Preliminary Exam in Analysis Spring, 2016

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1. Let f(x) be a continuous function on \mathbb{R} such that for any polynomial P(x) we have

$$\int_{\mathbb{R}} f(x)P(x)dx = 0.$$

Show that f(x) is identically zero.

Problem 2. Let M be a multiplication on $L^2(\mathbb{R})$ defined by

$$Mf(x) = m(x)f(x),$$

where m(x) is continuous and bounded. Prove that M is a bounded operator on $L^2(\mathbb{R})$ and that its spectrum is given by

$$\sigma(M) = \{ m(x) : x \in \mathbb{R} \}^{cl},$$

where A^{cl} denotes the closure of A. Can M have eigenvalues?

Problem 3. Show that the closed unit ball of a Hilbert space H is compact if and only if dim H is finite.

Problem 4. Suppose f is a function in the Schwartz space $\mathcal{S}(\mathbb{R})$ which satisfies the normalizing condition $\int_{-\infty}^{+\infty} |f(x)|^2 dx = 1$. Let \hat{f} denote the Fourier transform of f. Show that

$$\left(\int_{-\infty}^{+\infty} x^2 |f(x)|^2 dx\right) \left(\int_{-\infty}^{+\infty} \omega^2 |\hat{f}(\omega)|^2 d\omega\right) \ge \frac{1}{16\pi^2}.$$

Problem 5. Let $f(x) \in W^{1,1}([0,1])$. Let $\bar{f} = \int_0^1 f(x) dx$. Show that

$$||f - \bar{f}||_{L^1([0,1])} \le 2||f(x)x(1-x)||_{L^1([0,1])}.$$

Problem 6. Let H be a Hilbert space and let U be a unitary operator, that is surjective and isometric, on H. Let $I = \{v \in H : Uv = v\}$ be the subspace of invariant vectors with respect to U.

- a) Show that $\{Uw-w:w\in H\}$ is dense in I^{\perp} and that I is closed.
- b) Let P be the orthogonal projection onto I. Show that

$$\frac{1}{N} \sum_{n=1}^{N} U^n v \to P v.$$