Sample Graduate Preliminary Exam (post F2001 system)

(The Ph.D. Preliminary Examination is a written exam, covering graduate material in analysis and algebra, as in 201ABC and 250AB.)

Instructions: Explain your answers clearly. Unclear answers will not receive credit. State results and theorems that you are using.

1 ANALYSIS

Problem 1. a. Find a sequence of continuous functions on [0,1] converging pointwise but not uniformly.

b. Prove that C[0,1], the space of continuous functions on [0,1], is not complete in the L^1 metric $\rho(f,g) = \int |f(x) - g(x)| dx$.

Problem 2. Let T be the union of the graph of $\sin(x^{-1})$ on (0,1) and $\{(0,0)\}$ with the topology induced from R^2 . Prove that T is connected but not arcwise connected.

Problem 3. a. Prove that in any Hilbert space the parallelogram identity takes place: $||x-y||^2 + ||x+y||^2 = 2||x||^2 + 2||y||^2$.

b. Prove that if X is a Banach space over complex numbers such that the parallelogram identity takes place then one can make X into a Hilbert space by defining a scalar product (x,y) such that $(x,x) = ||x||^2$.

Problem 4. Suppose that $f\in L^1(\mu).$ Prove that for every $\epsilon>0$ there is a $\delta>0$ such that

$$\int_A |f| \, d\mu < \epsilon \qquad \text{whenever} \quad \mu(A) < \delta.$$

Problem 5. State Hölder's inequality. Suppose that $1 \leq p < q < r \leq \infty$. Prove that if $u \in L^p \cap L^r$, then $u \in L^q$ and $\|u\|_{L^q} \leq \|u\|_{L^p}^{\theta} \|u\|_{L^r}^{1-\theta}$, where $\theta = \frac{1/q - 1/r}{1/p - 1/r}$.

Problem 6. Let $C^k([0,1]), k \ge 1$, denote the set of all functions $[0,1] \to R^1$ with a continuous k^{th} order derivative. Prove that $C^k([0,1])$ is dense in C([0,1]) with the supremum norm for all $k \ge 1$.

2. Algebra

Problem 7. Suppose a group G acts on a set X. Show that if $x,y\in X$ belong to the same G-orbit, then $|G_x|=|G_y|$ where $G_x=\{g\in G:gx=x\}$ denotes the stabilizer of $x\in X$.

Problem 8. Prove or give a counter example: If $0 \to K \to G \to H \to 0$ is an exact sequence of groups with both K and H abelian, then G is abelian.

Problem 9. Prove or disprove: Z[x] is a Principle Ideal Domain.

Problem 10. Argue that the commutator subgroup of a group G is characteristic, and so is the center.

Problem 11. a. Give an example of a finite field of order 3 and a field of order 9. b. Let F be a finite field. Show that the order of F is equal to p^n for some prime number p and a positive integer n.

c. Show that the multiplicative group F^{\times} consisting of the non-zero elements of a finite field F is a cyclic group.