Spring 2012: PhD Analysis Preliminary Exam

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1:

For $u \in L^1(0,\infty)$, consider the integral

$$v(x) = \int_0^\infty \frac{u(y)}{x+y} dy$$

defined for x > 0. Show that v(x) is infinitely differentiable away from the origin. Prove that $v' \in L^1(\epsilon, \infty)$ for any $\epsilon > 0$. Explain what happens in the limit as $\epsilon \to 0$.

Problem 2. Let $X \subset L^2(0,2\pi)$ be the set of all functions u(x) such that

$$u(x) = \lim_{K \to \infty} \sum_{k=-K}^{K} a_k e^{ikx} \text{ in } L^2\text{-norm, with } |a_k| \le (1+|k|)^{-1}.$$

Prove that X is compact in $L^2(0, 2\pi)$.

Problem 3. For $\epsilon > 0$, we set

$$\eta_{\epsilon}(x) = \frac{1}{\pi} \sin\left(\frac{\epsilon \pi x}{x^2 + \epsilon^2}\right) \frac{\epsilon}{x^2 + \epsilon^2},$$

and define the convolution for $u \in L^2(\mathbb{R})$:

$$\eta_{\epsilon} * u(x) = \int_{\mathbb{R}} \eta_{\epsilon}(x - y)u(y)dy.$$

For $\epsilon > 0$, prove that $\sqrt{\epsilon}(\eta_{\epsilon} * u)(x)$ is bounded as a function of x and ϵ , and that $\eta_{\epsilon} * u$ converges strongly in $L^{2}(\mathbb{R})$ as $\epsilon \to 0$. What is the limit?

Problem 4. Let $u_n:[0,1]\to [0,\infty)$ denote a sequence of measurable functions satisfying

$$\sup_{n} \int_{0}^{1} u_n(x) \log(2 + u_n(x)) dx < \infty.$$

If $u_n(x) \to u(x)$ almost everywhere, show that $u \in L^1(0,1)$ and that $u_n \to u$ in L^1 strongly. (**Hint.** One possible strategy is Egoroff's Theorem.)

Problem 5. Let $u:[0,1]\to\mathbb{R}$ be absolutely continuous, satisfy u(0)=0, and

$$\int_0^1 |u'(x)|^2 dx < \infty.$$

Prove that

$$\lim_{x \to 0^+} \frac{u(x)}{x^{\frac{1}{2}}}$$

exists and determine the value of this limit.

Problem 6. Consider on \mathbb{R}^2 the distribution defined by the locally integrable function

$$E(x,t) = \begin{cases} \frac{1}{2} & \text{if } t - |x| > 0 \\ 0 & \text{if } t - |x| < 0 \end{cases}.$$

Compute the distributional derivative

$$\frac{\partial^2 E}{\partial t^2} - \frac{\partial^2 E}{\partial x^2} \,.$$