and restrict the search to continuously differentiable densities.
If no emphasis is placed on the reference density, i.e., φ(10) = ∞ in (6), then we obtain the
exponential epi-spline estimate marked with the red dotted line in Figure 5. As proximity
to the reference density is enforced more vigorously by setting φ(10) = 1, 0.1, and 0.01, we
obtain the dashdot, dashed, and solid lines, respectively, in Figure 5. The Kullback-Leibler
divergence constraints dampen the variability caused by the sample by a degree determined
by φ(10), which in practice should be selected based on the confidence in the correctness of
the reference density.

A related situation arises when a statistician would like to generate multiple densities
that span a range of possibilities, for example to account in some manner for questionable
soft information. For example, when the estimated density is to be used as input in further
simulation and optimization, it may be prudent to consider a set of densities and possibly
let planning be based on the worst density in some sense. We illustrate this situation by
returning to the exponential example of Section 5.1. Suppose that the last density generated
there (see Figure 4(b)) is considered plausible, but we would like to also generate rele-
vant alternatives. Retaining a restriction to continuously differentiable, nonincreasing, and
nonnegatively supported densities, we construct three alternatives by imposing (6) with ≤
replaced by ≥ and right-hand side 0.1, 0.01, and 0.001, and href being the original estimate in
Figure 4(b). Consequently, we determine densities that are at least certain ‘distances’ away
from the original estimate in the sense of Kullback-Leibler divergence, while still maximizing
the log-likelihood function of the sample. Figure 6 shows the results with the solid red line
and dotted black line showing the original estimate and true density as in Figure 4(b). The
alternative densities are depicted with dashed, dot-dashed, and dotted red lines for right-
hand sides of 0.001, 0.01, and 0.1, respectively. We observe that even though based on only
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Figure 5: Normal Example: Kullback-Leibler divergence constraint.

10 sample points, the original together with the alternative densities provide a ‘diversified’
set of densities near the true density well suited as input for further studies.

5.3 Estimation of a Discontinuous Density

Significant challenges arise when the density to be estimated is discontinuous. We illustrate
this situation by considering the ‘uniform mixture’ density

h0(x) = 2 if x = (0.1(k − 1), 0.1(k − 1) + 0.05), k = 1, 2, ..., 10, and h0(x) = 0 otherwise.

Figure 7(a) shows the density (dotted black line) together with a kernel estimate (dashed
black line) based on a sample of size 1000. Clearly, this kernel estimate is unable to capture
the discontinuities in the mixture density. Other kernel estimators may improve the situation,
but the selection of kernel base and bandwidth is generally difficult a prior. An exploration
of such parameters is beyond the scope of the paper. We compute an exponential epi-spline
estimate using N = 50 segments. It is natural to select a large number of segments when one
is suspicious that the density might be discontinuities and we want to ensure a sufficiently
flexible epi-spline. We also enforce the lsc constraints. However, with no sample points
coinciding with m, and no other mesh related constraints, these constraints only influence
the density estimate on the mesh and therefore are essentially superfluous. Finally, we let
the pointwise Fisher quantity hν ′(x)/hν(x) ∈ [−1, 1] for x ∈ (mk−1,mk), k = 1, 2, ..., N .
With the large number of segments and the possibility for discontinuities, this restriction
improves the accuracy only marginally but ensure visually more accessible plots. Figure 7(a)
shows the resulting exponential epi-spline estimate (solid red line). The MSE is 0.5724 in
contrast with 1.1702 for the kernel estimate. We see that the exponential epi-spline estimate
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Figure 6: Exponential Example: Diversification through Kullback-Leibler divergence.

captures fairly well the mixture density, even though we don’t provide any soft information
about the support. As predicted by Theorem 1, results improve as N increases to 100; see
Figure 7(b). The exponential epi-spline (solid red line) now tracks the mixture density to a
large degree obtaining a MSE of 0.3518. Of course, the kernel estimate remains unchanged,
but is included in Figure 7(b) for the sake of comparison.
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Figure 7: Uniform Mixture Example: Sample size 1000, and N = 50 (a) and N = 100 (b).

We repeat the calculations for ν = 100 and show the results in Figure 8. Again, the
kernel estimate (dashed black line) is unable to capture the discontinuities in the mixture
density. The exponential epi-spline for N = 50 (Figure 8(a)) and N = 100 (Figure 8(b))
qualitatively reflect the mixture density to a significant degree.
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Figure 8: Uniform Mixture Example: Sample size 100, and N = 50 (a) and N = 100 (b).

5.4 Incorrect Soft Information

As given by Theorem 4, optimal solutions of P ν
p,m tend to a point in the Kullback-Leibler

projection of the true density h0 relative to the set constructed by the soft information as the
sample size grows. Consequently, in the presence of incorrect soft information that excludes
h0, we achieve the density ‘nearest’ to h0 within the set of densities satisfying the (incorrect)
soft information. We illustrate this situation by considering a standard normal density
and its exponential epi-splines estimates based on N = 10. We adopt soft information about
continuous differentiability and log-concavity. In addition, we impose the incorrect constraint
that the expected value must be no larger than −0.5. Figure 9(a) shows the resulting
exponential epi-spline estimate (solid red line) and the kernel estimate (dashed black line)
for ν = 100. Figure 9(b) displays the corresponding results for ν = 1000. We observe that
while the kernel estimator benefits from the larger sample size and obtains a nearly perfect
estimate for ν = 1000, the unfortunate expectation constraint on the exponential epi-spline
prevents it from approaching the true density. However, we obtain a ‘normal-looking’ density
with a shifted mean of −0.5.
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Figure 9: Normal Example: Estimates for ν = 100 (a) and ν = 1000 (b) with incorrect
constraint

∫ mN

m0
xhν(x)dx ≤ −0.5.
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5.5 Average Performance

We end the section by presenting a series of aggregate results using the exponential, normal,
uniform, and pareto densities as well as a range of sample sizes. For each density and sample
size, we carry out 104 meta-replications and compute average and standard deviation of the
resulting MSE for both an exponential epi-spline estimate and a kernel estimate. We use
N = 20 and soft information about a continuously differentiable density, with additional soft
information implemented depending on the density.

We first consider the exponential density with parameter λ = 0.5. Using nonnegativity
and nonincreasing soft information, we obtain for a range of sample sizes the average and
standard deviation MSE results of Figure 10(a) and Figure 10(b), respectively. We find that
the exponential epi-spline estimates result in substantially smaller MSE, on average, compare
to those of the kernel estimate. However, the rate of convergence of the MSE appears to be
the same for the two estimators.
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Figure 10: Exponential Example: Average (a) and standard deviation (b) of MSE for expo-
nential epi-spline and kernel estimators for a range of sample sizes.

We second consider a normal density with zero mean and standard deviation of two. We
compute exponential epi-splines assuming log-concavity and first and second moments being
within 20% of their correct values. Figure 11 gives the corresponding average and standard
deviation of the MSE for a range of sample sizes. Again, we see that the exponential epi-
splines estimates result in smaller MSE, on average. However, the advantage vanishes as the
sample size grows.

Third, we consider a uniform density on [−1, 1]. We compute exponential epi-spline
estimates with soft information about the support bounds as well as log-concavity. The kernel
estimates also make use of the information about support bounds. Again, the exponential
epi-spline estimates result in smaller average MSE for all sample sizes examined; see Figure
12. In this case, the ratio of average MSE from the exponential epi-splines to that from the
kernel estimates decreases substantially as the sample size increase up to 100.

Fourth, we consider the Pareto density with shape parameter k = 3 and location pa-
rameter θ = 1. We again assume log-concavity and the correct support bounds. Figure 13
shows the average and standard deviations of the MSE, with average MSE for the exponen-
tial epi-spline estimates substantially smaller than those of the kernel estimates. Across the
examples, the standard deviations for the two methods are comparable.
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Figure 11: Normal Example: Average (a) and standard deviation (b) of MSE for exponential
epi-spline and kernel estimators for a range of sample sizes.
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Figure 12: Uniform Example: Average (a) and standard deviation (b) of MSE for exponential
epi-spline and kernel estimators for a range of sample sizes.
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