Preliminary Exam in Algebra Spring, 2017

Instructions:

- (1) All problems are worth 10 points. Explain your answers clearly. Unclear answers will not receive credit. State results and theorems you are using.
- (2) Use separate sheets for the solution of each problem.

Problem 1. Let G be a finite group and $H \subseteq G$ a subgroup such that [G : H] = p where p is the smallest prime dividing |G|. Show that H is a normal subgroup of G.

Problem 2. Let k be a field, and let $f \in k[x]$ be of degree $= n \ge 1$. Let K be the splitting field of f (over k, embedded in some fixed algebraic closure of k). Prove that $[K:k] \le n!$.

Problem 3. Show that the free group of rank 2 is not solvable.

Problem 4. Give an example of a projective *R*-module that is not free for $R = \mathbb{R}[x]/(x^4 + x^2)$.

Problem 5. Let G be the nonabelian group of order 57.

(a) How many 1-dimensional characters does G have ?

(b) What are the dimensions (aka degrees) of the other irreducible characters of G ?

1

Problem 6.

Let \mathbb{F} be a finite field.

(a) Show that $|\mathbb{F}| = p^r$ for some prime p.

(b) Show that the multiplicative group $\mathbb{F}\setminus\{0\}$ is a cyclic group.