Spring 2011: MA Analysis Preliminary Exam

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1:

Let $\Omega = (0,1)$, the open unit interval in \mathbb{R} , and consider the sequence of functions $f_n(x) = ne^{-nx}$. Prove that $f_n \not\rightharpoonup f$ weakly in $L^1(\Omega)$, i.e., the sequence f_n does not converge in the weak topology of $L^1(\Omega)$. (**Hint**: Prove by contradiction.)

Problem 2:

Let $\Omega=(0,1)$, and consider the linear operator $A=-\frac{d^2}{dx^2}$ acting on the Sobolev space of functions X where

$$X = \{ u \in H^2(\Omega) \mid u(0) = 0, u(1) = 0 \},\,$$

and where

$$H^2(\Omega) = \{ u \in L^2(\Omega) \mid \frac{du}{dx} \in L^2(\Omega), \frac{d^2u}{dx^2} \in L^2(\Omega) \}.$$

Find all of the eigenfunctions of A belonging to the linear span of

$$\{\cos(\alpha x), \sin(\alpha x) \mid \alpha \in \mathbb{R}\},\$$

as well as their corresponding eigenvalues.

Problem 3:

Let $\Omega = (0, 1)$, the open unit interval in \mathbb{R} , and set

$$v(x) = (1 + |\log x|)^{-1}.$$

Show that $v \in W^{1,1}(\Omega)$ and that v(0) = 0, but that $\frac{v}{x} \notin L^1(\Omega)$. (This shows the failure of Hardy's inequality in L^1 .) Note, that $W^{1,1}(\Omega) = \{u \in L^1(\Omega) \mid \frac{du}{dx} \in L^1(\Omega)\}$, where $\frac{du}{dx}$ denotes the weak derivative.

Problem 4:

Let f(x) be a periodic continuous function on \mathbb{R} with period 2π . Show that

$$\hat{f}(\xi) = \sum_{n = -\infty}^{\infty} b_n \tau_n \delta \text{ in } \mathcal{D}', \qquad (1)$$

that is, that equality in equation (??) holds in the sense of distributions, and relate b_n to the coefficients of the Fourier series. Note that δ denotes the Dirac distribution and τ_y is the translation operator, given by $\tau_y f(x) = f(x+y)$. (**Hint:** Write $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$ with convergence in $L^2(0, 2\pi)$ and where the coefficients $c_n = \frac{1}{2\pi} \int_0^{2\pi} e^{-inx} f(x) dx$.)

Problem 5:

Let f(x) be a periodic continuous function on \mathbb{R} with period 2π . Given $\epsilon > 0$, prove that for $N < \infty$ there is a finite Fourier series

$$\phi(x) = a_0 + \sum_{n=1}^{N} \left[a_n \cos(nx) + b_n \sin(nx) \right]$$
 (2)

such that

$$|\phi(x) - f(x)| < \epsilon \quad \forall x \in \mathbb{R}$$
.

This shows that the space of real-valued trigonometric polynomials on \mathbb{R} (functions which can be expressed as in (??)) are uniformly dense in the space of periodic continuous function on \mathbb{R} with period 2π .

(**Hint:** The Stone-Weierstrass theorem states that if X is compact in \mathbb{R}^d , $d \in \mathbb{N}$, then the algebra of all real-valued polynomials on X (with coordinates $(x_1, x_2, ..., x_d)$) is dense in C(X).

Problem 6:

For $\alpha \in (0, 1]$, the space of Hölder continuous functions on the interval [0, 1] is defined as

$$C^{0,\alpha}([0,1]) = \left\{ u \in C([0,1]) \ : \ |u(x) - u(y)| \le C|x - y|^\alpha \, , x,y \in [0,1] \right\},$$

and is a Banach space when endowed with the norm

$$||u||_{C^{0,\alpha}([0,1])} = \sup_{x \in [0,1]} |u(x)| + \sup_{x,y \in [0,1]} \frac{|u(x) - u(y)|}{|x - y|^{\alpha}}.$$

Prove that the closed unit ball $\{u \in C^{0,\alpha}([0,1]) : ||u||_{C^{0,\alpha}([0,1])} \leq 1\}$ is a compact set in C([0,1]).

(**Hint:** The Arzela-Ascoli theorem states that if a family of continuous functions U is equicontinuous and uniformly bounded on [0,1], then each sequence u_n in U has a uniformly convergent subsequence. Recall that U is uniformly bounded on [0,1] if there exists M>0 such that |u(x)|< M for all $x\in [0,1]$ and all $u\in U$. Further, recall that U is equicontinuous at $x\in [0,1]$ if given any $\epsilon>0$, there exists $\delta>0$ such that $|u(x)-u(y)|<\epsilon$ for all $|x-y|<\delta$ and every $u\in U$.)