Fall 2006: PhD Algebra Preliminary Exam

Instructions:

- (1) Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- (2) Use separate sheets for the solution of each problem.

Problem 1. Let G be a matrix group, and let $g \in G$ be an element with $\det(g) \neq 1$. Show that $g \notin G'$, the commutator group of G.

Problem 2. Let $A: V \to V$ be an operator on a finite-dimensional vector space V. Suppose A has characteristic polynomial $x^2(x-1)^4$ and minimal polynomial $x(x-1)^2$. What is the dimension of V? What are the possible Jordan forms of A?

Problem 3. Show that \mathbb{Z} is a principal ideal domain.

Problem 4. Let G denote a finite abelian group. Let us consider the set G^* of all homomorphisms of the group G into the multiplicative group \mathbb{C}^{\times} of nonzero complex numbers.

- (a) Check that G^* can be considered as a group with respect to the operation of multiplication of homomorphisms.
- (b) Prove that the group G^* is isomorphic to the group G.

Problem 5. Let us assign to every nonsingular complex 2×2 matrix A a transformation ϕ_A of the vector space Mat₂ of complex 2×2 matrices defined by the formula

$$\phi_A(X) = AXA^{-1}.$$

- (a) Check that this formula specifies an action of the group $GL_2(\mathbb{C})$ of nonsingular complex matrices on Mat_2 ; moreover, it specifies a linear representation of this group.
- (b) Prove that this representation is reducible.
- (c) For every orbit of the above action, write down one element in that orbit, and find the corresponding stabilizer.

Problem 6. Consider the dihedral group D_9 (the group of isometries of regular 9-gons).

- (a) Prove that D_9 cannot be represented as a direct product of two non-trivial groups.
- (b) Determine if D_9 is solvable.

Fall 2006: PhD Analysis Preliminary Exam

Instructions:

- (1) Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- (2) Use separate sheets for the solution of each problem.

Problem 1. Let C([0,1]) be the Banach space of continuous real-valued functions on [0,1], with the norm $||f||_{\infty} = \sup_{x} |f(x)|$. Let $k : [0,1] \times [0,1] \to \mathbb{R}$ be a given continuous function. Let $T_k : C([0,1]) \to C([0,1])$ be the linear operator given by $T_k(f)(x) = \int_0^1 k(x,y)f(y) \, dy$.

- (a) Show that T_k is a bounded operator.
- (b) Find an expression for $||T_k||$ in terms of k.
- (c) What is $||T_k||$ if $k(x,y) = x^2y^3$?

Problem 2. Let X be a metric space.

- (a) Define X is sequentially compact.
- (b) Define X is a complete metric space.
- (c) Prove that a sequentially compact metric space X is complete.
- (d) Let $B = \{x : ||x||_2 \le 1\}$ be the unit ball in $\ell^2(\mathbb{N})$. Show that B is not sequentially compact.

Problem 3. Give an example of a Banach space X and a sequence (x_n) of elements in X such that $\sum_{n=1}^{\infty} x_n$ converges unconditionally (converges regardless of order), but does not converge absolutely $(\sum_{n=1}^{\infty} |x_n|$ does not converge). Prove this.

Problem 4. Let $f \in L^2(\mathbb{T})$, and let $(\hat{f}_n)_{n \in \mathbb{Z}}$ be the Fourier coefficient sequence of f; here, $\mathbb{T} := \{ z \in \mathbb{C} : |z| = 1 \}$. If $(\hat{f}_n) \in \ell^1(\mathbb{Z})$, does it follow that f is continuous? (In other words, is there a continuous function that is equivalent to f in $L^2(\mathbb{T})$?) Prove your assertion.

Problem 5. Find all solutions T of the equation $x^{2006}T = 0$ in the space of tempered distributions $S^*(\mathbb{R}^1)$.

Problem 6. In which of the following cases is the operator $A = i\frac{d}{dx}$ acting on $L^2([0,1])$ symmetric, essentially self-adjoint, self-adjoint? Justify your answers.

- (a) $D_A = C^1[0, 1]$ (the space of continuously differentiable complex-valued functions on [0, 1])
- (b) $D_A = \{ f \in C^1[0,1] : f(0) = f(1) \}$
- (c) $D_A = \{ f \in C^1[0,1] : f(0) = f(1) = 0 \}$