Winter 2009: PhD Analysis Preliminary Exam

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1: Let 1 .

- (a) Give an example of a function $f \in L^1(\mathbb{R})$ such that $f \notin L^p(\mathbb{R})$ and a function $g \in L^2(\mathbb{R})$ such that $g \notin L^p(\mathbb{R})$.
- (b) If $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, prove that $f \in L^p(\mathbb{R})$

Problem 2:

- (a) State the Weierstrass approximation theorem.
- (b) Suppose that $f:[0,1]\to\mathbb{R}$ is continuous and

$$\int_0^1 x^n f(x) \, dx = 0$$

for all non-negative integers n. Prove that f = 0.

Problem 3:

- (a) Define strong convergence, $x_n \to x$, and weak convergence, $x_n \to x$, of a sequence (x_n) in a Hilbert space \mathcal{H} .
- (b) If $x_n \to x$ weakly in \mathcal{H} and $||x_n|| \to ||x||$, prove that $x_n \to x$ strongly.
- (c) Give an example of a Hilbert space \mathcal{H} and sequence (x_n) in \mathcal{H} such that $x_n \to x$ weakly and

$$||x|| < \liminf_{n \to \infty} ||x_n||.$$

Problem 4: Suppose that $T: \mathcal{H} \to \mathcal{H}$ is a bounded linear operator on a complex Hilbert space \mathcal{H} such that

$$T^* = -T, \qquad T^2 = -I$$

and $T \neq \pm iI$. Define

$$P = \frac{1}{2} \left(I + i T \right), \qquad Q = \frac{1}{2} \left(I - i T \right).$$

(a) Prove that P, Q are orthogonal projections on \mathcal{H} .

(b) Determine the spectrum of T, and classify it.

Problem 5: Let $\mathcal{S}(\mathbb{R})$ be the Schwartz space of smooth, rapidly decreasing functions $f: \mathbb{R} \to \mathbb{C}$. Define an operator $H: \mathcal{S}(\mathbb{R}) \to L^2(\mathbb{R})$ by

$$\widehat{(Hf)}(\xi) = i \operatorname{sgn}(\xi) \widehat{f}(\xi) = \begin{cases} i \widehat{f}(\xi) & \text{if } \xi > 0, \\ -i \widehat{f}(\xi) & \text{if } \xi < 0, \end{cases}$$

where \hat{f} denotes the Fourier transform of f.

(a) Why is $Hf \in L^2(\mathbb{R})$ for any $f \in \mathcal{S}(\mathbb{R})$?

(b) If $f \in \mathcal{S}(\mathbb{R})$ and $Hf \in L^1(\mathbb{R})$, show that

$$\int_{\mathbb{R}} f(x) \, dx = 0.$$

(Hint: you may want to use the Riemann-Lebesgue Lemma) **Problem 6:** Let Δ denote the Laplace operator in \mathbb{R}^3 .

(a) Prove that

$$\lim_{\epsilon \to 0} \int_{B_{\epsilon}^{c}} \frac{1}{|\mathbf{x}|} \Delta f(\mathbf{x}) d\mathbf{x} = 4\pi f(0), \quad \forall f \in \mathcal{S}(\mathbb{R}^{3})$$

where B_{ϵ}^{c} is the complement of the ball of radius ϵ centered at the origin.

(b) Find the solution u of the Poisson problem

$$\Delta u = 4\pi f(\mathbf{x}), \quad \lim_{|\mathbf{x}| \to \infty} u(\mathbf{x}) = 0$$

for $f \in \mathcal{S}(\mathbb{R}^3)$.