Fall 2011: PhD Algebra Preliminary Exam

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1:

Show that there is no commutative ring with the identity whose additive group is isomorphic to \mathbb{Q}/\mathbb{Z} .

Problem 2:

Let $p \neq 2$ be prime and F_p be the field of p elements.

- (a) How many elements of F_p have square roots in F_p ?
- (b) How many have cube roots in F_p ?

Problem 3:

Prove that every finite group is isomorphic to a certain group of permutations (a subgroup of S_n for some n).

Problem 4:

Let G be the subgroup of S_{12} generated by $a = (1\ 2\ 3\ 4\ 5\ 6)(7\ 8\ 9\ 10\ 11\ 12)$ and $b = (1\ 7\ 4\ 10)(2\ 12\ 5\ 9)(3\ 11\ 6\ 8)$. Find the order of G, the number of conjugacy classes of G, and the character table of G.

Problem 5:

Prove or disprove: If the group G of order 55 acts on a set X of 39 elements then there is a fixed point.

Problem 6:

Prove or disprove: $(\mathbb{Z}/35\mathbb{Z})^* \cong (\mathbb{Z}/39\mathbb{Z})^* \cong (\mathbb{Z}/45\mathbb{Z})^* \cong (\mathbb{Z}/70\mathbb{Z})^* \cong (\mathbb{Z}/78\mathbb{Z})^* \cong (\mathbb{Z}/90\mathbb{Z})^*$. Here $(\mathbb{Z}/n\mathbb{Z})^*$ is the group of units in $\mathbb{Z}/n\mathbb{Z}$.