ALGEBRA PRELIM EXAM SEPTEMBER 2022

(1) Let M, N be normal solvable subgroups of a group G. Show that their product $M N$ is also solvable.
(2) (a) Let H be a Sylow p-subgroup of a finite group G and let K be a subgroup of G. Is it always true that $H \cap K$ is a Sylow p-subgroup of K ? Justify your answer.
(b) Prove that there are no simple groups of order 312, 616, or 1960. (Note: $312=2^{3} \cdot 3 \cdot 13,616=2^{3} \cdot 7 \cdot 11,1960=2^{3} \cdot 5 \cdot 7^{2}$)
(3) Let F / k be a (finite) Galois extension, let $k \subseteq K \subseteq L$, and let L / K be a (finite) Galois extension. Suppose L and F are both contained in a larger field. Prove that $L \cap F / K \cap F$ is Galois.
(4) How many idempotents are there in the ring

$$
R=\mathbb{Q}(\omega) \otimes_{\mathbb{Q}} \mathbb{Q}[x] /\left(x^{4}-16\right)
$$

where $\omega \in \mathbb{C}$ is a primitive 3rd root of unity? Explain.
(5) Find all prime ideals in the ring $\mathbb{Q}[x] /\left(x^{4}+4 x^{2}\right)$.
(6) (a) Let $R=\mathbb{C}[x] \supseteq I=(x)$. Is I a free (left) R-module? Why or why not?
(b) Let $S=\mathbb{C}[x, y] \supseteq J=(x, y)$. Is J a free (left) S-module? Why or why not?

