Fall 2006: MA Algebra Preliminary Exam

Instructions:

(1) Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
(2) Use separate sheets for the solution of each problem.

Problem 1. Let G be a matrix group, and let $g \in G$ be an element with $\operatorname{det}(g) \neq 1$. Show that $g \notin G^{\prime}$, the commutator group of G.

Problem 2. Let $A: V \rightarrow V$ be an operator on a finite-dimensional vector space V. Suppose A has characteristic polynomial $x^{2}(x-1)^{4}$ and minimal polynomial $x(x-1)^{2}$. What is the dimension of V ? What are the possible Jordan forms of A ?

Problem 3. Show that \mathbb{Z} is a principal ideal domain.
Problem 4. Let G denote a finite abelian group. Let us consider the set G^{*} of all homomorphisms of the group G into the multiplicative group \mathbb{C}^{\times}of nonzero complex numbers.
(a) Check that G^{*} can be considered as a group with respect to the operation of multiplication of homomorphisms.
(b) Prove that the group G^{*} is isomorphic to the group G.

Problem 5. Let us assign to every nonsingular complex 2×2 matrix A a transformation ϕ_{A} of the vector space Mat_{2} of complex 2×2 matrices defined by the formula

$$
\phi_{A}(X)=A X A^{-1} .
$$

(a) Check that this formula specifies an action of the group $G L_{2}(\mathbb{C})$ of nonsingular complex matrices on Mat_{2}; moreover, it specifies a linear representation of this group.
(b) Prove that this representation is reducible.

Problem 6. Consider the dihedral group D_{9} (the group of isometries of regular 9-gons).
(a) Write down a list of all elements of D_{9}.
(b) Prove that D_{9} cannot be represented as a direct product of two non-trivial groups.
(c) Determine if D_{9} is solvable.

Fall 2006: MA Analysis Preliminary Exam

Instructions:

(1) Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
(2) Use separate sheets for the solution of each problem.

Problem 1. Let $C([0,1])$ be the Banach space of continuous real-valued functions on $[0,1]$, with the norm $\|f\|_{\infty}=\sup _{x}|f(x)|$. Let $k:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a given continuous function. Let $T_{k}: C([0,1]) \rightarrow C([0,1])$ be the linear operator given by $T_{k}(f)(x)=\int_{0}^{1} k(x, y) f(y) d y$.
(a) Show that T_{k} is a bounded operator.
(b) Find an expression for $\left\|T_{k}\right\|$ in terms of k.
(c) What is $\left\|T_{k}\right\|$ if $k(x, y)=x^{2} y^{3}$?

Problem 2. Let X be a metric space.
(a) Define X is sequentially compact.
(b) Define X is a complete metric space.
(c) Prove that a sequentially compact metric space X is complete.
(d) Let $B=\left\{x:\|x\|_{2} \leq 1\right\}$ be the unit ball in $\ell^{2}(\mathbb{N})$. Show that B is not sequentially compact.

Problem 3. Give an example of a Banach space X and a sequence $\left(x_{n}\right)$ of elements in X such that $\sum_{n=1}^{\infty} x_{n}$ converges unconditionally (converges regardless of order), but does not converge absolutely ($\sum_{n=1}^{\infty}\left|x_{n}\right|$ does not converge). Prove this.

Problem 4. Let $f \in L^{2}(\mathbb{T})$, and let $\left(\hat{f}_{n}\right)_{n \in \mathbb{Z}}$ be the Fourier coefficient sequence of f; here, $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$. If $\left(\hat{f}_{n}\right) \in \ell^{1}(\mathbb{Z})$, does it follow that f is continuous? (In other words, is there a continuous function that is equivalent to f in $L^{2}(\mathbb{T})$?) Prove your assertion.

Problem 5. Find all solutions T of the equation $x^{2006} T=0$ in the space of tempered distributions $S^{*}\left(\mathbb{R}^{\mathbf{1}}\right)$.

Problem 6. In which of the following cases is the operator $A=i \frac{d}{d x}$ acting on $L^{2}([0,1])$ symmetric, essentially self-adjoint, self-adjoint? Justify your answers.
(a) $D_{A}=C^{1}[0,1]$
(the space of continuously differentiable complex-valued functions on $[0,1]$)
(b) $D_{A}=\left\{f \in C^{1}[0,1]: f(0)=f(1)\right\}$
(c) $D_{A}=\left\{f \in C^{1}[0,1]: f(0)=f(1)=0\right\}$

