1. Let A be a bounded linear operator on a Hilbert space \mathcal{H}, and let $p(z)$ be a polynomial of complex coefficients on \mathbb{C}. Show that the spectrum

$$
\sigma(p(A))=p(\sigma(A))
$$

where $p(\sigma(A)):=\{p(z) \mid z \in \sigma(A)\}$.
2. Let X be a normed linear space and Y be a Banach space. Let $K(X, Y)$ be the set of all compact operators from X to Y. Show that $K(X, Y)$ is a closed subspace of the space $\mathcal{B}(X, Y)$ (the space of all bounded linear operators from X to Y with the uniform topology). You may assume that $K(X, Y)$ is a subspace of $\mathcal{B}(X, Y)$.
3. Let (X, Σ, μ) be a σ-finite measure space. Suppose f is a non-negative μ-integrable function. For each $k \in \mathbb{N}$, let

$$
E_{k}:=\{x \in X \mid f(x) \geq k\} .
$$

Show that

$$
\sum_{k=1}^{\infty} \mu\left(E_{k}\right)<\infty .
$$

4. Let $X=C([0,1])$ with the norm $\|\cdot\|_{\infty}$. For any $f \in C([0,1])$, let

$$
\Phi(f)=\int_{0}^{1 / 2} f(x) d x-\int_{1 / 2}^{1} f(x) d x
$$

Show that Φ is a bounded linear functional on X with $\|\Phi\|=1$. Moreover, show that Φ does not attain its norm in X. (i.e., there is no $f \in X$ with $\|f\|_{\infty}=1$ such that $|\Phi(f)|=\|\Phi\|)$.
5. Let $f \in \mathcal{S}(\mathbb{R})$ be a Schwartz function on \mathbb{R}, and define

$$
\|f\|_{B V}=\int_{\mathbb{R}}\left|f^{\prime}(x)\right| d x
$$

Let $\hat{f}(k)=\int_{\mathbb{R}} e^{-2 i \pi k x} f(x) d x$, for k a non-zero real number.
Show that

$$
|\hat{f}(k)| \leq \frac{C}{|k|}\|f\|_{B V},
$$

where C is some universal constant.
6. Suppose $K \in L^{1}(\mathbb{R}), \int_{\mathbb{R}} K(x) d x=1$, and $\lim _{r \rightarrow 0} \int_{|x|>\delta}\left|K_{r}(x)\right| d x=0$ for all $\delta>0$, where $K_{r}(x)=\frac{1}{r} K(x / r)$. Show that for $1 \leq p<\infty$ and any $f \in L^{p}(\mathbb{R})$, we have

$$
\lim _{r \rightarrow 0}\left\|\int_{\mathbb{R}} K_{r}(\cdot-y) f(y) d y-f(\cdot)\right\|_{L^{p}(\mathbb{R})}=0 .
$$

