MAT22A SECTION 2 Final Exam

Problem 1. (10 pts) Let

$$A = \left(\begin{array}{rrr} 2 & 2 & 1 \\ 1 & 0 & 5 \\ 1 & 1 & 0 \end{array}\right)$$

(a) Compute the inverse of A.

(b) Use the inverse of A to solve the linear system of equations Ax = b where

$$b = \left(\begin{array}{c} 4\\1\\2\end{array}\right).$$

Problem 2. (10 pts) Let

$$A = \left(\begin{array}{rrrr} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{array}\right) \quad \text{and} \quad B = \left(\begin{array}{rrrr} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right).$$

(a) Is the matrix A in row reduced echelon form?

(b) Is the matrix B in row reduced echelon form?

(c) Find all solutions of the linear system Ax = b where

$$b = \left(\begin{array}{c} 1\\2\\0\end{array}\right)$$

,

(d) Find all solutions of the linear system Bx = c where

$$c = \left(\begin{array}{c} 1\\1\\1\end{array}\right).$$

Problem 3. (15 pts) Let A be the matrix

$$A = \begin{pmatrix} 1 & 1 & 2 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & -1 & 0 & 0 & -1 \\ 0 & 1 & 1 & 0 & 1 \end{pmatrix}$$

(a) Find a basis for the column space of A consisting of columns of the matrix A.

(b) Find a basis for the null space of A.

Problem 4. (15 pts) Let A be the matrix

$$\left(\begin{array}{rrr} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array}\right).$$

(a) What is the characteristic polynomial of A?

- (b) Find all of the eigenvalues of A.
- (c) For each eigenvalue λ of A find a basis for the vector space

$$V_{\lambda} = \{ v : Av = \lambda v \}.$$

Problem 5. (10 pts) Find an **orthonormal** basis for the subspace V of \mathbb{R}^4 spanned by the vectors

$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\2\\1\\0 \end{pmatrix}, \begin{pmatrix} 1\\-1\\0\\0 \end{pmatrix}$$

Problem 6. (10 pts) Show that if the matrix A is similar to the matrix B then det(A) = det(B). (reminder: two $n \times n$ matrices A and B are similar if there is an invertible $n \times n$ matrix P such that $A = P^{-1}BP$.)

Problem 7. (15 pts) Suppose that A is an 3×3 matrix such that

$$Av_{1} = 2w_{1} - 2w_{2}$$
$$Av_{2} = w_{1} + w_{2} - w_{3}$$
$$Av_{3} = w_{1} - w_{3},$$

where $S = \{v_1, v_2, v_3\}$ and $T = \{w_1, w_2, w_3\}$ are bases for \mathbb{R}^3 . Suppose further that

$$w_1 = v_1 - v_3$$

 $w_2 = v_2 - v_3$
 $w_3 = v_1 + v_2.$

- (a) What is the matrix of A with respect to the basis $\{v_1, v_2, v_3\}$?
- (b) What is the matrix of A with respect to the basis $\{w_1, w_2, w_3\}$?
- (c) What is the determinant of A?

Problem 8. (15 pts) Let \mathbb{P}^n denote the vector space of polynomials of degree less than or equal to n, as usual. Consider the linear transformation $L : \mathbb{P}^3 \to \mathbb{P}^2$ by the formula

$$L(p(t)) = p'(t) - tp''(t).$$

where p'(t) is the first derivative of the polynomial p(t) and p''(t) is the second derivative of the polynomial p(t).

(a) Find the matrix of the linear transformation L with respect to the bases

$$S = \{1 + t^3, t + t^2, t^2 - t^3, t^3\}$$

and

$$T = \{1, t, t^2\}.$$

Note: S is a basis for \mathbb{P}^3 and T is a basis for \mathbb{P}^2 , so S is the "input basis" and T the "output basis."

(b) Find a basis for the kernel of the transformation L. Write each of the vectors in the basis in terms of the canonical basis $\{1, t, t^2, t^3\}$ for \mathbb{P}^3 .

(c) Find a basis for the range of the transformation L. Write each of the vectors in the basis in terms of the canoncial basis $\{1, t, t^2\}$ for \mathbb{P}^2 .