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Motivation

Many natural and man-made signals exhibit time-varying frequencies
(e.g., chirps, FM radio waves).

Characterization and analysis of such a signal, u(t), based on
instantaneous amplitude a(t), instantaneous phase φ(t), and
instantaneous frequency ω(t) := φ′(t) is very important:

u(t) = a(t) cosφ(t).

The standard discrete wavelet, wavelet packet, and local cosine/sine
transforms cannot extract phase information explicitly.

Want to capture local phase information of sonar signals as well as
instantaneous frequency and other features useful for sonar waveform
classification.
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Analytic Signal

It is convenient to use a complexified version of the signal whose real
part is a given real-valued signal u(t).
Given u(t), however, there are infinitely many ways to define the
instantaneous amplitude and phase (IAP) pairs so that

u(t) = a(t) cosφ(t).

This is due to the arbitrariness of the complexified version of u, i.e.,

f (t) = u(t) + iv(t)

where v(t) is an arbitrary real-valued signal; yet this yields the IAP
representation of u(t) via

a(t) =
√

u2(t) + v2(t), φ(t) = arctan
v(t)

u(t)
.

The instantaneous frequency is defined as

ω(t) :=
dφ
dt

=
u(t)v ′(t)− u′(t)v(t)

u2(t) + v2(t)
.
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Analytic Signal

Gabor (1946) proposed to use the the Hilbert transform of u(t) as
v(t), and called the complex-valued f (t) an analytic signal.

Vakman (1972) proved that v(t) must be of the Hilbert transform of
u(t) if we impose some a priori physical assumptions:

1 v(t) must be derived from u(t).
2 Amplitude continuity: a small change in u =⇒ a small change in a(t).
3 Phase independence of scale: if cu(t), c ∈ R arbitrary scalar, then the

phase does not change from that of u(t) and its amplitude becomes c
times that of u(t).

4 Harmonic correspondence: if u(t) = a0 cos(ω0t + φ0), then a(t) ≡ a0,
φ(t) ≡ ω0t + φ0.
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Analytic Signal . . .

For simplicity, we assume that our signals are 2π-periodic in
θ ∈ [−π, π).

Hence, we work on the unit circle and unit disk D in C = R2.

Note that the signals over R = (−∞,∞) can be treated similarly by
considering the real axis and the upper half plane of C.

The analytic signal of a given signal u(θ) ∈ R is often and simply
obtained via the Hilbert transform:

f (θ) = u(θ) + iHu(θ), Hu(θ) :=
1

2π
pv
∫ π

−π
u(τ) cot

θ − τ
2

dτ.

Note that

u(θ) =
a0

2
+
∑
k≥1

(ak cos kθ+bk sin kθ)⇒ Hu(θ) =
∑
k≥1

(ak sin kθ−bk cos kθ).

Furthermore,

f (θ) =
a0

2
+
∑
k≥1

(ak − ibk)eikθ.
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Analytic Signal . . .

We can gain a deeper insight by viewing this as the boundary value of an
analytic function F (z) where

F (z) := U(z) + iŨ(z), z ∈ D,

where

U(z) = U
(
reiθ
)

= Pr ∗ u(θ) =
1

2π

∫ π

−π

1− r2

1− 2r cos(θ − τ) + r2
u(τ) dτ,

Ũ(z) = Ũ
(
reiθ
)

= Qr ∗ u(θ) =
1

2π

∫ π

−π

2r sin(θ − τ)

1− 2r cos(θ − τ) + r2
u(τ) dτ.

In other words, the original signal u(θ) = U
(
eiθ
)

is the boundary value of
the harmonic function U on ∂D, which is constructed by the Poisson
integral. Ũ and Qr (θ) are referred to as the conjugate harmonic function
and the conjugate Poisson kernel, respectively.
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Analytic Signal . . . An Example: u(θ)
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Analytic Signal . . . An Example: u(θ) and Hu(θ)
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Analytic Signal . . . An Example: U(z) and Ũ(z)

(a) U(z) (b) eU(z)
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Analytic Signal . . .

Even if we use the analytic signal, its IAP representation is not unique as
shown by Cohen, Loughlin, and Vakman (1999):

f (θ) = a(θ)eiφ(θ), where a(θ) = u(θ) cosφ(θ) + v(θ) sinφ(θ) may be
negative though φ(θ) is continuous;
f (θ) = |a(θ)|ei(φ(θ)+πα(θ)), where α(θ) is an appropriate phase
function, which may be discontinuous.

(a) Continuous phase

(b) Nonnegative amplitude
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Phase Signal (or Blaschke Product)

Avoiding such ambiguity leads to the concept of phase signal (or the
use of the Blaschke product) by Picinbono (1997–8); Kumaresan-Rao
(1998–9), Coifman-Nahon (1999–2000).
Instead of seeking the IAP representation of an analytic signal as
f (θ) = a(θ)eiφ(θ), we seek a more specific form:

f (θ) = b(θ)g(θ) the ∂D version;

F (z) = B(z)G (z) the D version,

where b(θ) = B
(
eiθ
)

is called the phase signal and B(z) is called the
Blaschke product of F (z).
The Blaschke product takes care of all the zeros of F (z) in D:

B(z) := zN ·
M∏

k=1

(
z − αk

1− αkz
· αk

|αk |

)
,

where {αk}Mk=1 ⊂ D are the nonzero roots of F (z). Note that M
could be ∞, but in the practical cases, it is finite.
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Some Properties of the Blaschke Product

|b(θ)| = |B
(
eiθ
)
| = 1.

In fact, one can show [Coifman-Nahon (2000), Kumaresan-Rao
(1999)] that if B

(
eiθ
)

= eiφ(θ) for some φ : [−π, π)→ R,

B
(
eiθ
)

= B(1) · ei
R θ

0 φ
′(t) dt , φ′(θ) = N +

M∑
k=1

1− |αk |2

|eiθ − αk |2
> 0,

i.e., the phase φ(θ) is non-decreasing, and the instantaneous
frequency ω(θ) = φ′(θ) is nonnegative. Hence, there is no serious
phase unwrapping problem.

G (z) is analytic in D and contains no zeros there.

|g(θ)| = |G
(
eiθ
)
| = |F

(
eiθ
)
| = |f (θ)|.

Hence g(θ) can be viewed as the amplitude of f (θ), but it is
complexed-valued in general.
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frequency ω(θ) = φ′(θ) is nonnegative. Hence, there is no serious
phase unwrapping problem.

G (z) is analytic in D and contains no zeros there.

|g(θ)| = |G
(
eiθ
)
| = |F

(
eiθ
)
| = |f (θ)|.

Hence g(θ) can be viewed as the amplitude of f (θ), but it is
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An Example

Let us consider a simple analytic function (in fact a polynomial in z)
in D as

F (z) = (z + 0.8)5 (z − 0.98e−iπ/3)2 (z − 0.5eiπ/3).

In this case, we have an explict factorization:

B(z) =

(
z + 0.8

1 + 0.8z

)5
(

z − 0.98e−iπ/3

1− 0.98eiπ/3z

)2
z − 0.5eiπ/3

1− 0.5e−iπ/3z
;

G (z) = (1 + 0.8z)5(1− 0.98eiπ/3z)2(1− 0.5e−iπ/3z).

(a) Re(B(z)) (b) Im(B(z)) (c) Re(G(z)) (d) Im(G(z))
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An Example . . .

(a) F (eiθ) (b) B(eiθ) (c) G(eiθ)
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An Example . . . Phase and Instantaneous Frequency

(a) φb(θ) (b) ωb(θ)
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Behavior of an Analytic Function (z − α)k at ∂D

If |α| < 1, it represents k times rotations around the origin of C.

If |α| � 1, then it is close to the pure tones.
If |α| ≈ 1, then amplitude is small around θ = ∠α, and large around
θ = ∠α± π.

If |α| > 1, it does not rotate around the origin, and the lower
frequency components are dominant.
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The Mathematical Basis of the BG Factorization

Definition (Hardy Spaces)

If p > 0, Hp is the set of F (z) analytic in D with

sup
0≤r<1

∫ π

−π
|F (reiθ)|p dθ <∞.

Theorem (Herglotz (1911), F. Riesz (1922); see also Hoffman (1962),
Koosis (1998), Garnett (2007))

Let F (z) 6≡ 0 belong to Hp, p > 0. Then there is a Blaschke product B(z)
and a G (z) ∈ Hp with F (z) = B(z)G (z), where G (z) does not have zeros
in D.
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An Algorithm Due to Coifman-Nahon

The original Coifman-Nahon Algorithm

Step 0: For a given real-valued signal u(θ), compute its analytic
signal f (θ) = u(θ) + iHu(θ).

Step 1: Set `(θ) := log |f (θ)|
Step 2: Compute its analytic version `a(θ) := `(θ) + iH`(θ).

Step 3: Set g(θ) := e`a(θ).

Step 4: Set b(θ) := f (θ)/g(θ).

This algorithm can construct b(θ) modulo multiplicative constants of
length 1.
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Numerical Instabilities

If some zeros of F (z) are close to ∂D, numerical instability occurs.
Coifman and Nahon resolved this by oversampling f (θ) and `a(θ),
etc., by zero padding in the Fourier domain.

(a) φ(θ): No oversampling (b) ω(θ): No oversampling

(c) φ(θ): Oversampling (d) ω(θ): Oversampling
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Numerical Instabilities . . .

If |f (θ)| ≈ 0 due to inactivity of the original signal or due to the zeros
of F (z) too close to ∂D, then `(θ) blows up.
Coifman and Nahon resolved this by the regularization on |f (θ)| by

|f (θ)| ←
√
|f (θ)|2 + (ε‖f ‖∞)2,

where ε > 0 is a threshold specified by the user.
This leads to:

|b(θ)|

{
� 1 if |f (θ)| � ε‖f ‖∞;

≈ 1 if |f (θ)| � ε‖f ‖∞ .

(a) ε = 0.001 (b) φ(θ) (c) ω(θ)
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Our Contribution

Selecting appropriate ε is not always easy.

We found that adding a pure sinusoid whose amplitude is small and
whose frequency does not interfere too much with the original signal
stabilizes numerical algorithm quite well.

(a) Added 0.01 sin(2θ) (b) φ(θ) (c) ω(θ)
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Iterative Factorizations

Let F0 be the low frequency (or DC) part of F . Then the following
factorization is more stable than the simple F = BG .

F (z) = F0(z) + B(z) · G (z)

One can iterate the factorization on the G component, i.e.,

F (z) = F0(z) + B0(z) · G0(z)

= F0(z) + B0(z) · (G00(z) + B1(z) · G1(z))

= F0(z) + B0(z) · (G00(z) + B1(z) · (G10(z) + B2(z) · G2(z)))

= · · ·
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Objectives/Experiment Setup (Courtesy of R. Holtzapple)
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Data Description

Sampling frequency = 100 kHz or 500 kHz, i.e., ∆t = 10 or 2µsec

There are two sets of data we have been working on: with a target
(hollow cylinder containing water) and without a target
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Data: 100 kHz Sampling (aligned)
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Data: 500 kHz Sampling (aligned)

saito@math.ucdavis.edu (UC Davis) Blaschke Product JSIAM Spring 09 32 / 41



Our Approach for Classification

Our observation: reflections from the target may be small and overlap
with the reverberation of the direct arrival

Need to enhance the small reflected waves without amplifying noise

Our idea: Apply Amplitude-Phase (or BG ) Factorization via Blaschke
Products

Current Status: Applied the BG Factorization method successfully to
emphasize the small reflected waves or the difference in phase
information including time delay
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Results of Factorization: 100 kHz Sampling

(a) B0 (b) G0

(c) φ0
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Results of Iterative Factorization: 100 kHz Sampling

(d) B1 (e) G1

(f) φ1
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Results of Factorization: 500 kHz Sampling

(a) B0 (b) G0

(c) φ0
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Conclusions

Amplitude-phase factorization via Blaschke product is quite useful for
characterization and analysis of time-varying nonstationary signals

Computed phase monotonically increases in general

Adding a small pure sinusoid stabilizes the original Coifman-Nahon’s
algorithm

Applied the Amplitude-Phase Factorization method successfully to
emphasize the small reflected waves or the difference in phase
information including time delay
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Future Plan

Investigate the stability of the algorithm against noise

Investigate the discriminant measure (including Earth Mover’s
Distance) using phase information for separating out the
target/non-target data

Examine the detailed amplitude-phase diagrams for classification of
the materials inside of targets

Investigate how to localize the phase analysis =⇒ local analytic
signals via polyharmonic local Fourier transform

How about the phase information in 2D/3D signals? =⇒ monogenic
signals proposed by Felsberg & Sommer
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