ANALYSIS

Problem 1. Let f(x,y) denote a C^1 function on \mathbb{R}^2 . Suppose that

$$f(0,0) = 0.$$

Prove that there exist two functions, A(x,y) and B(x,y), both continuous on \mathbb{R}^2 such that

$$f(x,y) = xA(x,y) + yB(x,y) \quad orall (x,y) \in \mathbb{R}^2$$

(**Hint**: Consider the function g(t) = f(tx, ty) and express f(x, y) in terms of g via the fundamental theorem of calculus.)

Problem 2. The Fourier transform \mathcal{F} of a distribution is defined via the duality relation

$$\langle \mathcal{F}f, \phi \rangle = \langle f, \mathcal{F}^*\phi \rangle$$

for all $\phi \in C_0^{\infty}(\mathbb{R})$, the smooth compactly-supported test functions on \mathbb{R} , where

$$\mathcal{F}^*\phi(x) = rac{1}{\sqrt{2\pi}} \int_{\mathbf{R}} e^{i\xi x} \phi(\xi) d\xi \, .$$

Explicitly compute $\mathcal{F}f$ for the function

$$f(x) = \left\{ \begin{array}{ll} x, & x > 0 \\ 0, & x \le 0 \end{array} \right.$$

Problem 3. Let $\{P_n(x)\}_{n=1}^{\infty}$ denote a sequence of polynomials on \mathbb{R} such that

$$P_n \to 0$$
 uniformly on \mathbb{R} as $n \to \infty$.

Prove that, for n sufficiently large, all P_n are constant polynomials.

Problem 4. For $g \in L^1(\mathbb{R}^3)$, the convolution operator G is defined on $L^2(\mathbb{R}^3)$ by

$$Gf(x) = rac{1}{(2\pi)^{rac{3}{2}}} \int_{\mathbb{R}^3} g(x-y) f(y) dy \,, \quad f \in L^2(\mathbb{R}^3) \,.$$

Prove that the operator G with

$$g(x) = \frac{1}{4\pi} \frac{e^{-|x|}}{|x|}, \quad x \in \mathbb{R}^3,$$

is a bounded operator on $L^2(\mathbb{R}^3)$, and the operator norm $||G||_{op} \leq 1$.

Problem 5. Consider the map which associates to each sequence $\{x_n : n \in \mathbb{N}, x_n \in \mathbb{R}\}$ the sequence, $\{(F(\{x_n\}))_m : m \in \mathbb{N}, (F(\{x_n\}))_m \in \mathbb{R}\}$, defined as follows:

$$\left\{F(\left\{x_n\right\})\right\}_m := \frac{x_m}{m} \quad \text{for} \quad m = 1, 2, \dots$$

- (1) Determine (with proof) the values of $p \in [1, \infty]$ for which the map $F: l^p \to l^1$ is well-defined and continuous.
- (2) Next, determine the values of $q \in [1, \infty]$ for which the map $F: l^q \to l^2$ is well-defined and continuous.

Note for $1 \le p < \infty$, l^p denotes the space of sequences $\{x_n\}_{n=1}^{\infty}$ such that $\sum_{n=1}^{\infty} |x_n|^p < \infty$, while l^{∞} denotes the space of sequences $\{x_n\}_{n=1}^{\infty}$ such that $\sup_{n \in \mathbb{N}} |x_n| < \infty$.

Problem 6. For each of the following, determine if the statement is true (always) or false (not always true). If true, give a brief proof, e.g. by citing a relevant theorem; if false, give a counterexample.

Let \mathbb{H} denote a separable Hilbert space and (x_n) a sequence of \mathbb{H} .

- (a) If (x_n) is weakly convergent then it is strongly convergent.
- (b) If (x_n) is strongly convergent then it is bounded.
- (c) If (x_n) is weakly convergent then it is bounded.
- (d) If (x_n) is bounded, there exists a strongly convergent subsequence of (x_n) .
- (e) If (x_n) is bounded, there exists a weakly convergent subsequence of (x_n) .
- (f) If (x_n) is weakly convergent and T is a bounded linear operator from \mathbb{H} to \mathbb{R}^d , for some d, then $T(x_n)$ converges in \mathbb{R}^d .