Problem 1.

If n and m are integers write $d_0(n,m) = |n-m|$ and $d_1(n,m) = 2^{-r}$ if $|n-m| = 2^r t$ with t odd if $n \neq m$ and $d_2(n,n) = 0$.

- 1. Prove that the metric space (\mathbb{Z}, d_0) is complete.
- 2. Prove that the metric space (\mathbb{Z}, d_2) is not complete. (Hint: Consider the sequence $\{a_n = \frac{4^n - 1}{3}\}$).

Problem 2:

Assume that $f \in C^1(\mathbb{R})$ (so the derivative f' is continuous).

- 1. Show that there is a sequence of polynomials p_n so that
 - (a) $\{p_n\}$ converges pointwise to f on [0,1] and
 - (b) $\{p'_n\}$ converges pointwise to f' on [0, 1].
- 2. Show that there is a sequence of polynomials q_n so that
 - (a) $\{q_n\}$ converges pointwise to f on [0, 1] and
 - (b) $\{q'_n\}$ does not converge pointwise to f' on [0, 1].

Problem 3:

Consider the Banach space $X = (C[0, 1], \|\cdot\|_{\infty})$ of continuous functions with the supremum norm and the Banach space $F = (B(X), \|\cdot\|_{op})$ of bounded linear functions from X to X with the operator norm. For each of the following functions $f_i : X \to X$ determine whether f_i is in F (bounded and linear) and if so find $\|f_i\|_{op}$. In the equations $\phi(x)$ is any element of X.

- 1. $f_1(\phi(x)) = \phi(x^2)$,
- 2. $f_2(\phi(x)) = \phi^2(x)$,
- 3. $f_3(\phi(x)) = \phi(x) + x^2$,
- 4. $f_4(\phi(x)) = x^2 \phi(x)$.

Problem 4

Let $f, g \in L^1(\mathbb{R}^d)$. Prove that if

$$\int_E f \leq \int_E g$$

holds for every measurable set $E \subset \mathbb{R}^d$, then $f \leq g$ almost everywhere.

Problem 5

Let f(t, x) be a function on $[0, \infty) \times \mathbb{T}$ that is continuously differentiable in t, and twice continuously differentiable in x. Here \mathbb{T} is a circle. Suppose that the function satisfies the equation

$$\frac{\partial}{\partial t}f(t,x) = \frac{\partial^2}{\partial^2 x}f(t,x), \quad t > 0, x \in \mathbb{T}.$$

Show that

- 1. $\lim_{t\to\infty} \frac{\partial}{\partial x} f(t,x) = 0$,
- 2. For any t > 0, f(t, x) is a smooth function of x.

Problem 6

For a bounded operator A on a Hilbert space \mathcal{H} , the numerical range of A is a subset N of \mathbb{C} given by

$$N := \{ (x, Ax), x \in \mathcal{H}, \|x\| = 1 \},\$$

where (\cdot, \cdot) denotes the scalar product on \mathcal{H} .

- 1. Show that if A is Hermitian then $N \subset \mathbb{R}$.
- 2. Show that if λ belongs to the point spectrum of A then $\lambda \in N$.
- 3. Show that if A is a compact operator, and \mathcal{H} is infinite dimensional then $0 \in \overline{N}$, where \overline{N} is the closure of N.
- 4. Give an example of A for which N is not a closed set.