Spring 2012: MA Algebra Preliminary Exam

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1. Let A be a real $n \times n$ upper triangular matrix so that A commutes with its transpose A^T . Show that A is diagonal.

Problem 2. Suppose that G is a group which contains no index 2 subgroups. Show that every index 3 subgroup in G is normal.

Problem 3. Let F be a field and F^{\times} be the multiplicative group of nonzero elements of F. Show that every finite subgroup of F^{\times} is cyclic.

Problem 4.

Prove that $\mathbb{R}[X]/(X^2-1)\mathbb{R}[X]\approx\mathbb{R}\oplus\mathbb{R}$, but $\mathbb{R}[X]/(X^2-1)^2\mathbb{R}[X]\not\approx\mathbb{R}\oplus\mathbb{R}$.

Problem 5. Show that 9 and $6 + 3\sqrt{-5}$ do not have a greatest common divisor in $\mathbb{Z}[\sqrt{-5}]$.

Problem 6. Let F be a field, X an indeterminate, and let F[[X]] denote the ring of formal power series with coefficients in F, where multiplication is defined as it is for polynomials. Prove that an element $s = a_0 + a_1X + \cdots \in F[[X]]$ is a unit in F[[X]] if and only if $a_0 \neq 0$. Show that every ideal of F[[X]] is of the form $X^nF[[X]]$ for some $n \geq 0$.