PhD Algebra Preliminary Exam for 2005-06

Instructions: All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.

Problem 1. Let field E be a finite extension of a field F, and let R be a subring of E that contains F. Prove that R is a field.

Problem 2. Let R be a commutative ring with a unit. Prove that the following two properties of R are equivalent:

- (a) If $a, b \in R$ and a + b is invertible, then either a or b is invertible.
- (b) R is local, that is, R has a unique maximal ideal.

Problem 3. Describe all possible Jordan forms of an $n \times n$ matrix X obeying $X^n = 0$.

Problem 4. Show that \mathbb{Q} (the additive group of rational numbers) is not finitely generated.

Problem 5. Determine all finitely generated abelian groups which have finite group of automorphisms.

Problem 6. Suppose that $H \subset G$ is a subgroup which is contained in every nontrivial subgroup of G. Show that H is contained in the center of G.

Analysis Preliminary Exam for 2005-06

Instructions: Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.

Problem 1. (a) Prove that there is no continuous map from the closed interval [0,1] onto the open interval (0,1).

(b) Construct a continuous map from the interval (0,1) onto the interval [0,1].

Problem 2. Define the Fibonacci sequence (x_n) of integers by $x_1 = 1$, $x_2 = 1$ and

$$x_{n+1} = x_n + x_{n-1}, \qquad n = 2, 3, \ldots$$

Let $r_n = x_{n+1}/x_n$ be the ratio of successive terms. Prove that r_n converges to ϕ as $n \to \infty$, where ϕ is the "golden ratio"

$$\phi = \frac{1 + \sqrt{5}}{2}.$$

Problem 3. Suppose that X is a complete metric space with metric d. Let $(F_n)_{n=1}^{\infty}$ be a decreasing (i.e. $F_{n+1} \subset F_n$ for all n) sequence of nonempty, closed subsets of X such that diam $F_n \to 0$ as $n \to \infty$. Here,

$$\operatorname{diam} F = \sup \{ d(x, y) \mid x, y \in F \}$$

denotes the diameter of F. Prove that the intersection $\cap_{n=1}^{\infty} F_n$ consists of a single point.

Problem 4. Let $f, g \in L^2(\mathbb{T})$, where \mathbb{T} is the circle, identified with the quotient of \mathbb{R} by the subgroup $2\pi\mathbb{Z}$. Let * denote the convolution on $L^2(\mathbb{T})$. Show that the identity

$$f * g = \frac{1}{2}(f * f + g * g)$$

holds if and only if f = g.

Problem 5. Let $\{u_k \mid k \in \mathbb{N}\}$ be an orthonormal set in a Hilbert space \mathcal{H} . Find (i.e. characterize) all sequences of scalars $\{a_k \mid k \in \mathbb{N}\}$ such that the set $\{a_k u_k \mid k \in \mathbb{N}\}$ is compact in \mathcal{H} .

Problem 6. Suppose that $T: \mathcal{H} \to \mathcal{H}$ is a compact linear operator on a complex Hilbert space \mathcal{H} . If $\lambda \in \mathbb{C}$ is nonzero, prove that the range of $\lambda I - T$ is closed.