Fall 2001 Mathematics Graduate Program Masters Exam

Instructions: Explain your answers clearly. Unclear answers will not receive credit. State results and theorems that you are using.

1. Algebra

Problem 1. a. Prove Lagrange's theorem: If G is a finite group and H is a subgroup then $|H|$ divides $|G|$.
Prove or disprove: If n divides $|G|$ then there is a subgroup of G of order n.
Problem 2. a. Give an example of a group and a subgroup which is not normal.
b. Show that a group G of order 33 has a subgroup H of order 11 .
c. Show that this subgroup H is normal.

Problem 3. a. Give an example of a noncommutative ring.
b. Let $Z[x]$ denote the ring of polynomials with integer coefficients. Prove or disprove: $Z[x]$ is a Principle Ideal Domain.

Problem 4. a. Give three examples of Field extensions of the rationals Q.
b. Let $Q(a)$ denote the field extension of the rationals obtained by adjoining a. Show that the field $Q \sqrt{2}$) is not isomorphic to $Q \sqrt{3})$.

Problem 5. a. Give an example of a finite field of order 3 and a finite field of order 9.
b. Give an example of an infinite field of characteristic 3.
c. Let F be a finite field. Show that the order of F is equal to p^{n} for some prime number p and positive integer n.

2. Analysis

Problem 6. Let $f: R \rightarrow R$ be a differentiable mapping with

$$
\lim _{x \rightarrow \infty} f(x)=0
$$

a. Show that there exists a sequence $x_{n} \rightarrow \infty$ with

$$
\lim _{n \rightarrow \infty} f^{\prime}\left(x_{n}\right)=0
$$

b. Show that it is not necessarily true that $f^{\prime}(x)$ is bounded.

Problem 7. Let $f:[0,1] \rightarrow[0,1]$ be a continuous function. Show that $f(x)=x$ for some x.
Is the same true for a continuous function $f:(0,1) \rightarrow(0,1)$ on the open unit interval? Prove or give a counterexample.

Problem 8. Suppose $\lim _{n \rightarrow \infty} p_{n}=p_{0}$. Show that the set $E=\left\{p_{0}, p_{1}, p_{2}, \ldots\right\}$ is compact.

Problem 9. Prove that $C[0,1]$, the space of continuous functions on $[0,1]$, is not complete in the L^{1} metric: $\rho(f, g)=\int|f(x)-g(x)| d x$

Problem 10. Consider the map $T: R^{3} \rightarrow R^{3}$ given by

$$
\begin{gathered}
T_{1}\left(x_{1}, x_{2}, x_{3}\right)=y_{1}=x_{1} \cos x_{2} \\
T_{2}\left(x_{1}, x_{2}, x_{3}\right)=y_{2}=x_{1} \sin x_{2} \\
T_{3}\left(x_{1}, x_{2}, x_{3}\right)=y_{3}=x_{3}
\end{gathered}
$$

a. Compute the Jacobian matrix of T.
b. For which values of $x=\left(x_{1}, x_{2}, x_{3}\right)$ is the map locally invertible (i.e. there exists a neighborhood U of x and a neighborhood V of $y=T(x)$ such that $T: U \rightarrow V$ is $1-1$ and onto with inverse map $\left.T^{-1}: V \rightarrow U\right)$.
c. Compute the Jacobian matrix of T^{-1} at $f(x)$ where it exists.

3. Linear Algebra and other areas

Problem 11. a. Give an example of a real $n \times n$ matrix none of whose eigenvalues are real numbers.
b. Show that there is no such example which is 3×3.
c. Show that every eigenvalue of a symmetric real matrix is real.

Problem 12. a. Give three examples of linear mappings $L: R^{3} \rightarrow R^{3}$ satisfying $L^{2}=L$.
Let $P: R^{n} \rightarrow R^{n}$ be a linear mapping satisfying $P^{2}=P$.
a. Show that every vector in R^{n} can be written as a sum of two vectors, one in the kernel of P and one in the image of P.
b. If P is symmetric (self-adjoint) then show that the image of P and the kernel of P are orthogonal subspaces of R^{n}.

