Winter 2004 Mathematics Graduate Program Preliminary
Exam

Instructions: Explain your answers clearly. Unclear answers will not receive credit.
State results and theorems that you are using. (If you find a problem ambiguous
or unclear, explain why and state what assumptions you are making.)

1. ANALYSIS

Problem 1. A function f : R™ — R" is said to be a C°°-function if f has continuous
partial derivatives of all orders.

(a) Consider the function f : R — R defined by f(z) = exp[l/(z? — 1)] if
jz] <1 and f(z) = 0 if |z| > 1. Show that f is a C*°-function such that
supp(f) = [-1,1]. (Induction and L’Hospital’s rule are needed here.)

(b) For €0 and a € R, show that the function g(z) = f[(z — a)/e] is also a
C*-function with supp(g) = [a - €,a + €.

Problem 2. Let f : R — R be integrable with respect to the Lebesgue measure.
Show that the function g : [0, 00) — R defined by

o) =sup{ [ If(e+2) - flalids = bl <1}
for ¢t > 0 is continuous at ¢t = 0.

Problem 3. Consider the following theorem:

Let 1 <p < ooand f € LP and let {f,} be a sequence in L? such
that f, — f ae. If lim, oo || frullze = | fllzr, then lim, o || fr —
fller =0.

Show by an example that this theorem is false when p = oo.

Problem 4. On C°([0, 1]) consider the two norms

1floo = sup 1F@L  [flh = / 1 (@)ldz.
z€[0,1] 0

Show that the identity operator I : (C°[0,1], || |leo) — (C°[0,1], || -||1) is continuous
and onto, but not open. Why does this not contradict the open mapping theorem?

Problem 5. Let ‘H be a Hilbert space. For a subset A of H, let A+ denote the
orthogonal complement of A.
(a) Prove that for any subset A, (A1)L is the closed linear span of A.

(b) Prove that if A is a closed convex subset of H, then A contains a unique
element of minimal norm.

Problem 6. Let 'H be a Hilbert space and X = X* € B(H) be compact and such
that ) 5

§X3 - X%+ 3X =0
(B(H) is the bounded linear operators on H)

(a) Prove that X can be written as the sum of two orthogonal projections, i.e.,
there exist orthogonal projections P and Q, such that X = P + Q.

(b) Explain why any two orthogonal projections P and Q such that X = P+Q,
are necessarily of finite rank?
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2. ALGEBRA AND LINEAR ALGEBRA

Problem 7. For each of the following, give an example or prove that no such example
is possible.
(1) A nonabelian group of order five.
(2) A nonabelian group of order four.
(3) An infinite group with a subgroup of order three
(4) Two finite groups of the same order that are not isomorphic
(5) A group G with a normal subgroup H such that the factor group G/H is
not isomorphic to any subgroup of G.
(6) A group G with a subgroup of index two that is not a normal subgroup.

Problem 8. Prove of disprove: C[z,y] is a PID.

Problem 9. Let F be a field, n,m positive integers and A an n x n matrix with
coefficents in F'. Suppose that A™ = 0. Show that A" = 0.

Problem 10. Consider the natural homomorphism from the ring of polynomials with
coefficients in Z/5Z into the ring of Z/5Z-valued functions on Z/5Z (the evaluation
homomorpism).

a) Prove that the kernel of this homomorphism is infinite.

b) Find at least one element belonging to the kernel.

¢) Describe all the elements of the kernel.

Problem 11. Prove that Q is not a nontrivial direct sum A @& B of two subgroups.

Problem 12. A complex matrix A has a characteristic polynomial (z —3)%x (z+4)3.
a)Calculate the trace of A and A?
b)Describe all possible Jordan normal forms of A if it is known that A has two

linearly independent eigenvectors with eigenvalue 3 and one eigenvector with eigen-
value -4.



