Fall 2008: September 23

Preliminary Examination in Algebra for the PhilosophiæDoctor degree from the University of California at Davis

Instructions:

- 1. Each problem is worth 10 points.
- 2. Explain your answers clearly to receive credit.
- 3. Use a seperate sheet for each problem.

Problems:

- 1. (a) Show that if $f(x) \in \mathbf{Q}[x]$ is an irreducible (nonconstant) polynomial then $\mathbf{Q}[x,y]/(f(x))$ is a principal ideal domain.
 - (b) Find a generator for the ideal (x, y).
 - (c) Show that $x^2 y^3 \in \mathbf{Q}[x, y]$ is irreducible and $(x, y) \subseteq \mathbf{Q}[x, y]/(f(x))$ is not principal.
- 2. Assume that p is prime, D and P are subgroups of a finite group F with D normal and having index ([F:D]) relatively prime to p and P a p-group. Show that $P \subseteq D$.
- 3. Let M be a 3 by 3 matrix of complex numbers with characteristic polynomial $x^3 + 5x^2 + 3x + (9 i)$.
 - (a) Find the determinant of M^2 .
 - (b) Find the trace of M^2 .
 - (c) Find the characteristic polynomial of M^2 .
- 4. Assume that R is an integral domain (a commutative ring with no zero divisors) and J is a nonzero ideal of R viewed as an R-module. Is J always, sometimes, or never a direct sum of two nontrivial R-submodules?
- 5. If H is a subgroup of a group G, then a subgroup $K \subseteq G$ is called a *complement* of H if K has exactly one element in every left coset of H.
 - (a) Show that if H is normal, then all complements of H are isomorphic to each other.
 - (b) Show that the inclusion of symmetric groups $S_3 \subset S_4$ has two complements which are not isomorphic.
- 6. Show that every sequence of finite abelian groups \ldots, A_2, A_1, A_0 is the homology of some chain complex

$$\cdots \longrightarrow C_2 \longrightarrow C_1 \longrightarrow C_0 \longrightarrow 0$$

of free abelian groups (that is if $d_i: C_i \to C_{i-1}$ are the maps above then $d_{i+1}d_i = 0$ and A_i is isomorphic to $\ker(d_i)/\operatorname{im}(d_{i+1})$).

Fall 2008: PhD Analysis Preliminary Exam

Instructions:

- 1. All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- 2. Use separate sheets for the solution of each problem.

Problem 1: Prove that the dual space of c_o is ℓ^1 , where

$$c_o = \{x = (x_n) \text{ such that } \lim x_n = 0\}.$$

Problem 2: Let $\{f_n\}$ be a sequence of differentiable functions on a finite interval [a, b] such that the functions themselves and their derivatives are uniformly bounded on [a, b]. Prove that $\{f_n\}$ has a uniformly converging subsequence.

Problem 3: Let $f \in L^1(R)$ and V_f be the closed subspace generated by the translates of $f: \{f(\cdot -y) | \forall y \in R\}$. Suppose $\hat{f}(\xi_0) = 0$ for some ξ_0 . Show that $\hat{h}(\xi_0) = 0$ for all $h \in V_f$. Show that if $V_f = L^1(R)$, then \hat{f} never vanishes.

Problem 4: (a) State the Stone-Weierstrass theorem for a compact Hausdorff space X.

(b) Prove that the algebra generated by functions of the form f(x,y) = g(x)h(y) where $g, h \in C(X)$ is dense in $C(X \times X)$.

Problem 5: For r > 0, define the dilation $d_r f : \mathbb{R} \to \mathbb{R}$ of a function $f : \mathbb{R} \to \mathbb{R}$ by $d_r f(x) = f(rx)$, and the dilation $d_r T$ of a distribution $T \in \mathcal{D}'(\mathbb{R})$ by

$$\langle d_r T, \phi \rangle = \frac{1}{r} \langle T, d_{1/r} \phi \rangle$$
 for all test functions $\phi \in \mathcal{D}(\mathbb{R})$.

(a) Show that the dilation of a regular distribution T_f , given by

$$\langle T_f, \phi \rangle = \int f(x)\phi(x) dx,$$

agrees with the dilation of the corresponding function f.

(b) A distribution is homogeneous of degree n if $d_rT = r^nT$. Show that the δ -distribution is homogeneous of degree -1.

(c) If T is a homogeneous distribution of degree n, prove that the derivative T' is a homogeneous distribution of degree n-1.

Problem 6: Let $\ell^2(\mathbb{N})$ be the space of square-summable, real sequences $x = (x_1, x_2, x_3, \dots)$ with norm

$$||x|| = \left(\sum_{n=1}^{\infty} x_n^2\right)^{1/2}.$$

Define $F: \ell^2(\mathbb{N}) \to \mathbb{R}$ by

$$F(x) = \sum_{n=1}^{\infty} \left\{ \frac{1}{n} x_n^2 - x_n^4 \right\}$$

- (a) Prove that F is differentiable at x=0, with derivative $F'(0):\ell^2(\mathbb{N})\to\mathbb{R}$ equal to zero.
- (b) Show that the second derivative of F at x = 0,

$$F''(0): \ell^2(\mathbb{N}) \times \ell^2(\mathbb{N}) \to \mathbb{R},$$

is positive-definite, meaning that

$$F''(0)(h,h) > 0$$

for every nonzero $h \in \ell^2(\mathbb{N})$.

(c) Show that F does not attain a local minimum at x=0.