Winter 2007: PhD Algebra Preliminary Exam

Instructions:

(1) Ezplain your answers clearly. Unclear answers will not receive credit. State results
and theorems you are using.

(2) Use separate sheets for the solution of each problem.

Problem 1. Let R be a commutative ring with identity, and let I be an ideal of R. Under
what conditions on [ is R/I a field? An integral domain? A commutative ring with identity?

Problem 2. Let V be a vector space, and let A and B be a pair of commuting operators

on V. Show that if W is an invariant subspace for A, then so are the spaces BW and
B'W:={veV : Bve W}

Problem 3. Suppose the group G has character table

1 1 1 1 1
3 -1 0 G+E+1 G+¢+1
3 -1 0 G+¢G+1 G+¢E+1
4 0 1 -1 -1
5 1 -1 0 0,

where (5 is a primitive 5-th root of unity (so {§ + G+ 2+ ¢+ 1=0).

(a) Prove that G is a simple group of order 60, and determine the sizes of its conjugacy
classes.

(b) How does the tensor product of the two 3-dimensional irreps decompose into irre-
ducibles?

Problem 4. Suppose that the group G is generated by elements z and y that satisfy
2°y3 = 28y5 = 1. Is G the trivial group?

Problem 5. Let R be a principal ideal domain and I C R an ideal. Prove that every ideal
in the quotient ring R/I is a principal ideal. Show that R/I is not necessarily a principal
ideal domain.

Problem 6.

(a) Give an example of a 4 x 4 complex matrix having only one eigenvalue, equal to 3,
with the space of eigenvectors having dimension 2.

(b) Let us consider the set K of all matrices obeying the conditions of (a). The group
GL4(C) acts on K by means of the transformations ¢4(X) = AXA™!. How many
orbits does this action have?
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Problem 1. Let C(o, 1]) be the Ba.naoh space of oontinnous real-valued ﬁmctlons on {0 1],
with the norm ||flle = sup, |f(z)|. Let S : C([0,1]) — C({0,1]) be a bounded: linear
operator. Suppose that ||S(p) " < 2 for all polynonnals p. Show that S is the zero operator

, ‘Problem 2. For p21, let lP(N) be the set of sequences (x,.) such that
k , Vn
(za)llp = (Z 'l%i?’) <
(a) Show that if 1 < p < ¢ < oo then IP(N) C I9(N).
(b) Show that if 1 < p < g < oo then IP(N) # lq(N)‘.f : |

Problem 3. Suppose that for some function f R” - R

hm hm f (z, y) = hm hm f(x, Y);

in. partlcula.r, both limits exist. Does it follow that

fe ,y)

(zm)-*(ﬂ,ﬂ)
exists?
Problem 4. Let X bea metric space. A function f:X — X is said to be a oonttaction' if
~ there exists a C < 1 such that d(f(z), f(y)) < Cd(z,y) for all z # y. The function f is said
to be a weak contraction if d(f(z), f(y)) < d(z,y) for all = # y, without the constant C.

The contraction mapping theorem says that if f is a contraction, then it has a fixed pomt
Show that the theorem also holds when f is a weak contractlon and X is compact

Problem 5. Construct the Green'’s functlon for the Dirichlet boundary-value problem
~u” +4u = f, u(O) u(2) ‘

, Prob}em 6. Let U be a umtary operator on a Hxlbert spa.ce Prove that the spectrum of U
lies on the umt cxrcle




