Q1 \qquad

Q2 \qquad

Q3 \qquad

Q4 \qquad

Q5 \qquad

Q6 \qquad
Σ \qquad

FULL Name

Last Initial

Student ID

\qquad -

Q1 scratch/extra space (do not erase your scratch computations, they might earn partial credit):

Question 1

Define what the symbols

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

mean (include a picture in your answer). Use your definition to prove that

$$
\lim _{x \rightarrow a^{+}} x=a .
$$

Q2 scratch/extra space (do not erase your scratch computations, they might earn partial credit):

Question 2 Calculate city! Compute the following quantities (show your work and avoid l'Hôpital's rule):
(i) $\lim _{\theta \rightarrow 0} \frac{\cos (\theta)-1}{\theta}$
(ii) $d(\arcsin (\cos (x))$
(iii) $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-1}{x}$
(iv) $d\left(x^{x^{x}}\right)$

Q3 scratch/extra space (do not erase your scratch computations, they might earn partial credit):

Question 3

The product rule says $d(f g)=f d g+g d f$, and the relative change of a quantity Q is defined to be $d Q / Q$. Employ this information to show that the relative change in the ratio P / Q of two quantities P and Q is the difference $d P / P-d Q / Q$ of their relative changes. Now use this fact to estimate the ratio

$$
\frac{10,000,000,013}{10,000,000,012}
$$

Explain why most calculators give the answer 1 for the above quantity.

Q4 scratch/extra space (do not erase your scratch computations, they might earn partial credit):

Question 4

Give a pictorial/graphical explanation of the Newton-Raphson method then use this method ${ }^{1}$ to approximate $\sqrt{2}$.

[^0]Q5 scratch/extra space (do not erase your scratch computations, they might earn partial credit):

Question 5

Analyze the critical points of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ where

$$
f(x)=e^{x}-x
$$

What is the range of f ? Sketch the graph of this function. Make sure your sketch indicates interesting features such as the concavity of the graph, extrema, roots and asymptotes (possibly oblique).

Q6 scratch/extra space (do not erase your scratch computations, they might earn partial credit):

Question 6 A ladder leans against the side of a building. The base of the ladder sits in an oil slick which causes the ladder to slide down the wall. Find a formula relating the rate of change of the angle formed by the ladder and the ground in terms of the rate of change of the distance of the base of the ladder from the wall. (Hint: First draw a picture. Introduce symbols labelling any quantities that you think are relevant for the problem.)

[^0]: ${ }^{1}$ Accurate results will receive more credit, but two recursions can already give an excellent result.

