1. Let \mathbb{F} be a field. Suppose G is a finite subgroup of the multiplicative group $\mathbb{F}\setminus\{0\}$, i.e. $G \subset \mathbb{F}^\times$ and $|G| < \infty$. Prove G is cyclic.

2. Give an example of a ring that is a unique factorization domain (UFD) but not a principal ideal domain (PID). Justify your answer by giving an ideal and showing it is not principal.

3. Let R be a principal ideal domain (PID), let M be an R–module such that the annihilator $\text{ann}(M) = (a)$. Suppose
\[a = p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3}, \]
for distinct primes $p_i \in R$, $\alpha_i \in \mathbb{Z}_{\geq 1}$. Let
\[M_i = \{ m \in M | p_i^{\alpha_i}m = 0 \}. \]
Prove
\[M = M_1 \oplus M_2 \oplus M_3. \]

4. a. Let G be the subgroup of $\text{GL}_3(\mathbb{Z}/3\mathbb{Z})$ – the group of invertible matrices with entries in $\mathbb{Z}/3\mathbb{Z}$ – of the form
\[G = \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \text{ such that } a, b, c \in \mathbb{Z}/3\mathbb{Z}. \]
Find the order of this group and decide whether or not it is abelian.

b. Prove or disprove: a group of order 135 must be abelian.

5. Let G be a finite group satisfying the following property: if A, B are subgroups of G then AB is a subgroup of G. Prove that G is a solvable group.

6. Suppose $K = F(\alpha)$ is a proper Galois extension of F and assume there exists an element $\sigma \in \text{Gal}(K/F)$ satisfying $\sigma(\alpha) = \alpha^{-1}$. Show that $[K : F]$ is even and that $[F(\alpha + \alpha^{-1}) : F] = [K : F]/2$.