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Abstract

We propose a new method for matching, comparing, and discriminating datasets con-

sisting of high-dimensional data (e.g., signals and images). Our approach first performs

dimension reduction and feature extraction of training datasets using the diffusion maps

developed by Coifman and Lafon [1, 2]. This leads to a compactrepresentation of the

given classes in the so-called “diffusion space” whose dimension is much lower than

the original ambient space. In fact, each class in the diffusion space is represented as

a set of cluster centroids called “signatures”. Dimension reduction via diffusion maps

offers the advantage of preserving the underlying geometryin the data. To classify an

unlabeled test dataset, we extend (or embed) that dataset into the diffusion space con-

structed during the training stage, construct its signature, and then measure the “close-

ness” or similarity between the test signature and the classsignatures using the Earth

Mover’s Distance (EMD) [3, 4], which is more robust than other measures. Finally,

we will demonstrate the usefulness of our method using two practical real applications

and compare the performance of the dimension reduction capability of our method with

that of the standard Principal Component Analysis.
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1. Introduction

Many problems in pattern recognition require analysis and comparison between

datasets instead of those between individual data points. For example, in a visual

speech recognition, two or more clips of recorded video are compared for similar pat-

terns. Typically each video clip consists of a sequence of image frames. We can view

each image as one data point and a video clip as a set of points in the image space.

Thus, comparing two video clips is the same as comparing two sets of points in the

image space. For a second example, consider the task of identifying an object on the

ocean floor from a set of sonar waveforms reflected from the object. This requires

comparing the set of waveforms of the unknown object to sets of waveforms of known

objects. Then the object is identified if a match is made.

In this paper, we propose a method for classification problems where the data cor-

responding to an object is a set of points in a high dimensional space. Our proposed

method consists of two main steps. The first step involves dimension reduction and

feature extraction and the second involves discriminationand classification.

Modern technologies generate data that are often extremelyhigh dimensional: even

a small128× 128 image has dimension16384. The variables describing the data (the

data variates), however, are often highly correlated, at least locally. For example, many

neighboring pixels in an image are highly correlated. This means that in many cases

there exist lower-dimensional structures of the data. In other words, the data have

low intrinsic dimensionality, and therefore, it is possible to find a low-dimensional

representation for the data. By reducing the data dimensionality, we make analysis of

the data much more efficient, and sometimes more accurate.

It is well known that classical algorithms for dimension reduction and feature ex-

traction, such as Principal Component Analysis (PCA), are almost inapplicable to the

analysis of high-dimensional data due to thecurse of dimensionality. That is, their

computational cost grows exponentially with the dimension. Moreover, the correla-

tions between the data variates may only be local. Traditional methods such as PCA

and Multidimensional Scaling are global methods, thus theymay not provide a proper

low dimensional representation for the data. M. Belkin and P. Niyogi [5, 6] introduced
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the idea of using eigenvectors of the Laplacian on the graph constructed from the data

for nonlinear dimension reduction. Here, each data point istreated as a node and the

weight on an edge between two nodes represents the affinity between the two data

points. Other nonlinear methods have been proposed in [7, 8,9]. Nonlinear methods

offer the advantage of preserving local geometry while achieving dimension reduction.

In [6, 10], Belkin and Niyogi analyzed the local-neighborhood-preserving property

of Laplacian eigenvectors. Unfortunately, the low-dimensional representation of the

data obtained from Laplacian eigenvectors are highly sensitive to the sampling density

of data (see [2] for examples). This is a serious drawback. For example, consider two

video clips of a person speaking the word ‘one’ at two different speed. The set of image

frames extracted from the slower video clip will have more images than that from the

faster one, and thus it is a denser sampling set. We want to be able to identify the two

sets of image frames as belonging to the same class. However,sensitivity to sampling

density can cause distortion in the low-dimensional representation of the data, leading

to high misclassification rate. R. R. Coifman and S. Lafon [1,2] proposed Laplace-

Beltrami normalization of the weights on the graph before constructing the Laplacian

matrix. This makes the eigenvectors invariant to sampling density. In [1, 11], Coifman,

Lafon, and Lee defineddiffusion mapsfrom the eigenvalues and eigenvectors of the

Laplace-Beltrami normalized Laplacian matrix and provided an intuitive interpretation

of how data clustering in a diffusion coordinate system is linked to a Markov chain on

the weighted graph. In our proposed method, we shall apply diffusion maps to achieve

dimension reduction. Our preference for diffusion maps over other nonlinear methods

is mainly grounded in their invariance to sampling densities.

We note that Lafon, Keller, and Coifman have proposed in [12]a method for

datasets matching similar to the problems in our consideration. Their algorithm in-

cludes using diffusion maps to reduce data dimensionality and then use the Hausdorff

distance to measure the difference between any two sets. As we shall show in Sec-

tion 5 below, Hausdorff distance is very sensitive to outliers. To remedy this drawback,

we propose an approach that takes into consideration the distribution of the data in

its lower-dimensional representation space (i.e., after dimension reduction has been

done). Our approach involves constructing asignature(a discrete multidimensional
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probability density function, or synonymous, a high-dimensional histogram) of each

dataset after having embedded all datasets into a lower-dimensional space using dif-

fusion maps. Then we determine the similarity between datasets by theclosenessof

their signatures in the Earth Mover’s Distance (EMD). Our idea of applying EMD to

discriminate discrete distributions originates from its success in applications to image

retrieval from databases [3, 4].

The remainder of this paper is organized as follows: we first review the Diffusion

Framework and Earth Mover’s Distance. In Section 4 we describe our proposed method

for datasets matching and provide suggestions for selecting basic parameters necessary

under the Diffusion Framework. In Section 5 we give two examples of applications of

our method together with experimental results. We will alsoprovide a comparison of

numerical results of our method and the method in [12]. In order to better understand

the conditions under which a nonlinear technique (such as Diffusion Framework) is

more appropriated for dimension reduction than a linear technique (such as PCA), we

will compare numerical results of diffusion maps and PCA in Section 6. Finally we

summarize our discoveries and draw conclusions in the last section.

2. Diffusion Framework

In this section, we review the construction of diffusion maps on a dataset and the

properties that allow us to achieve meaningful dimensionality reduction. We will also

review an algorithm proposed in [12] for extension of diffusion maps from the training

data to the test data.

2.1. Diffusion maps

Diffusion maps are constructed from the eigenfunctions of an averaging operator –

thediffusion operator. We assume here that our datasetX = {x1, · · · ,xN} lies in a

space having a natural dissimilarity measureδ that gives a sense of affinity (or similar-

ity) between any two points inX. This is a reasonable assumption to make in practice.

For example, ifX is a database of image patches each of which has32 × 32 pixels,

thenδ may be theℓ2 norm between two image patches inR
1024. Or, if X belongs to a
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submanifold inRn, thenδ may be the usual Euclidean distance. Following the work of

Coifman and Lafon [1, 2], we construct the diffusion operator onX as follows. View

the data pointsx1, · · · ,xN as nodes of a weighted symmetric graph. Any two nodes

xi andxj are connected by an edge with weightwε(xi,xj)
∆
= e−(δ(xi,xj)/ε)2 , ε > 0.

The weight functionwε gives the notion of local geometry toX. That is, it defines

the notion of a local neighborhood at each pointx ∈ X via the affinity betweenx and

other points, and the value of the parameterε specifies the size of this neighborhood.

Moreover, as explained in [6], when the datasetX approximately lies on a submani-

fold, using the weightswε on the graph corresponds to an approximation of the heat

kernel on the submanifold.

Applying the so-called graph-Laplacian normalization towε yields thediffusion

kernel

k(x,y)
∆
=
wε(x,y)

dε(x)
, (1)

wheredε(x)
∆
=

∑
y∈X wε(x,y). The corresponding diffusion operator is

Af(x)
∆
=

∑

y∈X

k(x,y)f(y). (2)

The kernelk is non-negative and row-stochastic (i.e.,
∑

y∈X k(x,y) = 1 for all

x ∈ X). Hence, it can be viewed as a transition matrix of a Markov process onX.

The operatorA is an averaging operator, since it is positivity-preserving (i.e.,Af ≥ 0

for any f ≥ 0) and preserves constant functions. We can interpret the action of the

operatorA as ‘diffusion’ of information throughout the graph, and theMarkov chain

dictates the directions of fast and slow information propagation.

An important idea in the diffusion framework is to take larger powers of the op-

eratorA. For t > 0, raising the operatorA to a powert is equivalent to running the

Markov process forward by timet, which can be interpreted as letting information dif-

fuse for a period of timet. The information propagates more easily and quickly among

the regions of high affinity than those of low affinity. This isessentially how we can

capture the local geometry of the data.

Let k(t) denotes the kernel of the operatorAt – thetth power of the operatorA.

(Note thatk(t)(x,y) represents the probability of transition fromx to y in t steps.)
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The graph is connected by construction, therefore ast → +∞ the Markov process

approaches a unique stationary distributionφ0 [1], i.e, for anyx,y ∈ X,

lim
t→+∞

k(t)(x,y) = φ0(y).

In practice we always work in the discrete setting, therefore we may view the op-

eratorA as a matrix whose rows are indexed byx and columns are indexed byy.

Then the stationary distributionφ0 = [φ0(x1), . . . , φ0(xN )] is the left eigenvector of

A corresponding to the top eigenvalue1, i.e.,φ0A = φ0. It can be easily derived from

equations (1) and (2) and the symmetry ofwε that

φ0(x) =
dε(x)∑

z∈X dε(z)
.

With this, thediffusion distancebetween any two data pointsx andy is given by

Dt(x,y)2
∆
=

∥∥∥k(t)(x, ·)− k(t)(y, ·)
∥∥∥

2

L2(X, 1

φ0
)

=
∑

z∈X

(
k(t)(x, z)− k(t)(y, z)

)2

φ0(z)
.

(3)

This is simply the weightedL2 distance betweenk(t)(x, ·) andk(t)(y, ·). We observed

earlier thatk(t)(x, z) is the probability of transition fromx to z in t steps. Therefore

it is easy to see that the diffusion distance betweenx andy measures the difference

in how much connected or how strong in affinity these two nodesare to the rest of the

graph at time (or step)t. In its definition, the diffusion distanceDt(x,y) takes into

account all incidences relatingx andy. Consequently, it is robust to noise perturba-

tions and hence a great tool for extracting the underlying geometry in the datasetX,

especially whenX is a low dimensional manifold lying in a high-dimensional space.

The diffusion distance is directly related to the eigenvalues and eigenvectors of the

matrixA. In practice, we approximateDt(·, ·) by using eigenvalues and eigenvectors

of A. To see this, let us first do some preprocessing: conjugate the kernelk with
√
φ0

to obtain the symmetric kernel

k̃(x,y)
∆
=

√
φ0(x) k(x,y)

1√
φ0(y)

=
wε(x,y)√
dε(x)

√
dε(y)

.

(4)
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Let Ã be the operator with̃k as its kernel, i.e.,

Ãf(x)
∆
=

∑

y∈X

k̃(x,y)f(y).

It shares the same spectrum asA, and eigenvectors ofA can be obtained from those of

Ã via conjugation by
√
φ0. Suppose{λℓ} are the eigenvalues (with|λ0| ≥ |λ1| ≥ · · · )

and the corresponding eigenvectors ofÃ are
{
φ̃ℓ

}
, then the left and right eigenvectors

of A corresponding toλℓ areφℓ = φ̃ℓ ·
√
φ0 andψℓ = φ̃ℓ/

√
φ0, respectively.

The advantage of the operatorÃ is that it is symmetric, positive semi-definite, and

compact. Hence it has a discrete, non-increasing, non-negative spectra:λ0 = 1 >

λ1 ≥ λ2 ≥ · · · ≥ 0, and the orthonormal eigenvectors
{
φ̃ℓ

}
form a basis forL2(X)

(the eigenvector corresponding to top eigenvalueλ0 = 1 is φ̃0 =
√
φ0). The kernel̃k

has spectral decomposition

k̃(x,y) =
∑

j≥0

λj φ̃j(x)φ̃j(y).

Hence,

k(x,y) =
∑

j≥0

λjψj(x)φj(y)

and

k(t)(x,y) =
∑

j≥0

λt
jψj(x)φj(y). (5)

Now, {φℓ} and{ψℓ} are biorthogonal (i.e.,
∑

z∈X φj(z)ψℓ(z) = δjℓ, whereδjℓ is

the Kronecker delta), and

φℓ(x) = φ0(x)ψℓ(x).

Thus,
∑

z∈X

φj(z)φℓ(z)

φ0(z)
=

∑

z∈X

φj(z)ψℓ(z) = δjℓ.

That is,{φℓ} is an orthonormal basis inL2(X, 1/φ0). Therefore, for fixedx, the for-

mula (5) can be interpreted as the expansion of the functionk(t)(x, ·) in this basis,

and the expansion coefficients are{λt
jψj(x)}. Consequently, the formula (3) for the

diffusion distance reduces to

Dt(x,y)2 =
∑

j≥1

λ2t
j (ψj(x)− ψj(y))

2
. (6)
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Note thatψj(x) = φ̃j(x)/φ̃0(x). In other words, the proper diffusion distance can be

obtained by the eigenanalysis of the symmetrized operatorÃ with the kernel̃k instead

of the original averaging operatorA with the transition kernelk. The summation in (6)

starts at indexj = 1 becauseψ0 ≡ 1.

In practice, we approximate the diffusion distance formula(6) by the following

consideration. Since the eigenvaluesλj ’s are non-increasing, the diffusion distance

can be approximated to a relative accuracyτ > 0 specified by the user by

Dt(x,y)2 ≈
s(τ,t)∑

j=1

λ2t
j (ψj(x)− ψj(y))2 , (7)

where

s(τ, t)
∆
= arg max

j∈N

{|λj |t > τ |λ1|t}. (8)

From this, thediffusion mapis defined as

Ψt : x 7→




λt
1ψ1(x)

λt
2ψ2(x)

...

λt
s(τ,t)ψs(τ,t)(x)



. (9)

It can be viewed as coordinates in as(τ, t)-dimensional Euclidean space characterized

by the parametersε, t, andτ . We shall call this space adiffusion space. Note that

s(τ, t)≪ N and in our numerical experiments in Section 5, the values ofs(τ, t) lie in

the range9 ≤ s(τ, t) ≤ 18 while96 ≤ N ≤ 128 in the problem involving classification

of underwater objects and7 ≤ s(τ, t) ≤ 15 while 990 ≤ N ≤ 1204 in the lip-reading

experiment (The value ofs(τ, t) andN changes as we repeat each experiment using a

different training set).

We useΨt to embed our dataset into a diffusion space denoted byR
s(τ,t). Note that

the usual Euclidean distance in this diffusion space is an approximation to the diffusion

distance. The key point here is that the diffusion mapΨt produces a low-dimensional

representation of the data that highlights the underlying intrinsic local geometry in the

data.

The final important thing to mention is the Laplace-Beltraminormalization of the

edge weightswε(x,y) if the dataX approximately lies on a submanifoldM of R
n

8



[1, 2, 12]. In this case, we replacewε with a normalized version

wε(x,y)←− wε(x,y)

dε(x)dε(y)
.

Then proceed to construct diffusion kernel as described in (1) above. In other words,

we normalize the weights twice to construct diffusion kernel: first, the above Laplace-

Beltrami normalization, and second, the graph Laplacian normalization. When the

data points are sampled fromM in a nonuniform manner, this normalization makes

the transition matrixA approximate the Laplace-Beltrami diffusion operator onM and

the embedding of the data points via diffusion maps invariant to the density distribution

of the sampled data. In short, the Laplace-Beltrami normalization produces a spectral

embedding that depends only on the geometry ofM and not the density of the sampled

data points.

2.2. Extension of diffusion maps to test data

Our main interest is in classifying newly obtained unlabeled data (also calledtest

data) based on a classification rule learned from the labeleddata at hand (i.e.,training

data). In order to make meaningful inference from the training data to the unlabeled

test data, we need to have the same low-dimensional representation for both datasets.

That is, we need to embed test data into the same diffusion space as the training data.

Hence, it becomes necessary for us to extend the diffusion map computed on the train-

ing dataset to the test data. To perform this task, we employ the multiscale extension

scheme proposed in [12], which is based on “geometric harmonics” originally intro-

duced in [2, Chap. 3] and [15]. Let us call this scheme GHME (geometric harmonics

multiscale extension) for short. We now review the GHME scheme.

The GHME scheme is an improvement of the Nyström extension method proposed

in [16, 17]. LetX andY denote the training set and the unlabeled test set, respec-

tively. First consider the eigenvalues{µℓ} and orthonormal eigenfunctions{ϕℓ} of a

(symmetric) Gaussian kernel of widthσ > 0 on the training setX:

µℓϕℓ(x) =
∑

z∈X

e−‖x−z‖2/σ2

ϕℓ(z), x ∈ X, (10)
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where the nonnegative eigenvalues{µℓ} are sorted in decreasing order. From Equa-

tion (10), the Nystr̈om extension ofϕℓ fromX to y ∈ Y is defined as

ϕ̄ℓ(y)
∆
=

1

µℓ

∑

z∈X

e−‖y−z‖2/σ2

ϕℓ(z). (11)

Since the eigenfunctions{ϕℓ} form an orthonormal basis forL2(X), any function

f ∈ L2(X) can be expanded as

f(x) =
∑

ℓ

〈f, ϕℓ〉ϕℓ(x), x ∈ X.

Thus the Nystr̈om extension off fromX to y ∈ Y can be defined as

f̄(y)
∆
=

∑

ℓ

〈f, ϕℓ〉 ϕ̄ℓ(y).

We observe that the range of the extension in (11) is proportional toσ. If the ratio

‖x − y‖/σ is large for allx ∈ X, thenϕ̄ℓ(y) will be numerically small and hence

may not be meaningful. Hence the extension scaleσ should be as large as possible.

However, for large enoughσ, the Gaussian kernel in (10) becomes ill-conditioned, i.e.,

µℓ tends to0 more quickly compared to the case whereσ is small. Thus the Nyström

extension in (11) will blow up. Furthermore, it is well knownthat the extension range

depends on the smoothness of the function to be extended [2, Chap. 3], [15]. Iff is

fairly smooth, it can be extended far away from the training set. On the other hand, if

f varies wildly onX, then it has limited extension range. To address the ill-condition

issue, the GHME scheme considers the following approximateextension forf :

f̄(z)
∆
=

∑

ℓ: ηµℓ>µ0

〈f, ϕℓ〉 ϕ̄ℓ(z), (12)

whereη > 0 is some fixed condition number andz ∈ X ∪ Y . This extensionf̄ is

well-defined onX ∪ Y , but it is not equal tof on the training setX. Observe that

if the value ofσ decreases, the eigenvaluesµℓ → 0 more slowly. This allows more

terms in (12), makinḡf a better approximation off onX. Based on this observation,

the GHME iteratively searches for an extensionf̄ that approximatesf onX with an

pre-set error tolerance̺> 0 by slowly decreasing the value of the extension scaleσ.

The GHME scheme is summarized as follows:
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Step 1: Supposef is a function defined on the training setX and to be extended to a

new datasetY . Fix a condition numberη > 0 and an error tolerance̺> 0. Set

the extension scaleσ = σ0, for some large valueσ0.

Step 2: Compute eigenvalues{µℓ} and orthonormal eigenfunctions{ϕℓ} of the Gaus-

sian kernel of widthσ and expandf (on the training setX) in this eigenbasis

f(x) =
∑

ℓ

〈f, ϕℓ〉ϕℓ(x), x ∈ X,

i.e., compute the coefficientscℓ
∆
= 〈f, ϕℓ〉.

Step 3: On the training setX, approximatef by f̄ defined in (12). Compute the

approximation error

Err
∆
=




∑

ℓ: µ0/µℓ≥η

|cℓ|2



1/2

.

If Err > ̺, setσ ← 1
2σ and return to Step 2. Otherwise, continue.

Step 4: For eachℓ such thatµ0/µℓ < η, compute the Nystr̈om extension

ϕ̄ℓ(y) =
1

µℓ

∑

x∈X

e−‖x−y‖2/σ2

ϕℓ(x),

for all y ∈ Y . And finally, compute the approximate extensionf̄

f̄(y)
∆
=

∑

ℓ: µ0/µℓ<η

cℓϕ̄ℓ(y).

3. Earth Mover’s Distance

The definition of the Earth Mover’s Distance (EMD) is based onthe solution to a dis-

creteoptimal mass transportation problem. EMD represents the minimum cost of mov-

ing earth (or sand) from some source locations to fill up holesat some sink locations. In

other words, given any two distributions of materials (or probability distributions), one

of them can be viewed as a distribution of earth and the other adistribution of holes,

then EMD between the two distributions is the minimum cost ofrearranging the mass

in one distribution to obtain the other. In the continuous setting, this problem is known
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as theMonge-Kantorovich optimal mass transferproblem and has been well studied

over the past 100 years; for an introductory reading on the problem, see e.g., [18]. The

importance here is that EMD can be applied to measure the discrepancy between two

multidimensional distributions.

In the discrete setting, the optimal mass transfer problem can be formulated as a lin-

ear optimization problem as follows [3, 4]: Suppose we have asource mass distribution

P = {(p1, wp
1
), · · · , (pm, wpm

)} and a sink distributionQ = {(q1, wq
1
), · · · , (qn, wqn

)}
in a high-dimensional spaceRs. In this setting,P andQ are calledsignaturesand can

be viewed as two distributions of feature vectors representing two objects.P is a sig-

nature of one object that consists ofm clusters inRs wherepi is the centroid of theith

cluster andwpi
is the proportion of the object’s feature vectors that belongs to theith

cluster. Similarly,Q is a signature of another object that consists ofn clusters with the

cluster centroid and the weight pairs(qj , wqj
), j = 1, . . . , n.

Suppose the cost of moving one unit of mass frompi to qj is c(pi, qj), andfij

denotes the amount of mass flow frompi to qj . Then, the transportation cost can be

defined as:

COST(P,Q,F )
∆
=

m∑

i=1

n∑

j=1

c(pi, qj)fij ,

whereF
∆
= [fij ] ∈ R

m×n. Then, the optimal mass transfer problem seeks the flow

F ∗ that transfers the maximum allowable amount of earth to fill up the holes with

minimum total transportation cost, i.e.,

F ∗ = arg min
F∈S

COST(P,Q,F ),

whereF ∈ S ⊂ R
m×n means thatF must satisfy the following constraints:

(i) fij ≥ 0, for all i, j;

(ii)
∑n

j=1fij ≤ wpi
, for all 1 ≤ i ≤ m;

(iii)
∑m

i=1 fij ≤ wqj
, for all 1 ≤ j ≤ n; and

(iv)
∑m

i=1

∑n
j=1 fij = min

(∑m
i=1 wpi

,
∑n

j=1 wqj

)
.
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The constraint (i) ensures that one can only move earth fromP to Q, not vice versa;

(ii) that the amount of earth moved fromP is no more than the sum of the weightswpi
;

(iii) that the amount of earth received atQ is no more than the sum of the weightswqj
;

and (iv) that the maximum allowable amount of earth is moved.

Once the optimal flowF ∗ from P toQ is found, EMD is then defined as the total

cost normalized by the total flow:

EMD(P,Q)
∆
=

COST(P,Q,F ∗)∑m
i=1

∑n
j=1 f

∗
ij

=

∑m
i=1

∑n
j=1 c(pi, qj)f

∗
ij∑m

i=1

∑n
j=1 f

∗
ij

.

Notice that the normalization factor is the total weight of the smaller signature

due to the constraint (iv). This normalization ensures thatsmaller signatures are not

favored in the case when two signatures have different totalweights. Furthermore,

EMD is symmetric, i.e., EMD(P,Q) = EMD(Q,P ) for any two distributionsP and

Q.

4. Datasets Matching with Diffusion Maps and EMD

We now describe how diffusion maps and Earth Mover’s Distance can be applied

together to perform datasets matching. Our approach quantitatively determines the

dissimilarity between any two sets of points of high dimensional nature (each set cor-

responds to an object). Our idea is the following: first, perform dimension reduction

and feature extraction under the diffusion framework; thenapply Earth Mover’s Dis-

tance as a discriminant measure between sets; and finally, classify unlabeled sets via

nearest neighbor in EMD distance.

4.1. Signature construction

As explained in Section 3, Earth Mover’s Distance measures the discrepancy be-

tween two discrete distributions. To apply EMD as a datasets-discrimination mea-

sure, we need to construct a signature for each dataset. Thisinvolves two steps:

first, cluster the feature vectors in the diffusion space; and second, form the signa-

tureP = {(p1, wp
1
), · · · , (pm, wpm

)}, where{pj}mj=1 are cluster centroids andwpj
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is the density of clusterj, that is, the percentage of all feature vectors in the dataset that

belong to clusterj.

For the clustering step, we apply theElongatedK-meansalgorithm [19]. Elon-

gatedK-means (ekmeans) was adapted from the originalK-means algorithm by re-

placing the Euclidean distance with an Elongated distance in the computation of point-

to-centroids distances. It was designed for detecting elongated (thin and long) clusters.

More specifically,ekmeansalgorithm would group points lying inside a thin long el-

lipsoid to form a cluster, as opposed to inside a sphere.

To motivate the consideration ofekmeans, let us examine the ideal scenario when

the data consists ofK clusters widely separated from each other [19]. In this casethe

matrix of k̃(x,y) described in Section 2.1 (with rows re-ordered by clusters if neces-

sary) is block diagonal with exactlyK blocks. Thus, it hasK eigenvectors associated

with the largest eigenvalue1, one eigenvector for each cluster. Each eigenvector has

ones in the entries corresponding to the points in the cluster and zeros elsewhere. Sup-

pose we perform a spectral embedding of the data into the topK eigenspace (i.e., the

space spanned by the topK eigenvectors). The data would get mapped toK clusters at

theK unit vectors on the coordinate axes. In general, rotations may occur, depending

on the computation of the eigenvectors. In other words, any set ofK mutually orthog-

onal vectors in the topK eigenspace is an admissible set of eigenvectors associated

with eigenvalue 1. Furthermore, eigenvectors are usually normalized. These two facts

translate toK elongated clusters lying along someK mutually orthogonal axes within

the topK eigenspace (instead of on the coordinate axes).

We observe that when the data is embedded into the topq eigenspace withq < K,

or equivalently, when we project theK elongated clusters down to theq-dimensional

subspace spanned by the firstq eigenvectors, the results are elongated clusters lying

along radial directions and possibly some dense clusters near the origin. These clusters

near the origin are the projection image of those clusters that lay elongated along the

directions orthogonal to thisq-dimensional subspace. On the other hand, suppose we

embed the data into the topq eigenspace withq > K. We would find no additional

cluster other than theK elongated clusters already accounted for. The reason behind

this phenomenon is that each of the eigenvectors after theKth eigenvector contains
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mostly small numbers. In other words, large separations in the data are already captured

in the topK eigenspace. Consequently, increasing the dimension of theembedding

spectral space does not affect the clustering behaviors of the feature vectors.

ekmeansexploits the geometric properties of the eigenvectors ofk̃(x,y) to cluster

the data and automatically determine the number of intrinsic clusters. That is,ekmeans

does not require input of the number of clusters. To determine the number of intrinsic

clusters automatically,ekmeansstarts the clustering process in the top2 eigenspace

with three centroids initialized, two centroids at two different elongated clusters and

one at the origin. If there are more than two elongated clusters, the centroid at the

origin will be dragged to a cluster not accounted for. Then the algorithm moves the

clustering process up to the top3 eigenspace, adds a centroid at the origin, and repeats

the process until no additional cluster is found. This clustering process stops at the top

K eigenspace if there areK (intrinsic) clusters in the data.

In practice, the data we handle are usually not widely separated, and we do not have

more than one eigenvector associated with the largest eigenvalue 1. Indeed, whether

we can construct a diffusion map from eigenvectors ofk̃(x,y) depends solely on the

uniqueness of the top eigenvector. Sok̃(x,y) will always have exactly one eigenvec-

tor associated with eigenvalue 1. However, the eigenvectors still have similar geomet-

ric properties if there are tight clusters in the data which causes a spectral gap at the

K + 1-th eigenvalue (see [20]). Consequently, the diffusion maps (constructed from

eigenvectors of̃k(x,y) as defined in formula (9)) also have similar geometric proper-

ties. Therefore,ekmeansis applicable to our problem. Moreover, our accomplishment

in utilizing ekmeansis twofold: to cluster the feature vectors and to determine the in-

trinsic dimensionality of the data. Sinceekmeansdetermines the intrinsic number of

clusters in the data based on geometric properties, this number can be considered as

the intrinsic dimensionality of the data. We take advantageof this aspect ofekmeans

to determine the dimensions(τ, t) of our diffusion spaceRs(τ,t). We explain how to

selects(τ, t) in more details in Section 4.2.

Now, suppose we haveN datasets,X1, · · · , XN , andekmeanshas determined that

each setXi hasKi clusters. This means the cluster centroids for setXi determined by

ekmeansare vectors in theKi-dimensional subspace of the embedding diffusion space
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R
s(τ,t) (wheres(τ, t) is determined as described in Section 4.2). To bring all signatures

into the same spaceRs(τ,t), we run K-means with Elongated distance once on each set

of feature vectors inRs(τ,t) to reform theKi clusters for each datasetXi. We use the

previous clustering result as an initial condition for the re-clustering process. With this,

the re-clustering process converges very quickly.

4.2. Parameters selection

There are four parameters to be determined in the diffusion framework: the time

scaleε for the diffusion kernelk(x,y) defined in (1), the dimensions(τ, t) of the em-

bedding diffusion spaceRs(τ,t) (our feature space), the error tolerance̺ in approximat-

ing the extension of the diffusion coordinates, and the cutoff boundη for the condition

number of the extension kernel. Clearly we have to select each of these parameters

wisely.

The scaleε > 0 for the diffusion kernel must be chosen so that if we form a graph

with Gaussian weightswε(x,y) (defined in Section 2.1) on the edges between all pairs

of pointsx andy then the graph is numerically connected. Connectedness of the graph

is important because it guarantees the existence and uniqueness of the stationary dis-

tributionφ0 of the Markov process on the graph via the graph-Laplacian normalization

(see Appendix I in [12]), and the construction of the diffusion maps depends on the

existence and uniqueness ofφ0. Therefore,εmust be large enough to ensure that every

point in the graph is connected to at least one other point. However, it is clear that when

ε is too large any affinity or dissimilarity between the data points is obscured, sincewε

converges to1 asε increases to infinity. In our numerical experiments, we select ε to be

the mean of the Euclidean distances from each point to itsk-nearest neighbor, where

k equals to5 percent of the total number of points in the training set. In other words,

chooseε so that approximately5 percent of all distances between pairs of points are

less than or equal toε. This means approximately5 percent of all possible edges in

the graph have weights greater than or equal toe−1, the rest have smaller weights, i.e.,

the graph is sparse but not too sparse. The spectrum of the diffusion kernel decays

relatively fast with this choice ofε. For example, in Fig. 1 we plot the largest100

eigenvalues of the diffusion kernel taken from one trial of the lip-reading experiment.
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The value ofε determined by our method wasε = 740. We see that the eigenvalues

decrease quickly. Fast decay of the spectrum implies that any random walk initiated on

the graph converges quickly to steady state and that the diffusion distance can be ap-

proximated more accurately with a smaller number of eigenfunctions. In other words,

we will be able to detect clustering behaviors in the data with a small number of time

stepst. In the numerical experiments below, we uset = 1. We do not need to set the

Markov process forward in time. In these cases, having foundthe valueε appropriate

for the data is enough for identifying grouping patterns in the data.

The dimensions(τ, t) of the embedding diffusion space can be determined by tak-

ing advantage of the geometrically grounded properties of theekmeansalgorithm. As

described in Section 4.1, when we cluster each dataset usingekmeans, the intrinsic di-

mension of the dataset is automatically determined. Suppose our training set consists

of a total ofN datasets,X1, · · · , XN , belonging toC different classes,ekmeanswill

find an intrinsic dimensionKi for each setXi. This numberKj is also the intrinsic

number of clusters in the set. As discussed in Section 4.1, this intrinsic number ofKj

clusters does not change when the setXj is embedded into a diffusion space of di-

mension higher thanKj . Therefore, it is natural to set the dimension of the embedding

diffusion space for all of our data to be the maximum ofKj over all j = 1, · · · , N,
that is,

s(τ, t)
∆
= max

1≤j≤N
kj .

The choice of error tolerance̺is up to specific applications and personal judgment.

However, we should keep in mind that small error limit means small extension range.

Suppose we know a priori that our training set is a good representative of a manifold or

data space (that is, there are no missing gap so that we can completely capture the shape

of the manifold from the training data) and the unlabeled data lie on the manifold, then

the approximation of the extension is fairly accurate, thuswe can set̺ to be small.

A heuristic value to set for̺ is one percent of the size of the test data. This gives

on average a bound of0.0001 for the error at each point where the extension is being

computed. In our numerical experiments, we use this heuristic approach to set̺.

To determine a cutoff lower boundη for the condition number of the Gaussian
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extension kernele−‖x−y‖2/σ2

in (10), we have to keep in mind the approximation

error tolerance̺ . If ̺ is small, thenη has to be large. In addition, asσ increases, the

condition number of the kernel also increases. To predict how largeη might get, we

can take advantage of the symmetric kernelk̃(x,y), which we already computed from

the Gaussian weightswε with ε optimally chosen for the data. Letκ be the condition

number ofk̃(x,y). It is easy to show that whenσ = ε, the condition number of

e−‖x−y‖2/σ2

is proportional toκ. Furthermore, asσ grows the condition number of

the Gaussian kernel will only get worse. Thus, we can consider settingη larger thanκ

and inversely proportional to̺. In our numerical experiments, we setη = κ/̺, if κ is

finite, andη = 105/̺ if κ is infinite.

4.3. Datasets Matching algorithm

We summarize our proposed method in the following algorithm:

Algorithm 4.1. [Datasets Matching by Diffusion Maps and EMD]

0. LetX andY denote the training data and the unlabeled data, respectively. Also,

X = ∪iX
i, whereXi is a set containing all signals characterizing one object,

e.g., all image frames in one video sequence. Similarly,Y = ∪jY
j . There areC

classes, and eachXi is known to belong of one of theC classes.

1. Signature construction in diffusion space:

i. Construct the diffusion mapΨt (9) on the training dataX, then embedX

into a diffusion spaceRs(τ,t) (our feature space). The dimensions(τ, t)

of the embedding diffusion space is determined by usingekmeansas de-

scribed in Section 4.2.

ii. ExtendΨt to the unlabeled dataY (this embedsY into R
s(τ,t)).

iii. For eachith set of feature vectors in the training data, construct a signature

P i = {(pi
1, w

i
p

1

), · · · , (pi
m, w

i
pm

)}. Likewise, construct a signatureQj =

{(qj
1, w

j
q
1

), · · · , (qj
n, w

j
qn

)} for eachjth unlabeled set.

2. Classification via EMD:
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i. Compute EMD betweenP i andQj for all possible pairs(i, j). Define the

cost of moving one unit mass frompi
k to q

j
ℓ to be

c(pi
k, q

j
ℓ)

∆
=

1

2
‖pi

k − q
j
ℓ‖2,

where || · || is the Euclidean distance in the spaceR
s(τ,t). Let Dij

∆
=

EMD(P i, Qj).

ii. For eachj, supposeij
∆
= arg miniDij . LabelY j with the label ofXij .

That is, assign label by the nearest neighbor using EMD distance.

In Step 2.i we define the cost of moving one unit of mass from centroid pi
k to cen-

troid q
j
ℓ to be proportional to the squared (instead of to the first power) of the Euclidean

distance between the two centroids so as to give more preference to very close clusters.

5. Numerical Experiments and Results

We now show that our method can be applied to classification problems where the

data characterizing each object consist of a set of signals instead of a single signal. We

will show two examples of application. The first example is classification of underwater

objects by analyzing Synthetic Aperture Sonar (SAS) waveforms reflected from the

objects. The second example is a lip-reading application inwhich we identify the

spoken word from a sequence of image frames extract from a silent video segment.

We will also present a comparison in performance between ourmethod and the LKC

method in [12] (LKC stands for the first letter of the authors’last name: Lafon, Keller,

and Coifman). In [12], the authors applied diffusion maps and GHME scheme to do

dimensionality reduction and out-of-sample extension, much in the same manner as

the first part in our approach. The main difference between our method and the LKC

method is the use of EMD versus Hausdorff Distance (HD) to measure the distance

between two sets. We recall that the HD between any two setsS1 andS2 is defined as

dH(S1, S2)
∆
= max

(
max
y∈S2

min
x∈S1

‖x− y‖,max
x∈S1

min
y∈S2

‖x− y‖
)
,

where‖ · ‖ denotes the Euclidean distance. In our proposed method, theclassifier is

nearest-neighbor in EMD. In LKC approach, the classifier is nearest-neighbor in HD.
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5.1. Classification of underwater objects

The data in this example are collected from three different controlled experiments

in a fresh water test pond at NSWC-PC. For details of the experiments, see [21]. In each

of the three experiments, two objects were placed – either buried in the sand or proud –

at the bottom of the pond. One of the objects was a sphere made of an iron casing filled

with a different material each time. The other object was a solid aluminum cylinder of

different length in each experiment. A sinusoidal pulse wastransmitted across the floor

of the pond and the reflected signal was recorded over a periodof time at uniform time

intervals. The data obtained contain waveforms reflected from the entire area of the

pond floor. Waveforms corresponding to objects are extracted and processed using an

improved version of the algorithm presented in [22]. This yields one set of rectangular

blocks of waveforms per object.

Our goal is to identify objects according to their material compositions instead of

shape. Let us name the sphere and the cylinder in Experiment 1asS1 andC1; in

Experiment 2 asS2 andC2; and in Experiment 3 asS3 andC3, respectively. Sphere

S1 was filled with air, so we categorize it as one class with labelFeA for iron-air.

SpheresS2 andS3 were filled with silicone oil so we group them into another class

with label FeS for iron-silicone. All three cylinders were of the same diameter and

of the same material, so we grouped them into one class with label Al for aluminum.

However, we would like to mention thatC1 andC2 were of the same length whileC3

was much shorter.

The waveform data is of extremely high dimension. Each rectangular block of

waveforms is a 2D array of size17 (cross range samples) by600 (time samples). We

treat it as a point inR17×600. Then we apply the steps in Algorithm 4.1 to identify the

test object.

In our numerical experiment, we set aside a set of waveforms (corresponding to

one object) to use as test data and train our algorithm on the remaining five sets. Then

we cycle through all six objects, i.e., we repeat the classification process six times. Our

classification results for all six runs are shown in Table 1. Using EMD, we were able

to correctly identify spheresS2 andS3 as objects of classFeS and all three cylinders

as objects of classAl. The mistake was made whenS1 was labeled asAl. This error is
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Table 1: Identification of Pond Objects

Object Label by EMD Label by HD

C1 Al Al

C2 Al Al

C3 Al FeA

S1 Al Al

S2 FeS Al

S3 FeS FeS

expected since the classFeA contains only one memberS1. There is no training data

for this class. On the other hand, the LKC method mislabeled the cylinderC3 asFeA

object and the sphereS2 asAl object.

Let us examine the distribution of the feature vectors in thediffusion space. Fig. 2

shows the projection of the data onto top three diffusion coordinates. The diffusion

coordinates in this figure were computed using all but theS1 data, i.e., all the cylinder

data are displayed in blue, and theS2 andS3 data displayed in green were used to

compute the diffusion coordinates. TheS1 data (points displayed in red) were treated

as test (left-out) data, which were embedded into the diffusion space by the GHME

scheme described in Section 2.2.

From Fig. 2, we see that points corresponding toS1 are, on average, closer to

the cylinder points. We recall that EMD is based on the distribution of points in the

entire set. Therefore our method classifiedS1 as anAl object. The LKC method also

classifiedS1 as anAl object. However, we can observe from its definition that HD is

highly sensitive to outliers in general. To see this, let us examine the distribution of the

feature vectors in the diffusion space during the experimental trial whenC3 was left

out as the test data. Fig. 3(a) shows the projection of the data onto top three diffusion

coordinates for this case. Points corresponding toC3 (test data) are displayed in red.

Blue points correspond to classAl objects (C1 andC2); green points correspond to

classFeS objects (S2 andS3); and yellow points correspond toS1, i.e., classFeA.

We see that the red points are on average close to the blue (C1 andC2) points. Thus,
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using EMD we were able to correctly label objectC3 asAl. However, LKC method

mislabeledC3 as anFeA object. It is not difficult to see why this happened if we

examine Fig. 3(b), a zoomed up version of Fig. 3(a). The HD betweenC3 andS1 is

roughly the length of the arrow from the boundary of the cluster of yellow points to

the other end of the red cluster, which is approximately0.7. The HD betweenC3 and

C1 (or similarlyC2) is roughly the length of the arrow from the boundary of the blue

cluster to the other end of the red cluster, which is approximately1.0.

From this experiment, we conclude that using EMD makes our method more robust

to noise and outliers than the LKC method which uses HD for sets discrimination.

5.2. Lip reading experiment

The objective of lip reading is to train a machine to automatically recognize the

spoken words from the movements of the lips captured on silent video segments (no

sound is involved). Much research effort has been devoted tothis area. Many published

algorithms involved sophisticated feature selection. In this example, our features are

simply the diffusion coordinates, and the lips data used arecollected from one speaker.

More sophisticated feature selection might be necessary when more speakers, i.e., more

variations in the lips, are involve.

Our main objective in this example is to illustrate the potential of our method for

application to such problems. Moreover, a similar numerical experiment was done in

[12]. By repeating the example, we hope to provide a good grounded comparison of

our method to the LKC method in [12].

We recorded a subject speaking the first five digits (‘one’,...,‘five’) ten times using

a Nikon Coolpix digital camera sampling at a rate of60 frames per second. We then

extracted the image frames from each movie clip and did some simple processing.

First, we convert the images from color to gray scales ranging from 0 to 255. Then

we cropped each image to a55 × 70 pixels window around the lips to compensate

for translations. (The speaker’s nose was marked with a color marker to facilitate

automatic cropping of the image frames). Each cropped frameis treated as a point in

R
55×70.

For each spoken digit, we randomly selected five image sequences from the ten in

22



Table 2: Lip-Reading Confusion Matrices. Dimension reduction by diffusion map.

Recognition by EMD Recognition by HD

Labeled as (% of times)

Word ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’

‘one’ 56.2 2.6 39.4 1.8 0 43.4 4.4 21 26.8 4.4

‘two’ 0.4 69.2 4 26.4 0 0 64 8.4 27.6 0

‘three’ 13 10.2 70 6.8 0 8.6 7.6 77.4 6.4 0

‘four’ 0 36.4 2.4 61.2 0 2 25.6 6.8 65.6 0

‘five’ 0 0 0 0 100 0 0 0 0 100

our collection to use as training data. This gives us a total of 25 sequences for training

data and25 for test data. We apply Algorithm 4.1 to identify the test sequences. Then

we repeat the whole process100 times. The recognition results over all100 experi-

mental trials are combined to compute the statistics shown in Table 2. The recognition

errors range from0% to 44.8% by using EMD and0% to 56.6% by using HD, aver-

aging28.6% and29.9% recognition error, respective. The largest error made by both

methods was when identifying the word ‘one’. This can be explained by large vari-

ations in the image sequences of the word ‘one’. We display inFig. 4 some images

extracted from two sequences of the word ‘one’. In the first sequence (top row) the

speaker simply spoke the word with no emotion. In the second sequence (bottom row)

the speaker was smiling while speaking.

Over all, recognition results by using EMD and HD are relatively comparable.

However, HD did much worse than EMD when trying to identify the word ‘one’. We

recall that HD is highly sensitive to outliers, and the datasets corresponding to the word

‘one’ have many outliers.

6. Diffusion Maps versus Principal Component Analysis

In this section, we compare the performance in dimension reduction of diffusion

maps to that of Principal Component Analysis (PCA). We repeat the two experiments
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Table 3: Lip-Reading Confusion Matrices. Dimension reduction by PCA.

Recognition by EMD Recognition by HD

Labeled as (% of times)

Word ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’

‘one’ 89.8 0 10.2 0 0 81.6 1.4 12 4.2 0.8

‘two’ 0 98.2 0 1.8 0 0 92.2 0.6 7.2 0

‘three’ 0.4 3.2 95.2 1.2 0 1.2 6 91.2 1.6 0

‘four’ 0 7.6 0.4 92 0 1 9.4 2.6 87 0

‘five’ 0 0 0 0 100 0 0 0 0 100

described in the previous sections, this time using PCA instead of diffusion maps for

dimension reduction.

First, we computed the eigenvectors (PCA vectors) of the covariance matrix of the

training data. (See [23, Sec.2.1] for fast computation of PCA vectors). Then, we retain

the top ten PCA vectors associated with the ten largest eigenvalues and use these as

a basis for the reduced-dimension (PCA) space. The choice often is made based on

the observation that the largest ten eigenvalues of the covariance matrix decreased the

fastest. The rest of the eigenvalues are relatively small and decreased slowly. Using

the ten basis vectors, we project both training and test dataonto the corresponding

10-dimensional PCA space. Finally we apply the remaining steps in Algorithm 4.1 to

construct signatures and then label the test data.

In the lip-reading application, using PCA for dimension reduction dramatically im-

proved recognition results. In Table 3 we list results of classification using both EMD

and HD. Comparing the recognition rates in Table 3 to those inTable 2, we see that

PCA outperformed diffusion maps by at least14%.

In the case of recognizing underwater objects, we found thatPCA performed very

poorly. Regardless of what waveform sets were used for training data (i.e., in all six

repetitions of the experiment) PCA method projects the testdata into a small region

around the origin in the PCA space. For example, Fig. 5 shows the projection of all

data onto top three PCA coordinates. In this figure, the PCA vectors were computed
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using all but theS2 data (S2 data were left-out as test data). All cylinder data are

displayed in blue,S1 in yellow, S3 in green, andS2 in red. We can see that the test

(S2) data are clustered around the origin. This is the observed phenomenon throughout

all six repetitions of the experiment. As a consequence of this degeneration, all three

spheres were mislabeled.

Success and failure of PCA can be explained by the relationship between the data

variates (the variables describing the data). In images, each pixel represents one vari-

able. Since neighboring pixels are highly correlated, it isclear that there are very high

correlations between the data variates. Since PCA providesa decorrelated coordinate

system, projecting images of the lips onto a PCA space allowsprominent features in

the images to be more visible. In the case of the sonar data, the variates do not correlate

in a linear manner. Consequently, PCA fails to provide a goodrepresentation for this

type of data.

7. Conclusions

We have proposed an approach for datasets matching using diffusion maps for di-

mension reduction and feature extraction and EMD for sets discrimination. To illustrate

the applicability of our proposed method, we have provided two examples of applica-

tions: silent lip-reading and classification of underwaterobjects. Both examples are

real and tangible problems in the scientific community. To validate the applicability of

our method, we have provided for comparison purpose numerical results of our method

and the LKC method published in [12]. In the lip-reading application, both methods

performed relatively similar. However, in the recognitionof underwater objects appli-

cation, our method correctly identified all objects and proved to be more stable.

Furthermore, we have also provided a comparison in the performance of diffusion

maps to the performance of PCA in dimension reduction. We found that on the image

data of the lips, where the data variates (the variables describing the data) are highly

correlated, PCA performs better than diffusion maps. Perhaps this is because the decor-

related representation provided by PCA allows distinguishing features in the images to

be more prominent. However, when the variables describing the data are not linearly
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correlated (e.g., the case of waveforms reflected from underwater objects) then PCA

fails to provide an adequate low-dimensional representation for the data. We are cur-

rently investigating why diffusion maps do not work as well as PCA when the input

data are highly correlated as in the case of the lip-reading image frames.
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Figure 1: Largest 100 eigenvalues of the diffusion kernel inone trial of the lip-reading experiment.(ε =

740).

Figure 2: Top three diffusion coordinates. Training data are in blue (all three cylinders) and green (S2 and

S3). Points displayed in red are the test dataS1.
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(a) Embedded points (b) Zoom up

Figure 3: (a) Top three diffusion coordinates. Training data are in blue (C1 andC2), yellow (S1), and green

(S2 andS3). Points displayed in red are the test dataC3. (b) The zoomed up version of (a).

Figure 4: Lip shapes of two different sequences of the word ‘one’.

Figure 5: Top three PCA coordinates. Training data are in blue (cylinder data), yellow (S1), and green (S3).

Points displayed in red are the test dataS2.
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