ALGEBRA PRELIM PROBLEMS Spring, 2015

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
 - 2. Use separate sheets for the solution of each problem.

Problem 1.

Show that if M is a nondiagonalizable complex matrix and M^n is diagonalizable then det(M) = 0.

Problem 2.

Find the degree of the field extension $\mathbb{Q}(\sqrt{2}, \sqrt[3]{2})$ over \mathbb{Q} .

Problem 3.

Show that if G is an infinite simple group then every proper subgroup has infinitely many conjugates. Use this to conclude that G has an infinite automorphism group.

Problem 4.

Find a quotient ring of Z[x] which is a principal ideal domain but not a field.

Problem 5.

Let $R = \mathbb{Q}[X]/(X^3 - 2)$.

- (a) Is R a field? Explain.
- (b) Run the extended Euclidean algorithm on $X^3 2$ and $X^2 X + 1$ to find polynomials A(x) and B(x) with

$$A(X)(X^3 - 2) + B(X)(X^2 - X + 1) = gcd(X^3 - 2, X^2 - X + 1).$$

(c) Does $[X^2 - X + 1]$ have a multiplicative inverse in \mathbb{R} ? If yes, find it.

Problem 6.

Let G be a finite group and $\rho: G \to \mathrm{GL}_n(\mathbb{C})$ a representation.

(a) Show: $\delta \colon G \to \mathbb{C}$, $g \mapsto \det(\rho(g))$ is a linear character of G (i.e. a group homomorphism to the multiplicative group).

- (b) Show: If $\delta(g) = -1$ for some $g \in G$, then G has a normal subgroup of index 2.
- (c) Show: If G has order 2k, k odd, then G has a normal subgroup of index 2.
- (d) Let $\chi(g) = tr(\rho(r))$ and $g \in G$ an involution. Show: (i) $\chi(g)$ is an integer; (ii) $\chi(g) \equiv \chi(1) \mod 2$; (iii) if G has no normal subgroup of index 2, then $\chi(g) \equiv \chi(1) \mod 4$.