## MAT22A SECTION 2 <br> Final Exam

Problem 1. ( 10 pts ) Let

$$
A=\left(\begin{array}{lll}
2 & 2 & 1 \\
1 & 0 & 5 \\
1 & 1 & 0
\end{array}\right)
$$

(a) Compute the inverse of $A$.
(b) Use the inverse of $A$ to solve the linear system of equations $A x=b$ where

$$
b=\left(\begin{array}{c}
4 \\
1 \\
2
\end{array}\right)
$$

Problem 2. ( 10 pts ) Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right)
$$

(a) Is the matrix $A$ in row reduced echelon form?
(b) Is the matrix $B$ in row reduced echelon form?
(c) Find all solutions of the linear system $A x=b$ where

$$
b=\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)
$$

(d) Find all solutions of the linear system $B x=c$ where

$$
c=\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

Problem 3. ( 15 pts ) Let $A$ be the matrix

$$
A=\left(\begin{array}{ccccc}
1 & 1 & 2 & 1 & 1 \\
1 & 0 & 1 & 1 & 0 \\
1 & -1 & 0 & 0 & -1 \\
0 & 1 & 1 & 0 & 1
\end{array}\right)
$$

(a) Find a basis for the column space of $A$ consisting of columns of the matrix $A$.
(b) Find a basis for the null space of $A$.

Problem 4. (15 pts) Let $A$ be the matrix

$$
\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

(a) What is the characteristic polynomial of $A$ ?
(b) Find all of the eigenvalues of $A$.
(c) For each eigenvalue $\lambda$ of $A$ find a basis for the vector space

$$
V_{\lambda}=\{v: A v=\lambda v\} .
$$

Problem 5. ( 10 pts ) Find an orthonormal basis for the subspace $V$ of $\mathbb{R}^{4}$ spanned by the vectors

$$
\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right)
$$

Problem 6. ( 10 pts ) Show that if the matrix $A$ is similar to the matrix $B$ then $\operatorname{det}(A)=\operatorname{det}(B)$. (reminder: two $n \times n$ matrices $A$ and $B$ are similar if there is an invertible $n \times n$ matrix $P$ such that $A=P^{-1} B P$.)

Problem 7. ( 15 pts ) Suppose that $A$ is an $3 \times 3$ matrix such that

$$
\begin{aligned}
& A v_{1}=2 w_{1}-2 w_{2} \\
& A v_{2}=w_{1}+w_{2}-w_{3} \\
& A v_{3}=w_{1}-w_{3}
\end{aligned}
$$

where $S=\left\{v_{1}, v_{2}, v_{3}\right\}$ and $T=\left\{w_{1}, w_{2}, w_{3}\right\}$ are bases for $\mathbb{R}^{3}$. Suppose further that

$$
\begin{aligned}
& w_{1}=v_{1}-v_{3} \\
& w_{2}=v_{2}-v_{3} \\
& w_{3}=v_{1}+v_{2} .
\end{aligned}
$$

(a) What is the matrix of $A$ with respect to the basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ ?
(b) What is the matrix of $A$ with respect to the basis $\left\{w_{1}, w_{2}, w_{3}\right\}$ ?
(c) What is the determinant of $A$ ?

Problem 8. ( 15 pts ) Let $\mathbb{P}^{n}$ denote the vector space of polynomials of degree less than or equal to $n$, as usual. Consider the linear transformation $L: \mathbb{P}^{3} \rightarrow \mathbb{P}^{2}$ by the formula

$$
L(p(t))=p^{\prime}(t)-t p^{\prime \prime}(t)
$$

where $p^{\prime}(t)$ is the first derivative of the polynomial $p(t)$ and $p^{\prime \prime}(t)$ is the second derivative of the polynomial $p(t)$.
(a) Find the matrix of the linear transformation $L$ with respect to the bases

$$
S=\left\{1+t^{3}, t+t^{2}, t^{2}-t^{3}, t^{3}\right\}
$$

and

$$
T=\left\{1, t, t^{2}\right\}
$$

Note: $S$ is a basis for $\mathbb{P}^{3}$ and $T$ is a basis for $\mathbb{P}^{2}$, so $S$ is the "input basis" and $T$ the "output basis."
(b) Find a basis for the kernel of the transformation $L$. Write each of the vectors in the basis in terms of the canonical basis $\left\{1, t, t^{2}, t^{3}\right\}$ for $\mathbb{P}^{3}$.
(c) Find a basis for the range of the transformation $L$. Write each of the vectors in the basis in terms of the canoncial basis $\left\{1, t, t^{2}\right\}$ for $\mathbb{P}^{2}$.

