Fall 2013: PhD Analysis Preliminary Exam

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1: Find $\inf \int_0^1 |f(x) - x|^2 dx$ where the infimum is taken over all $f \in L^2([0,1])$ such that $\int_0^1 f(x)(x^2 - 1)dx = 1$.

Problem 2: Let $L^2([0, 1])$ denote the Hilbert space of complex valued square integrable functions on [0, 1] with the usual inner product

$$(f,g) = \int_0^1 f(x)\overline{g(x)}dx.$$

Define $T: L^2([0,1]) \to L^2([0,1])$ by

$$(Tf)(x) = \int_0^x f(t)dt$$
, for $x \in [0, 1]$.

- (a) Show that T is bounded.
- (b) Show that T has no eigenvalues.
- (c) Find $\lim_{n\to\infty} ||T^n||$.

Problem 3: For $\delta > 0$ small, let $u \in L^{\frac{3}{2}+\delta}(\mathbb{R}^3) \cap L^{\frac{3}{2}-\delta}(\mathbb{R}^3)$. Prove that $v = u * \frac{1}{|x|} \in L^{\infty}(\mathbb{R}^3)$ and provide a bound for $||v||_{L^{\infty}(\mathbb{R}^3)}$ which depends only on $||u||_{L^{\frac{3}{2}+\delta}(\mathbb{R}^3)}$.

Problem 4: Let H be a separable infinite dimensional Hilbert space and suppose that e_1, e_2, \ldots is an orthonormal system in H. Let f_1, f_2, \ldots be another orthonormal system which is complete (i.e. the closure of the span of $\{f_i\}_i$ is all of H.) Prove that if $\sum_{n=1}^{\infty} ||e_n - f_n||^2 < 1$ then $\{e_i\}_i$ is also a complete orthonormal system.

Problem 5: Suppose A is a compact operator on an infinite dimensional Hilbert space \mathcal{H} . Show that A does not have a bounded inverse operator.

Problem 6: Let $\mathcal{S}(\mathbb{R}^n)$ be the Schwarz space. Show that $\mathcal{S}(\mathbb{R}^n) \subseteq L^p(\mathbb{R}^n)$ for any $1 \leq p \leq \infty$.