Fall 2002 Mathematics Graduate Program Preliminary Exam

Instructions: Explain your answers clearly. Unclear answers will not receive credit. State results and theorems that you are using.

1. Algebra

Problem 1. **a.** Let F be a field. Show that every ideal in the ring of polynomials F[x] is principal.

Is F[x] a (UFD) Unique Factorization Domain?

- **b.** Are all UFDs principal ideal domains? Why or why not?
- **c.** Let $g(x) = x^3 + x + 1 \in Z_2[x]$ and let $I = \langle g(x) \rangle$. Prove that $Z_2[x]/I$ is a field and determine the multiplicative inverse of $x^2 + 1 + I$.

Problem 2. Let G be a finite group and S a subgroup of G. Recall that the normalizer of S in G is $N_G(S) = \{g | g \in G \text{ and } gSg^{-1} = S\}$. a. Prove that $N_G(S)$ is a subgroup of G. Let K be a subgroup of G which contains S. Prove that S is normal in K if and only if $K \subset N_G(S)$.

- **b.** Prove that the number of distinct conjugate subgroups of S is equal to the index $[G:N_G(S)]$.
- **c.** If $G = S_4$ and S = <(1, 2, 3, 4) >what is $N_G(S)$?

Problem 3. 3) Prove or disprove:

- **a.** Let F be a field. Every short exact sequence of F-modules splits.
- **b.** Let R be the ring of Gaussian integers, i.e. R = Z[i]. If I is the ideal generated by 3 + i then R/I is a field.
- c. Every integral domain is a principal ideal domain.
- **d.** No group of order 48 is simple.
- e. Every group of order 209 is cyclic.

2. Linear Algebra and other areas

Problem 4. a. Give an example of a real $n \times n$ matrix none of whose eigenvalues are real numbers.

- **b.** Show that there is no such example which is 3×3 .
- **c.** Show that every eigenvalue of a symmetric real matrix is real.

Problem 5. Suppose that A is a square $n \times n$ matrix with integer entries.

- **a.** If an integer k is an eigenvalue of A show that k divides the determinant of A.
- **b.** if the sum of the entries in each row is k, show that k divides the determinant of A.

Fall 2002 Mathematics Graduate Program Preliminary Exam

3. Analysis

Problem 6. Let $f_n : \mathbf{R} \to \mathbf{R}$ be a differentiable mapping for each n, with $|f'_n(x)| \le 1$ for all n, x. Show that if g(x) is a function such that

$$\lim_{x \to \infty} f_n(x) = g(x)$$

then g(x) is a continuous function.

Problem 7. **a.** State the Stone-Weierstrass theorem in the context of $C(X, \mathbb{R})$, where X is a compact Hausdorff space.

b. State the Radon-Nikodym theorem, as it applies to a pair of σ -finite measures μ and ν defined on a measurable space (X, \mathcal{M}) .

c State the definitions of the terms normal topological space and absolutely continuous function.

Problem 8. Let $f: X \to Y$ be a mapping between topological spaces X and Y. Let \mathcal{E} be a base for the topology of Y. Show that if $f^{-1}(E)$ is open in X for each $E \in \mathcal{E}$, then f is continuous.

Problem 9. Let $F: \mathbb{R} \to \mathbb{R}$ be an increasing and right-continuous function, and let μ be the associated measure, so that $\mu(a,b] = F(b) - F(a)$ for all a < b. Prove that $\mu(\{a\}) = F(a) - F(a^-)$ and $\mu([a,b]) = F(b) - F(a^-)$ for all a < b.// (Notation: $F(a^-) := \lim_{x \to a, x < a} F(x)$.)

Problem 10. Let f be a $\mathcal{B}_{[0,1]^2}$ -measurable real-valued function such that the partial derivative $\frac{\partial f}{\partial t}(x,t)$ exists for each $(x,t)\in [0,1]^2$ and $M:=\sup\{|(\partial f/\partial t)(x,t)|: (x,t)\in [0,1]^2\}<\infty$. Prove that $\frac{\partial f}{\partial t}$ is measurable, and that for all $t\in [0,1]$,

$$rac{d}{dt}\int_0^1 f(x,t)dx = \int_0^1 rac{\partial f}{\partial t}(x,t)dx.$$

Problem 11. Let m denote Lebesgue measure on \mathbb{R} , fix $f \in L^1(\mathbb{R}, \mathcal{B}_{\mathbb{R}}, m)$, and define a function $G : \mathbb{R} \to \mathbb{R}$ by the formula

$$G(t) = \int f(x+t)dm(x), \ t \in \mathbb{R}.$$

Prove that G is a continuous function.