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Abstract

We propose a new method for matching, comparing, and digtaiimg datasets con-
sisting of high-dimensional data (e.g., signals and impgesr approach first performs
dimension reduction and feature extraction of trainingdats using the diffusion maps
developed by Coifman and Lafon [1, 2]. This leads to a compamesentation of the
given classes in the so-called “diffusion space” whose dsr@ is much lower than
the original ambient space. In fact, each class in the ddfuspace is represented as
a set of cluster centroids called “signatures”. Dimensguduction via diffusion maps
offers the advantage of preserving the underlying geonietilye data. To classify an
unlabeled test dataset, we extend (or embed) that datasehendiffusion space con-
structed during the training stage, construct its sigmatamnd then measure the “close-
ness” or similarity between the test signature and the d@gmtures using the Earth
Mover’s Distance (EMD) [3, 4], which is more robust than atheeasures. Finally,
we will demonstrate the usefulness of our method using twotjral real applications
and compare the performance of the dimension reductiorbdépaf our method with
that of the standard Principal Component Analysis.
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1. Introduction

Many problems in pattern recognition require analysis amthgarison between
datasets instead of those between individual data points. ekample, in a visual
speech recognition, two or more clips of recorded video arepared for similar pat-
terns. Typically each video clip consists of a sequence afjenframes. We can view
each image as one data point and a video clip as a set of poitite image space.
Thus, comparing two video clips is the same as comparing &t® af points in the
image space. For a second example, consider the task oifyilemian object on the
ocean floor from a set of sonar waveforms reflected from theabbjThis requires
comparing the set of waveforms of the unknown object to detsaweforms of known
objects. Then the object is identified if a match is made.

In this paper, we propose a method for classification probletmere the data cor-
responding to an object is a set of points in a high dimensigpace. Our proposed
method consists of two main steps. The first step involvesdsgion reduction and
feature extraction and the second involves discriminadim classification.

Modern technologies generate data that are often extremgydimensional: even
a small128 x 128 image has dimensiol6384. The variables describing the data (the
data variates), however, are often highly correlated astliocally. For example, many
neighboring pixels in an image are highly correlated. The&ans that in many cases
there exist lower-dimensional structures of the data. heiotvords, the data have
low intrinsic dimensionality, and therefore, it is possilib find a low-dimensional
representation for the data. By reducing the data dimeabtgrwe make analysis of
the data much more efficient, and sometimes more accurate.

It is well known that classical algorithms for dimension uetlon and feature ex-
traction, such as Principal Component Analysis (PCA), &r®at inapplicable to the
analysis of high-dimensional data due to these of dimensionality That is, their
computational cost grows exponentially with the dimensidforeover, the correla-
tions between the data variates may only be local. Traditiorethods such as PCA
and Multidimensional Scaling are global methods, thus thay not provide a proper

low dimensional representation for the data. M. Belkin andif?ogi [5, 6] introduced



the idea of using eigenvectors of the Laplacian on the grapktcucted from the data
for nonlinear dimension reduction. Here, each data poitrested as a node and the
weight on an edge between two nodes represents the affirtityeba the two data
points. Other nonlinear methods have been proposed in B, &onlinear methods
offer the advantage of preserving local geometry while@ghg dimension reduction.
In [6, 10], Belkin and Niyogi analyzed the local-neighbookepreserving property
of Laplacian eigenvectors. Unfortunately, the low-dinienal representation of the
data obtained from Laplacian eigenvectors are highly ieaso the sampling density
of data (see [2] for examples). This is a serious drawbackekample, consider two
video clips of a person speaking the word ‘one’ at two difféigpeed. The set of image
frames extracted from the slower video clip will have moragaes than that from the
faster one, and thus it is a denser sampling set. We want tblbdéaidentify the two
sets of image frames as belonging to the same class. Hovgewesitivity to sampling
density can cause distortion in the low-dimensional regmmesdion of the data, leading
to high misclassification rate. R. R. Coifman and S. LafonZf[lproposed Laplace-
Beltrami normalization of the weights on the graph beforestnucting the Laplacian
matrix. This makes the eigenvectors invariant to samplexggity. In [1, 11], Coifman,
Lafon, and Lee definediffusion mapdrom the eigenvalues and eigenvectors of the
Laplace-Beltrami normalized Laplacian matrix and prodid@ intuitive interpretation
of how data clustering in a diffusion coordinate systemrigéd to a Markov chain on
the weighted graph. In our proposed method, we shall apfflysithn maps to achieve
dimension reduction. Our preference for diffusion maps @iker nonlinear methods
is mainly grounded in their invariance to sampling densitie

We note that Lafon, Keller, and Coifman have proposed in [dZhethod for
datasets matching similar to the problems in our consiaeratTheir algorithm in-
cludes using diffusion maps to reduce data dimensionatitythen use the Hausdorff
distance to measure the difference between any two sets. eAshall show in Sec-
tion 5 below, Hausdorff distance is very sensitive to owli@o remedy this drawback,
we propose an approach that takes into consideration thdbditon of the data in
its lower-dimensional representation space (i.e., afteredsion reduction has been

done). Our approach involves constructingignature(a discrete multidimensional



probability density function, or synonymous, a high-dimienal histogram) of each
dataset after having embedded all datasets into a lowesrdilmnal space using dif-
fusion maps. Then we determine the similarity between ééddsy theclosenes®f
their signatures in the Earth Mover’s Distance (EMD). Owaf applying EMD to
discriminate discrete distributions originates from ii€&ess in applications to image
retrieval from databases [3, 4].

The remainder of this paper is organized as follows: we fegtew the Diffusion
Framework and Earth Mover’s Distance. In Section 4 we dbsaur proposed method
for datasets matching and provide suggestions for setgbtisic parameters necessary
under the Diffusion Framework. In Section 5 we give two exbspf applications of
our method together with experimental results. We will gilsovide a comparison of
numerical results of our method and the method in [12]. Ireotd better understand
the conditions under which a nonlinear technique (such &sidbon Framework) is
more appropriated for dimension reduction than a linedrrteie (such as PCA), we
will compare numerical results of diffusion maps and PCA ett®n 6. Finally we

summarize our discoveries and draw conclusions in the éasios.

2. Diffusion Framework

In this section, we review the construction of diffusion ream a dataset and the
properties that allow us to achieve meaningful dimensignegduction. We will also
review an algorithm proposed in [12] for extension of difrssmaps from the training

data to the test data.

2.1. Diffusion maps

Diffusion maps are constructed from the eigenfunctionsncd\geraging operator —
the diffusion operator We assume here that our data¥et= {x;,--- ,xzy} liesin a
space having a natural dissimilarity meastithat gives a sense of affinity (or similar-
ity) between any two points iX. This is a reasonable assumption to make in practice.
For example, ifX is a database of image patches each of which3Bas 32 pixels,

thens may be the’? norm between two image patchesRA®?4. Or, if X belongs to a



submanifold inR™, thend may be the usual Euclidean distance. Following the work of
Coifman and Lafon [1, 2], we construct the diffusion operatio X as follows. View

the data pointy, - - -,y as nodes of a weighted symmetric graph. Any two nodes
x; andz; are connected by an edge with weight(z;, z,) £ e~((@:@)/9)* 2 > (.

The weight functionw. gives the notion of local geometry t&i. That is, it defines
the notion of a local neighborhood at each paint X via the affinity betweer and
other points, and the value of the parametspecifies the size of this neighborhood.
Moreover, as explained in [6], when the dataXetpproximately lies on a submani-
fold, using the weightsu. on the graph corresponds to an approximation of the heat
kernel on the submanifold.

Applying the so-called graph-Laplacian normalizationuto yields thediffusion

kernel
A We (z,y)
k(w) y) - ds(m) I (1)
whered, (x) 2 > yex We(z, y). The corresponding diffusion operator is
Af(x) 2> ki, y)f (). 2
yeX

The kernelk is non-negative and row-stochastic (i.2.,,c x k(z,y) = 1 for all
x € X). Hence, it can be viewed as a transition matrix of a Markaxcpss onX.
The operatori is an averaging operator, since it is positivity-preseg\ire., Af > 0
for any f > 0) and preserves constant functions. We can interpret thenact the
operatorA as ‘diffusion’ of information throughout the graph, and fidarkov chain
dictates the directions of fast and slow information prce.

An important idea in the diffusion framework is to take larg@wers of the op-
eratorA. Fort > 0, raising the operatoA to a powert is equivalent to running the
Markov process forward by timg which can be interpreted as letting information dif-
fuse for a period of time. The information propagates more easily and quickly among
the regions of high affinity than those of low affinity. Thisdssentially how we can
capture the local geometry of the data.

Let k(Y denotes the kernel of the operatdf — thet*" power of the operaton.

(Note thatk™® (z, y) represents the probability of transition framto y in ¢ steps.)



The graph is connected by construction, therefore as +oc the Markov process

approaches a unique stationary distributigr1], i.e, for anyx,y € X,

lim & (z,y) = do(y).

t——+oo

In practice we always work in the discrete setting, theefoe may view the op-
erator A as a matrix whose rows are indexed d#yand columns are indexed hy.
Then the stationary distributiop, = [¢o(x1), - - -, do(x )] is the left eigenvector of
A corresponding to the top eigenvalug.e.,p, A = ¢,. It can be easily derived from
equations (1) and (2) and the symmetryQfthat

de ()
> zex de(2) .
With this, thediffusion distancdetween any two data pointisandy is given by

po(x) =

2
Di.y)* & [k (@, ) = £ (g, )

L2(X, )
-y !

zeX

(k®(z, z) — k® (y,z))2 ®)

¢0(2)

This is simply the weighted? distance betweek(") (z, -) andk® (y, -). We observed

earlier thatk(!) (x, z) is the probability of transition frone to z in ¢ steps. Therefore
it is easy to see that the diffusion distance betweeandy measures the difference
in how much connected or how strong in affinity these two nadedo the rest of the
graph at time (or step). In its definition, the diffusion distancB,(x, y) takes into
account all incidences relating andy. Consequently, it is robust to noise perturba-
tions and hence a great tool for extracting the underlyinonhggtry in the dataseX,
especially wherX is a low dimensional manifold lying in a high-dimensionaasep.

The diffusion distance is directly related to the eigengaland eigenvectors of the
matrix A. In practice, we approximat®; (-, -) by using eigenvalues and eigenvectors
of A. To see this, let us first do some preprocessing: conjugatkeimelk with /¢

to obtain the symmetric kernel

Fz,y) 2 Voo(@) k(z,y)

’LUE(-’B, y) ]
de(x)+/d-: (y)

1
$o(y) @)



Let A be the operator witt as its kernel, i.e.,
)2 Ka.y)f(y)
yeX
It shares the same spectrumAsand eigenvectors of can be obtained from those of
A via conjugation by/@o. Supposg A} are the eigenvalues (witho| > [\ > ---)
and the corresponding eigenvectors?bare{@}, then the left and right eigenvectors
of A corresponding td, ared, = ¢, - /oo andyy, = ¢y /+/bo, respectively.

The advantage of the operatgris that it is symmetric, positive semi-definite, and
compact. Hence it has a discrete, non-increasing, nontidegepectra:\y = 1 >
A1 > Ao > - > 0, and the orthonormal eigenvecto{é?g} form a basis for.?(X)
(the eigenvector corresponding to top eigenvalye= 1 is ¢y = /o). The kernelk

has spectral decomposition

z,y) = Z%‘%‘(w)d)y (v)

>0
Hence,
z,y) = Z Ajtj(®)d;(y)
3>0
and
KD (@, y) = M@)o (y). (5)
j>0

Now, {#¢} and{} are biorthogonal (i.e3 . x ¢;(2)¥¢(2) = ¢, Whered;, is
the Kronecker delta), and
be(x) = go(@)the().
Thus,

Z d)j ¢E Z d)]

zeX zeX
That is,{¢,} is an orthonormal basis ih?(X, 1/¢). Therefore, for fixede, the for-

mula (5) can be interpreted as the expansion of the fundtidiiz, -) in this basis,
and the expansion coefficients &k, ;(x)}. Consequently, the formula (3) for the
diffusion distance reduces to

= 37N () — y(y))?. (©)

Jj=1



Note thaty; (z) = gzNBj(cc)/qNSO(:c). In other words, the proper diffusion distance can be
obtained by the eigenanalysis of the symmetrized opeﬁatmith the kernelk instead
of the original averaging operatar with the transition kernet. The summation in (6)
starts at indey = 1 because), = 1.

In practice, we approximate the diffusion distance formi@gaby the following
consideration. Since the eigenvaluess are non-increasing, the diffusion distance

can be approximated to a relative accuracy 0 specified by the user by

s(T,t)

Di(z,y)? = Y A2 (¢(m) — ;(y))?, (7)
j=1
where
s(r,t) 2 argmax{|\;[* > 7|A1'}. (8)
jeN

From this, thediffusion maps defined as

Xi%(w)

Aféi/?(w) ©)

\I/tiw’—)

)\i(mg)ws(r,t) ()
It can be viewed as coordinates is @, ¢)-dimensional Euclidean space characterized
by the parameters, t, and7. We shall call this space diffusion space Note that
s(7,t) < N and in our numerical experiments in Section 5, the valuegaft) lie in
the rangd < s(7,t) < 18 while 96 < N < 128inthe problem involving classification
of underwater objects arld< s(7,t) < 15 while 990 < N < 1204 in the lip-reading
experiment (The value of(7, t) and N changes as we repeat each experiment using a
different training set).

We usel, to embed our dataset into a diffusion space denotegl*by"). Note that
the usual Euclidean distance in this diffusion space is gmaximation to the diffusion
distance The key point here is that the diffusion mép produces a low-dimensional
representation of the data that highlights the underlyimigrisic local geometry in the
data.

The final important thing to mention is the Laplace-Beltramaimalization of the

edge weightsv. (x, y) if the dataX approximately lies on a submanifolt of R™



[1, 2, 12]. In this case, we replaece with a normalized version

we(z, y)
de(x)dc(y)

Then proceed to construct diffusion kernel as described)iaifove. In other words,

ws(xv y) —

we normalize the weights twice to construct diffusion kérfiest, the above Laplace-
Beltrami normalization, and second, the graph Laplaciamadtization. When the
data points are sampled fromt in a nonuniform manner, this normalization makes
the transition matrix4 approximate the Laplace-Beltrami diffusion operator’anand
the embedding of the data points via diffusion maps invatathe density distribution
of the sampled data. In short, the Laplace-Beltrami nomatibn produces a spectral
embedding that depends only on the geometnybénd not the density of the sampled

data points.

2.2. Extension of diffusion maps to test data

Our main interest is in classifying newly obtained unladedata (also calletkest
data) based on a classification rule learned from the lalsld&dat hand (i.etraining
data). In order to make meaningful inference from the trajrdata to the unlabeled
test data, we need to have the same low-dimensional repatisenfor both datasets.
That is, we need to embed test data into the same diffusiacesgmthe training data.
Hence, it becomes necessary for us to extend the diffusignom@puted on the train-
ing dataset to the test data. To perform this task, we empleyrtultiscale extension
scheme proposed in [12], which is based on “geometric haieaboriginally intro-
duced in [2, Chap. 3] and [15]. Let us call this scheme GHMB(getric harmonics
multiscale extension) for short. We now review the GHME soae

The GHME scheme is an improvement of the Ngatrextension method proposed
in [16, 17]. LetX andY denote the training set and the unlabeled test set, respec-
tively. First consider the eigenvalué¢s,} and orthonormal eigenfunctiods,} of a

(symmetric) Gaussian kernel of width> 0 on the training sek:

2, 2
pepela) = 3 e =1 0y (2), @ e X, (10)
zeX



where the nonnegative eigenvalugs;} are sorted in decreasing order. From Equa-
tion (10), the Nystdm extension of, from X toy € Y is defined as
_ A1 Ny—z? /02
puy) = — > e vzl (2), (11)
Fe zeX

Since the eigenfunctiongp, } form an orthonormal basis fdr?(X), any function

f € L*(X) can be expanded as
f@) = (e pu(@), @ € X,
14
Thus the Nysim extension off from X toy € Y can be defined as

F) 27 (f.00) 2uly).

)4

We observe that the range of the extension in (11) is prapwtitos. If the ratio
llz — y||/o is large for alle € X, then@,(y) will be numerically small and hence
may not be meaningful. Hence the extension seafhould be as large as possible.
However, for large enough, the Gaussian kernel in (10) becomes ill-conditioned, i.e.
e tends to0 more quickly compared to the case wheres small. Thus the Nyshim
extension in (11) will blow up. Furthermore, it is well knowhmat the extension range
depends on the smoothness of the function to be extendedchfh. @], [15]. Iff is
fairly smooth, it can be extended far away from the trainiag ©n the other hand, if
f varies wildly onX, then it has limited extension range. To address the ilHi@n

issue, the GHME scheme considers the following approxirestension forf:

F22 Y (fed @) (12)

£ mpe>po
wheren > 0 is some fixed condition number andc X U Y. This extensionf is
well-defined onX U Y, but it is not equal tof on the training sefX. Observe that
if the value ofo decreases, the eigenvalues — 0 more slowly. This allows more
terms in (12), making’ a better approximation of on X. Based on this observation,
the GHME iteratively searches for an extensjpthat approximateg on X with an
pre-set error tolerance> 0 by slowly decreasing the value of the extension seale

The GHME scheme is summarized as follows:

10



Step 1. Supposef is a function defined on the training s&tand to be extended to a
new dataseY . Fix a condition numben > 0 and an error tolerance > 0. Set

the extension scale = o, for some large valueg.

Step 2: Compute eigenvalugg:, } and orthonormal eigenfunctiofs, } of the Gaus-
sian kernel of widtho and expand’ (on the training seK) in this eigenbasis

f@) = (f,00) (), € X,

1

i.e., compute the coefficients 2 (f, ).

Step 3: On the training sefX, approximatef by f defined in (12). Compute the
approximation error

1/2

Err 2 Z |ce|?

£ po/pe>n

If Err > o, seto — %a and return to Step 2. Otherwise, continue.

Step 4: For eachy such thatu,/ue < 1, compute the Nystim extension
_ 1 MNae—yll2 /o2
poly) = — > e lm vl gy (@),
fe zeX

for all y € Y. And finally, compute the approximate extensjbn

e Y anly).

£ po/pe<n
3. Earth Mover’sDistance

The definition of the Earth Mover’s Distance (EMD) is basedlo solution to a dis-
creteoptimal mass transportation probleMD represents the minimum cost of mov-
ing earth (or sand) from some source locations to fill up hate®me sink locations. In
other words, given any two distributions of materials (avh@bility distributions), one
of them can be viewed as a distribution of earth and the otli#steibution of holes,
then EMD between the two distributions is the minimum costeafrranging the mass

in one distribution to obtain the other. In the continuousirsg, this problem is known

11



as theMonge-Kantorovich optimal mass transferoblem and has been well studied
over the past 100 years; for an introductory reading on thblpm, see e.g., [18]. The

importance here is that EMD can be applied to measure theegiancy between two

multidimensional distributions.

In the discrete setting, the optimal mass transfer probkembe formulated as a lin-
ear optimization problem as follows [3, 4]: Suppose we hasewace mass distribution
P ={(p;,wp,), , (Pm,>wp, )} and asink distributiol) = {(q,wq, ), - ,(q,, we,)}
in a high-dimensional spad®®. In this setting,P and@ are callecsignaturesand can
be viewed as two distributions of feature vectors représgittvo objects.P is a sig-
nature of one object that consistsrafclusters inR® wherep,; is the centroid of théth
cluster andw,, is the proportion of the object’s feature vectors that bg#oto theith
cluster. SimilarlyQ is a signature of another object that consista ofusters with the
cluster centroid and the weight pa(r@j,wqj),j =1,...,n.

Suppose the cost of moving one unit of mass frpnto q; is ¢(p;, q;), and f;;
denotes the amount of mass flow frgmto g,. Then, the transportation cost can be

defined as:

m n

COSTP, Q. F) 23" c(p;. a)) .

i=1 j=1
whereF 2 [fi;] € R™>™. Then, the optimal mass transfer problem seeks the flow

F* that transfers the maximum allowable amount of earth to filltie holes with

minimum total transportation cost, i.e.,
F* = arg g}ég COSTP,Q, F),
whereF € S C R™*™ means tha#' must satisfy the following constraints:
(i) fi; >0, foralli,j;
(i) Z;’:lfij <wp,foralll <i<m;
@iy Y, fiy < wg,, forall 1 < j <n;and

(iv) lel ;L:l fij = min (Z:n:l wPﬂZ?:l wqj) .

12



The constraint (i) ensures that one can only move earth ffota @), not vice versa;
(i) that the amount of earth moved frofis no more than the sum of the weightsg ;
(iii) that the amount of earth received@tis no more than the sum of the weights ;
and (iv) that the maximum allowable amount of earth is moved.

Once the optimal flowF™ from P to Q is found, EMD is then defined as the total

cost normalized by the total flow:

COST P, F*
EMD(P, Q) 2 %
i=122j=11ij

. Zzn;1 23;1 c(p;; q])fz*]

m n *
Zi:l Jj=1 ij

Notice that the normalization factor is the total weight bé tsmaller signature

due to the constraint (iv). This normalization ensures simaaller signatures are not
favored in the case when two signatures have different teéddgihts. Furthermore,

EMD is symmetric, i.e., EMDP, Q) = EMD(Q, P) for any two distributions? and
Q.

4. Datasets Matching with Diffusion Mapsand EMD

We now describe how diffusion maps and Earth Mover’s Distacen be applied
together to perform datasets matching. Our approach datvely determines the
dissimilarity between any two sets of points of high dimensi nature (each set cor-
responds to an object). Our idea is the following: first, parf dimension reduction
and feature extraction under the diffusion framework; thpply Earth Mover's Dis-
tance as a discriminant measure between sets; and finabsifgl unlabeled sets via

nearest neighbor in EMD distance.

4.1. Signature construction

As explained in Section 3, Earth Mover's Distance measuregiscrepancy be-
tween two discrete distributions. To apply EMD as a datadistrimination mea-
sure, we need to construct a signature for each dataset. iMlulves two steps:
first, cluster the feature vectors in the diffusion spacej s@cond, form the signa-

ture P = {(py,wp,), -, (P, wp,,)}, Where{p,}7* , are cluster centroids and,_

13



is the density of clustef, that is, the percentage of all feature vectors in the dathate
belong to clustey.

For the clustering step, we apply tE#ongated K-meansalgorithm [19]. Elon-
gated K-means ¢kmeanswas adapted from the origindd-means algorithm by re-
placing the Euclidean distance with an Elongated distamtiea computation of point-
to-centroids distances. It was designed for detectinggeltad (thin and long) clusters.
More specificallyekmeanslgorithm would group points lying inside a thin long el-
lipsoid to form a cluster, as opposed to inside a sphere.

To motivate the consideration ekmeanslet us examine the ideal scenario when
the data consists df clusters widely separated from each other [19]. In this thse
matrix of E(a:, y) described in Section 2.1 (with rows re-ordered by clustengces-
sary) is block diagonal with exactliy blocks. Thus, it had({ eigenvectors associated
with the largest eigenvaluk, one eigenvector for each cluster. Each eigenvector has
ones in the entries corresponding to the points in the alastg zeros elsewhere. Sup-
pose we perform a spectral embedding of the data into thé&t@genspace (i.e., the
space spanned by the tépeigenvectors). The data would get mappedtolusters at
the K unit vectors on the coordinate axes. In general, rotatioag occur, depending
on the computation of the eigenvectors. In other words, ahpfs’ mutually orthog-
onal vectors in the tog< eigenspace is an admissible set of eigenvectors associated
with eigenvalue 1. Furthermore, eigenvectors are usuallgnalized. These two facts
translate taX elongated clusters lying along soriemutually orthogonal axes within
the topK eigenspace (instead of on the coordinate axes).

We observe that when the data is embedded into the tagenspace with < K,
or equivalently, when we project th€ elongated clusters down to thedimensional
subspace spanned by the figseéigenvectors, the results are elongated clusters lying
along radial directions and possibly some dense clustensthe origin. These clusters
near the origin are the projection image of those clusteasl#y elongated along the
directions orthogonal to thig-dimensional subspace. On the other hand, suppose we
embed the data into the tapeigenspace witly > K. We would find no additional
cluster other than th& elongated clusters already accounted for. The reasondbehin

this phenomenon is that each of the eigenvectors aftekitteeigenvector contains

14



mostly small numbers. In other words, large separatiortsinlata are already captured
in the top K eigenspace. Consequently, increasing the dimension adrtieedding
spectral space does not affect the clustering behavioledeature vectors.

ekmeangxploits the geometric properties of the eigenvectorfé(mf, y) to cluster
the data and automatically determine the number of intriclsisters. That iskmeans
does not require input of the number of clusters. To detegrtfie number of intrinsic
clusters automaticallygkmeansstarts the clustering process in the t»gigenspace
with three centroids initialized, two centroids at two dittnt elongated clusters and
one at the origin. If there are more than two elongated disistee centroid at the
origin will be dragged to a cluster not accounted for. Themdlgorithm moves the
clustering process up to the t8igenspace, adds a centroid at the origin, and repeats
the process until no additional cluster is found. This @tiafy process stops at the top
K eigenspace if there af€ (intrinsic) clusters in the data.

In practice, the data we handle are usually not widely seépdrand we do not have
more than one eigenvector associated with the largestvagenl. Indeed, whether
we can construct a diffusion map from eigenvectorig(c:f, y) depends solely on the
uniqueness of the top eigenvector. léa:, y) will always have exactly one eigenvec-
tor associated with eigenvalue 1. However, the eigenvestill have similar geomet-
ric properties if there are tight clusters in the data whiahses a spectral gap at the
K + 1-th eigenvalue (see [20]). Consequently, the diffusion sn@enstructed from
eigenvectors oE(:c, y) as defined in formula (9)) also have similar geometric proper
ties. Thereforeekmeanss applicable to our problem. Moreover, our accomplishment
in utilizing ekmeanss twofold: to cluster the feature vectors and to determieein-
trinsic dimensionality of the data. Sine&kmeangletermines the intrinsic number of
clusters in the data based on geometric properties, thivauoan be considered as
the intrinsic dimensionality of the data. We take advantaigenis aspect oEkmeans
to determine the dimensios(r, t) of our diffusion spac&*(™*). We explain how to
selects(, t) in more details in Section 4.2.

Now, suppose we haw¥ datasetsX!,--- , X, andekmeansas determined that
each sefX’ hask; clusters. This means the cluster centroids for§etletermined by

ekmeansare vectors in thé(;-dimensional subspace of the embedding diffusion space

15



R*(™t) (wheres(r, t) is determined as described in Section 4.2). To bring allatigies

into the same spad®@*(™*), we run K-means with Elongated distance once on each set
of feature vectors ifR*(™?) to reform thek; clusters for each datas&t:. We use the
previous clustering result as an initial condition for teectustering process. With this,

the re-clustering process converges very quickly.

4.2. Parameters selection

There are four parameters to be determined in the diffusimméwork: the time
scalez for the diffusion kernek(x, y) defined in (1), the dimensios(7, ¢) of the em-
bedding diffusion spadg*("-*) (our feature space), the error tolerapda approximat-
ing the extension of the diffusion coordinates, and thef€btmundn for the condition
number of the extension kernel. Clearly we have to seledt ehthese parameters
wisely.

The scales > 0 for the diffusion kernel must be chosen so that if we form gfgra
with Gaussian weights. (x, y) (defined in Section 2.1) on the edges between all pairs
of pointsz andy then the graph is numerically connected. Connectednehse giraph
is important because it guarantees the existence and uragsi®f the stationary dis-
tribution ¢, of the Markov process on the graph via the graph-Laplaciamalization
(see Appendix | in [12]), and the construction of the difusimaps depends on the
existence and uniquenessgf Thereforeg must be large enough to ensure that every
point in the graph is connected to at least one other poinveider, it is clear that when
¢ is too large any affinity or dissimilarity between the daténgmis obscured, since.
converges td ase increases to infinity. In our numerical experiments, wedeléo be
the mean of the Euclidean distances from each point th-iiearest neighbor, where
k equals tds percent of the total number of points in the training set. threo words,
chooses so that approximately percent of all distances between pairs of points are
less than or equal te. This means approximately percent of all possible edges in
the graph have weights greater than or equalth the rest have smaller weights, i.e.,
the graph is sparse but not too sparse. The spectrum of thusidii kernel decays
relatively fast with this choice of. For example, in Fig. 1 we plot the largei0

eigenvalues of the diffusion kernel taken from one triallad tip-reading experiment.
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The value of: determined by our method was= 740. We see that the eigenvalues
decrease quickly. Fast decay of the spectrum implies thataardom walk initiated on
the graph converges quickly to steady state and that thesiifi distance can be ap-
proximated more accurately with a smaller number of eigections. In other words,
we will be able to detect clustering behaviors in the dat&wismall number of time
stepst. In the numerical experiments below, we use 1. We do not need to set the
Markov process forward in time. In these cases, having fdhad/alues appropriate
for the data is enough for identifying grouping patternshia tlata.

The dimensions (7, t) of the embedding diffusion space can be determined by tak-
ing advantage of the geometrically grounded propertieh@ékmeanslgorithm. As
described in Section 4.1, when we cluster each dataset ekingansthe intrinsic di-
mension of the dataset is automatically determined. Swppostraining set consists
of a total of N datasetsX',--- , X, belonging toC different classesgskmeansuill
find an intrinsic dimensior; for each setX’. This numberk; is also the intrinsic
number of clusters in the set. As discussed in Section 4idlirttiinsic number of;
clusters does not change when the Xétis embedded into a diffusion space of di-
mension higher tha#i’;. Therefore, it is natural to set the dimension of the emlregldi
diffusion space for all of our data to be the maximum#/of over allj = 1,--- | N,
that is,

A
s(t,t) = ax k;.

The choice of error tolerangeis up to specific applications and personal judgment.
However, we should keep in mind that small error limit meamalextension range.
Suppose we know a priori that our training set is a good remtasive of a manifold or
data space (that is, there are no missing gap so that we caieteiy capture the shape
of the manifold from the training data) and the unlabeleddiaton the manifold, then
the approximation of the extension is fairly accurate, ttvescan sep to be small.

A heuristic value to set fop is one percent of the size of the test data. This gives
on average a bound 60001 for the error at each point where the extension is being
computed. In our numerical experiments, we use this héugpproach to sed.

To determine a cutoff lower boungl for the condition number of the Gaussian
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extension kernet~==¥l°/2* in (10), we have to keep in mind the approximation
error tolerance. If p is small, ther) has to be large. In addition, asincreases, the
condition number of the kernel also increases. To prediat lange , might get, we
can take advantage of the symmetric keﬂ}v{al, y), which we already computed from
the Gaussian weights, with ¢ optimally chosen for the data. Letbe the condition
number ofE(m,y). It is easy to show that whesm = ¢, the condition number of
e~ll==vl*/o* is proportional tox. Furthermore, as grows the condition number of
the Gaussian kernel will only get worse. Thus, we can consielitingn larger thans
and inversely proportional to. In our numerical experiments, we sgt= k/p, if k is

finite, andn = 10° /¢ if « is infinite.

4.3. Datasets Matching algorithm

We summarize our proposed method in the following algorithm
Algorithm 4.1. [Datasets Matching by Diffusion Maps and EMD]

0. LetX andY denote the training data and the unlabeled data, respelgtivdso,
X = U; X*, whereX' is a set containing all signals characterizing one object,
e.g., allimage frames in one video sequence. Simil&rly; U;Y 7. There areC

classes, and eacK‘ is known to belong of one of thi classes.
1. Signature construction in diffusion space:

i. Construct the diffusion mag; (9) on the training dataX, then embed(
into a diffusion spac&®*(™!) (our feature space). The dimensie(r,t)
of the embedding diffusion space is determined by uskmjeansas de-

scribed in Section 4.2.
ii. Extend¥, to the unlabeled dat& (this embedd” into R*(7:)).

iii. Foreachi'" set of feature vectors in the training data, construct a aigre
P’ = {(p},wp, ), -+, (P, wy, )} Likewise, construct a signatucg’ =

{(q],w),),--- . (q),w] )} for each;™ unlabeled set.

2. Classification via EMD:
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i. Compute EMD betweeR’ and @’ for all possible pairg(i, j). Define the

cost of moving one unit mass frgs) to g} to be
c(p}. q)) £ Hpk Al
where|| - || is the Euclidean distance in the spaB&(™"). Let D;; 2
EMD(P', Q7).
ii. For each, suppose; 2 arg min; D;;. Label Y7 with the label ofX .
That is, assign label by the nearest neighbor using EMD dista

In Step 2.i we define the cost of moving one unit of mass frontroéhp, to cen-
troid q'z to be proportional to the squared (instead of to the first ppofadhe Euclidean

distance between the two centroids so as to give more prefete very close clusters.

5. Numerical Experiments and Results

We now show that our method can be applied to classificatioblpms where the
data characterizing each object consist of a set of signsiead of a single signal. We
will show two examples of application. The first example esslification of underwater
objects by analyzing Synthetic Aperture Sonar (SAS) waveforeflected from the
objects. The second example is a lip-reading applicatiowhich we identify the
spoken word from a sequence of image frames extract fromeatsiideo segment.
We will also present a comparison in performance betweenrmthod and the LKC
method in [12] (LKC stands for the first letter of the authdest name: Lafon, Keller,
and Coifman). In [12], the authors applied diffusion mapd &@HME scheme to do
dimensionality reduction and out-of-sample extensionclmim the same manner as
the first part in our approach. The main difference betweemwthod and the LKC
method is the use of EMD versus Hausdorff Distance (HD) tosueathe distance

between two sets. We recall that the HD between any two%eand.S; is defined as
A
S1,52) = ma a xr — a xr —
d (S1,52) = mX<$£ggl yHggmmH yo

where|| - || denotes the Euclidean distance. In our proposed method)ahsifier is

nearest-neighbor in EMD. In LKC approach, the classifieriarast-neighbor in HD.
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5.1. Classification of underwater objects

The data in this example are collected from three differentrolled experiments
in a fresh water test pond at NSWC-PC. For details of the éxpsts, see [21]. In each
of the three experiments, two objects were placed — eitheéedbin the sand or proud —
at the bottom of the pond. One of the objects was a sphere niatiéron casing filled
with a different material each time. The other object wasl@ sduminum cylinder of
different length in each experiment. A sinusoidal pulse trassmitted across the floor
of the pond and the reflected signal was recorded over a peftide at uniform time
intervals. The data obtained contain waveforms reflectexh fthe entire area of the
pond floor. Waveforms corresponding to objects are extdaatel processed using an
improved version of the algorithm presented in [22]. Thislgs one set of rectangular
blocks of waveforms per object.

Our goal is to identify objects according to their materiahpositions instead of
shape. Let us name the sphere and the cylinder in ExperimastS1 and C'1; in
Experiment 2 a®2 andC?2; and in Experiment 3 aS3 andC'3, respectively. Sphere
S1 was filled with air, so we categorize it as one class with Idi for iron-air.
SpheresS2 and S3 were filled with silicone oil so we group them into anotherssla
with label FeS for iron-silicone. All three cylinders were of the same deter and
of the same material, so we grouped them into one class viot Ad for aluminum.
However, we would like to mention th&tl andC2 were of the same length whi@3
was much shorter.

The waveform data is of extremely high dimension. Each reptkar block of
waveforms is a 2D array of sizkr (cross range samples) B90 (time samples). We
treat it as a point iR17>*6% Then we apply the steps in Algorithm 4.1 to identify the
test object.

In our numerical experiment, we set aside a set of wavefooosgsponding to
one object) to use as test data and train our algorithm oretihaining five sets. Then
we cycle through all six objects, i.e., we repeat the clasgifin process six times. Our
classification results for all six runs are shown in Table $ind EMD, we were able
to correctly identify sphereS2 andS3 as objects of clasBeS and all three cylinders

as objects of clasal. The mistake was made whéti was labeled asl. This error is
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Table 1: Identification of Pond Objects

Object Label by EMD Label by HD

C1 Al Al
C2 Al Al
C3 Al FeA
S1 Al Al
52 FeS Al
S3 FeS FeS

expected since the claBgA contains only one membéil. There is no training data
for this class. On the other hand, the LKC method mislabélectylinderC'3 asFeA
object and the spherg2 asAl object.

Let us examine the distribution of the feature vectors indiffesion space. Fig. 2
shows the projection of the data onto top three diffusionrdioates. The diffusion
coordinates in this figure were computed using all but§helata, i.e., all the cylinder
data are displayed in blue, and té and .S3 data displayed in green were used to
compute the diffusion coordinates. THé data (points displayed in red) were treated
as test (left-out) data, which were embedded into the ddfuspace by the GHME
scheme described in Section 2.2.

From Fig. 2, we see that points correspondingStoare, on average, closer to
the cylinder points. We recall that EMD is based on the distion of points in the
entire set. Therefore our method classiffedas anAl object. The LKC method also
classifiedS1 as anAl object. However, we can observe from its definition that HD is
highly sensitive to outliers in general. To see this, letxengine the distribution of the
feature vectors in the diffusion space during the expertaidrial whenC3 was left
out as the test data. Fig. 3(a) shows the projection of thee alato top three diffusion
coordinates for this case. Points corresponding'3d(test data) are displayed in red.
Blue points correspond to clagd objects ('1 and C2); green points correspond to
classFeS objects 62 and .S3); and yellow points correspond 81, i.e., class-eA.

We see that the red points are on average close to the GluarfdC2) points. Thus,
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using EMD we were able to correctly label obj&cs asAl. However, LKC method
mislabeledC3 as anFeA object. It is not difficult to see why this happened if we
examine Fig. 3(b), a zoomed up version of Fig. 3(a). The HvbenC'3 and S1 is
roughly the length of the arrow from the boundary of the dustf yellow points to
the other end of the red cluster, which is approximately The HD betweer'3 and
C1 (or similarly C2) is roughly the length of the arrow from the boundary of theebl
cluster to the other end of the red cluster, which is apprakahy 1.0.

From this experiment, we conclude that using EMD makes otihatemore robust

to noise and outliers than the LKC method which uses HD fa disicrimination.

5.2. Lip reading experiment

The objective of lip reading is to train a machine to autonaly recognize the
spoken words from the movements of the lips captured ontsiideo segments (no
sound is involved). Much research effort has been devotthds@rea. Many published
algorithms involved sophisticated feature selection.his example, our features are
simply the diffusion coordinates, and the lips data usedallected from one speaker.
More sophisticated feature selection might be necessagypwiore speakers, i.e., more
variations in the lips, are involve.

Our main objective in this example is to illustrate the ptitdrof our method for
application to such problems. Moreover, a similar numérgs@eriment was done in
[12]. By repeating the example, we hope to provide a goodmgted comparison of
our method to the LKC method in [12].

We recorded a subject speaking the first five digits (‘ongfive’) ten times using
a Nikon Coolpix digital camera sampling at a rate66fframes per second. We then
extracted the image frames from each movie clip and did sdmple processing.
First, we convert the images from color to gray scales rap§iom 0 to 255. Then
we cropped each image to58 x 70 pixels window around the lips to compensate
for translations. (The speaker’s nose was marked with ar cokrker to facilitate
automatic cropping of the image frames). Each cropped friartreated as a point in

R55><7O

For each spoken digit, we randomly selected five image segsdnom the ten in
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Table 2: Lip-Reading Confusion Matrices. Dimension redurcby diffusion map.

Recognition by EMD Recognition by HD

Labeled as (% of times)

Word v ‘2 ‘3 4 5 1 ‘2 ‘3 4 'Y
one’ | 56.2 26 394 1.8 0434 44 21 268 44
‘two’ 0.4 69.2 4 264 0 0 64 84 276 0

‘three’ 13 10.2 70 6.8 0O 86 76 774 64 0
‘four’ 0 364 24 612 0 2 256 6.8 65.6 0
‘five’ 0 0 0 0 100 0 0 0 0 100

our collection to use as training data. This gives us a tdtabsequences for training
data an5 for test data. We apply Algorithm 4.1 to identify the testisences. Then
we repeat the whole proce$80 times. The recognition results over alb0 experi-
mental trials are combined to compute the statistics shawliable 2. The recognition
errors range frond% to 44.8% by using EMD and)% to 56.6% by using HD, aver-
aging28.6% and29.9% recognition error, respective. The largest error made lily bo
methods was when identifying the word ‘one’. This can be axyd by large vari-
ations in the image sequences of the word ‘one’. We displdyign 4 some images
extracted from two sequences of the word ‘one’. In the firsjusace (top row) the
speaker simply spoke the word with no emotion. In the secegdence (bottom row)
the speaker was smiling while speaking.

Over all, recognition results by using EMD and HD are rekdiivcomparable.
However, HD did much worse than EMD when trying to identifg tivord ‘one’. We
recall that HD is highly sensitive to outliers, and the datagorresponding to the word

‘one’ have many outliers.

6. Diffusion Maps versus Principal Component Analysis

In this section, we compare the performance in dimensionatizh of diffusion

maps to that of Principal Component Analysis (PCA). We réfieatwo experiments
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Table 3: Lip-Reading Confusion Matrices. Dimension retucby PCA.

Recognition by EMD Recognition by HD
Labeled as (% of times)
Word 1 ‘2 3 4y 1 ‘2 ‘3 4y
‘one’ | 89.8 0 10.2 0 O 81.6 1.4 12 42 0.8
‘two’ 0 982 0 1.8 0 0 922 06 7.2 0
‘three’ | 04 3.2 952 1.2 g 1.2 6 912 16 0
‘four’ 0O 76 04 092 0 1 94 26 87 0
‘five’ 0 0 0 0 100 0 0 0 0 100

described in the previous sections, this time using PCAeadsbf diffusion maps for
dimension reduction.

First, we computed the eigenvectors (PCA vectors) of thaamce matrix of the
training data. (See [23, Sec.2.1] for fast computation oAR€ctors). Then, we retain
the top ten PCA vectors associated with the ten largest eafiges and use these as
a basis for the reduced-dimension (PCA) space. The choitendé made based on
the observation that the largest ten eigenvalues of therieova matrix decreased the
fastest. The rest of the eigenvalues are relatively smalldmtreased slowly. Using
the ten basis vectors, we project both training and test data the corresponding
10-dimensional PCA space. Finally we apply the remainiegsin Algorithm 4.1 to
construct signatures and then label the test data.

In the lip-reading application, using PCA for dimensionuetion dramatically im-
proved recognition results. In Table 3 we list results ofsification using both EMD
and HD. Comparing the recognition rates in Table 3 to thosEalrle 2, we see that
PCA outperformed diffusion maps by at leadt%.

In the case of recognizing underwater objects, we foundRis& performed very
poorly. Regardless of what waveform sets were used foritigidata (i.e., in all six
repetitions of the experiment) PCA method projects thedad into a small region
around the origin in the PCA space. For example, Fig. 5 shbeptojection of all

data onto top three PCA coordinates. In this figure, the PGove were computed
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using all but theS2 data 62 data were left-out as test data). All cylinder data are
displayed in blueS1 in yellow, S3 in green, ands2 in red. We can see that the test
(52) data are clustered around the origin. This is the obserkedgmenon throughout
all six repetitions of the experiment. As a consequenceisfdbgeneration, all three
spheres were mislabeled.

Success and failure of PCA can be explained by the relatipimiween the data
variates (the variables describing the data). In imaged) piel represents one vari-
able. Since neighboring pixels are highly correlated, diésr that there are very high
correlations between the data variates. Since PCA proadixorrelated coordinate
system, projecting images of the lips onto a PCA space alfeminent features in
the images to be more visible. In the case of the sonar d&t&atiates do not correlate
in a linear manner. Consequently, PCA fails to provide a gemiesentation for this

type of data.

7. Conclusions

We have proposed an approach for datasets matching usfogidif maps for di-
mension reduction and feature extraction and EMD for sstgithination. To illustrate
the applicability of our proposed method, we have providea éxamples of applica-
tions: silent lip-reading and classification of underwaibjects. Both examples are
real and tangible problems in the scientific community. Tidede the applicability of
our method, we have provided for comparison purpose nualegsults of our method
and the LKC method published in [12]. In the lip-reading agggion, both methods
performed relatively similar. However, in the recognitisihunderwater objects appli-
cation, our method correctly identified all objects and pto be more stable.

Furthermore, we have also provided a comparison in the pedioce of diffusion
maps to the performance of PCA in dimension reduction. Waddhat on the image
data of the lips, where the data variates (the variablesritdésg the data) are highly
correlated, PCA performs better than diffusion maps. Reylias is because the decor-
related representation provided by PCA allows distinguaigffieatures in the images to

be more prominent. However, when the variables descriliiagiata are not linearly
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correlated (e.g., the case of waveforms reflected from wvatter objects) then PCA
fails to provide an adequate low-dimensional represemtdtr the data. We are cur-
rently investigating why diffusion maps do not work as wedlRCA when the input

data are highly correlated as in the case of the lip-readivage frames.
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Figure 1: Largest 100 eigenvalues of the diffusion kernedne trial of the lip-reading experimente =
740).

Figure 2: Top three diffusion coordinates. Training da&iarblue (all three cylinders) and gree$iX and
S3). Points displayed in red are the test défia
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(a) Embedded points (b) Zoom up

Figure 3: (a) Top three diffusion coordinates. Trainingadate in blue 'l andC2), yellow (S1), and green
(S2 andS3). Points displayed in red are the test data (b) The zoomed up version of (a).

Figure 4: Lip shapes of two different sequences of the woné"o
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Figure 5: Top three PCA coordinates. Training data are ie fdylinder data), yellow{1), and greeng{3).
Points displayed in red are the test d&ta
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