Fall 2012: MA/MS Analysis Preliminary Exam

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1:

Show that the space of all continuous functions on the interval [0, 1] with the sup norm $||f|| = \max |f(x)|$ is not a Hilbert space.

Problem 2. Suppose φ is a real-valued continuous function on the interval [0, 1], and T is a linear operator on $L^2[0, 1]$ given by

$$(Tf)(x) = \varphi(x) \int_0^1 \varphi(t) f(t) dt$$

for all $f \in L^2[0,1]$. Show that

- (a) T is self-adjoint.
- (b) there exists a number $\lambda \ge 0$ such that $T^2 = \lambda T$.
- (c) Find the spectral radius r(T) of T.

Problem 3. Let T be a bounded linear operator on a Hilbert space \mathcal{H} . Show that

(a) If $||T|| \leq 1$, then T and its adjoint operator T^* have the same fixed point. i.e. Show that for $x \in \mathcal{H}$,

$$Tx = x \iff T^*x = x.$$

(b) Let λ be an eigenvalue of T. Is it true that its complex conjugate λ must be an eigenvalue of T^* ? Is it true that $\overline{\lambda}$ must be in the spectrum of T^* ? Justify your answers.

Problem 4. The heat kernel on \mathbb{R}^3 is given by $H_t(x) = (4\pi t)^{-3/2} e^{-|x|^2/(4t)}$ where |x| denotes the Euclidean norm of $x \in \mathbb{R}^3$. Prove that if $u \in L^3(\mathbb{R}^3)$, then $t^{1/2} ||H_t * u||_{L^{\infty}(\mathbb{R}^3)} \to 0$ as $t \to 0^+$. (Note that * denotes convolution.)

Problem 5. Let M be a bounded subset of C[a, b] with the sup norm and

$$A = \left\{ F\left(x\right) = \int_{a}^{x} f\left(t\right) dt : f \in M \right\}$$

Show that A is a precompact subset of C[a, b].

Problem 6. Consider the one-dimensional function f. Prove that if

$$\int_{-\infty}^{\infty} |\hat{f}(k)|^2 (1+|k|^2)^s dk < \infty$$

for some s > 3/2 then f is globally Lipschitz, i.e., there exists a constant K such that $|f(x) - f(y)| \le K|x - y|$.